ما مطمئناً فریب خواهیم داد آن دسته از خوانندگانی را که تاکنون به اندازه کافی برای خواندن کتاب موجود صبور بوده اند و کسانی که را که می خواستند بدانند برای حل مساله در نظر خود باید از کدام متاهیورستیک (فوق اکتشافی)کمک بگیرند در واقع،این سوال ،سوال مناسبی است،اما ما باید اقرار کنیم که پیشنهاد یک یا چند راه حل مشخص ممکن نیست دیده شده است نتایج تئوری ضعیفی که در مورد متاهیورستیک ها شناخته شده اند اکثراًدر عمل مفید نیستند در واقع،این نظریه ها تا حدی بیان می کنند که برای اطمینان از اینکه حالت مطلوب به درستی مشخص شده باشد نیاز بوده است که تعدادی از راه حل ها که بزرگتر از تعداد کل راه حل ها ی مساله هستند آزمایش شوند به عبارت دیگر آنها(بطور معمول) پیشنهاد می کردند که از یک روش مشخص استفاده شود اگر نیاز بوده است که حالت مطلوب به صورت کاملاًدرست مشخص شده باشد با این وجود ،در این بخش تلاش خواهد شد که تعدادی راه حل ارائه شود برای ایجاد یک روش اکتشافی بر اساس قوانین فرا علمی که قبلاً مورد بحث قرار گرفت بر اساس قوانین قبلی که ما در قسمت جستجوی تا بو آن
را پذیرفته بودیم ،این توضیح با کمک مساله بهینه سازی داده شده ارائه خواهد شد مساله مسیریابی ماشین برای این مورد خاص انتخاب شده است برای اینکه مثال تا حد ممکن روشن شود ما خود را به ساده ترین مدل مساله محدود کردیم که آن را به عنوان مساله مسیریابی ماشین توانا شده در کتابها می شناسند با این وجود ،روش شناسی پیشنهاد شده یکی از کلی ترین آنهاست و باید برای تمام مسائل پیچیده نیز به همین خوبی قابل اجرا باشد
مقدمه:
مساله مسیریابی ماشین مناسب برای آموزش
مدل سازی مساله
انتخاب همسایه
همسایگی های ساده
بیرون کردن زنجیره ها از هم
(تجزیه در زیر مساله ها)(POPMUSIC)
روند بهینه سازی
برنامه سازی حافظۀ قابل تغییر
Ant Colonies
الگوریتم های تکاملی یا تقلیدی
جسجتوی پراکندگی
مقایسۀ توابع اکتشافی تکرار شونده
آیا نتیجه بالا درست است یا نه؟
نتیجه
[Hertz and kobler, 2000]:
[Taillard,1998,Taillard et al.,1998]:
شامل 56 صفحه فایل word