کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

روشهای سنتز نانو ذرات اکسید تیتانیوم

اختصاصی از کوشا فایل روشهای سنتز نانو ذرات اکسید تیتانیوم دانلود با لینک مستقیم و پرسرعت .

روشهای سنتز نانو ذرات اکسید تیتانیوم


روشهای سنتز نانو ذرات اکسید تیتانیوم

مقدمه ای کامل و جامع و بسیار مناسب برای پایان نامه های رشته فیزیک، شیمی، نانوفیزیک،نانوشیمی، مهندسی مواد و ...

حاصل از ترجمه مقالات ISI با 47 رفرنس معتبر - 40 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی

payannameht@gmail.com

---------------------------------------------------------------------

فایلهای مرتبط : 

خواص و کاربردهای نانو ذرات اکسید تیتانیوم

----------------------------------------------------------------------

 

خواص و کاربردهای نانوساختارهای دی­اکسید تیتانیوم به­شدت به اندازه ذرات، ساختار، مساحت سطح موثر و خواص سطحی آن وابسته است. از آن­جایی که، این خواص به­نوبه خود تحت تاثیر روش­های سنتز می­باشند، در این فصل مروری بر روش­های مختلف سنتز نانوذرات و لایه­های نازک TiO2 خواهیم داشت.

واکنش­های شیمیایی برای سنتز مواد می­تواند در حالت گاز، مایع یا جامد انجام شود. سرعت نفوذ واکنشگرها در فاز گاز یا مایع، چندین برابر از فاز جامد بیشتر است. از این­رو  روش­های سنتز نانوساختارها را می­توان به دو دسته­ی کلی، روش­های سنتز از فاز مایع (محلول) و سنتز از فاز بخار تقسیم کرد.

 

 

2-1- روش­های سنتز از فاز مایع

در طی فرایندهای رسوب­دهی از فاز مایع یا محلول، مواد از طریق چگالش به حالت جامد تبدیل می­گردند. از این رویکرد، معمولاً برای سنتز لایه­ها و پودرهایی با خلوص بالا استفاده می­شود.

 

2-1-1- روش سل­ژل (Sol­-­gel)

فرآیند"سل-ژل" اولین بار در اواخر قرن نوزدهم کشف شد و از اوایل دهه 40 به­طور گسترده­ای مورد استفاده قرار گرفت. سل­ژل یک روش شیمیایی­تر برای ساخت لایه­های نازک[1]، پودرها و غشاءها[2]می­باشد. با توجه به روند سنتز مواد در این روش، اکسیدهایی با خواص فیزیکی و شیمیایی مختلف بدست می­آیند. روش سل­-­ژل نسبت به دیگر روش­ها مزیت­هایی دارد که سبب شده از آن به­عنوان یک روش مناسب، با دقت زیاد در تهیه نانوذرات و لایه­های نازک استفاده شود. از جمله مزیت­های این روش: سادگی روش، قابل کنترل بودن مراحل سنتز، خلوص و همگنی محصول، کنترل تناسب عنصری[3]، واکنش­پذیری شیمیایی بالا، دمای واکنش پایین و تهیه پوشش­ها در مقیاس بزرگ را می­توان نام برد.

در اینجا لازم می­دانیم ابتدا به شرح روش سل­ژل پرداخته و سپس مراحل دست­یابی به محصول نهایی را تشریح می­کنیم.

 

2-1-1-1- روش سل­ژل برای تهیه نانوذرات TiO2

فرآیند سل­-­ژل در دو مسیر آلکوکسیدی[4]و غیر آلکوکسیدی رایج است. در روش غیر­آلکوکسیدی از نمک­های غیرآلی (از قبیل نیترات­ها، کلریدها، استات­ها، کربنات­ها، استیل­استنات­ها[5]و...) [3-1] به ­عنوان ماده اولیه استفاده می­شود. در سنتز غیر آلکوکسیدی نیاز به مواد اضافی برای حذف آنیون­های غیرآلی است. چون در این مسیر اغلب هالیدها، در اکسید­های نهایی باقی می­مانند و حذف آن­ها بسیار مشکل است.

مهم­ترین و متداول­ترین روش فرایند سل-ژل، در تهیه مواد معدنی اعم از شیشه‌ها، پایه­‌های کاتالیست و سرامیک­ها، مسیر آلکوکسیدی می­‌باشد. در این روش از ترکیبات آلی­- فلزی مانند ....

.

.

-1-2- روش هم­رسوبی[1]

روش تهیه کلوئید مواد از فاز مایع، هم­رسوبی نامیده می­شود و شامل تهیه رسوب، با اضافه کردن یک محلول پایه ( ,NaOH ,NH4OHاوره) به ماده آغازین و هیدرولیز آن­ها می­باشد. که با بازپخت رسوب حاصل، اکسید موردنظر تهیه می­شود. واکنش  تشکیل رسوب نسبتاً سریع انجام می­شود، به­همین علت، عدم کنترل اندازه ذرات و توزیع آن­ها یکی از عیوب این روش می­باشد. در روش هم­رسوبی برای تهیه نانوذرات TiO2، معمولاً از  TiCl4 ...

.

-1-3- روش سولوترمال[1]

در این روش واکنش­های شیمیایی در یک محلول آبی (هیدروترمال) و یا در یک محلول غیرآبی (روش سولوترمال) با چند ماده آلی از قبیل متانول، 1و4 بوتانول و تولوئن [17,18] تحت فشار بالا و دماهای پایین (معمولاً کمتر از C˚25) انجام می­شود. دمای انجام واکنش، بستگی به واکنش مورد نیاز برای به­دست آوردن ماده نهایی دارد. معمولاً برای بلوری شدن مواد نهایی، نیاز به بازپخت مواد زیر نقطه ذوب ضرورت دارد. در صورت استفاده از محلول­های آبی به­عنوان حلال، فناوری هیدروترمال مورد استفاده قرار می­گیرد. فرآیند هیدروترمال به­دلیل استفاده از آب به­عنوان حلال، بیشتر در تهیه هیدروکسیدها، اکسی هیدروکسیدها یا اکسیدها مناسب است. برای تهیه مواد غیراکسیدی (به­خصوص نیتریدها، کالگوگنیدها و ...) نیازمند استفاده از فرایندهایی هستیم که از حلال­های غیر آبی استفاده می­کنند. دما و فشار در اکثر موارد حلالیت را بهبود می­بخشد. افزایش این فاکتورها، افزایش غلظت پیش­ماده را در حلال القا می­کند که این خود به فرایند رشد (به خصوص میکرو یا نانوبلورها ...

.

.

2-3- مروری بر مقالات بین­المللی در زمینه خواص ساختاری و اپتیکی نانوذرات و لایه­های نازک اکسید تیتانیوم

 

2-3-1- سنتز نانوذرات  TiO2به روش سل­ژل

سل­ژل که شامل واکنش­های هیدرولیز و چگالش پیش­ماده­های آلکوکسیدی است، روشی مطمئن برای سنتز اکسیدهای فلزی بسیار ریز می­باشد [38]. محققان روش سل- ژل را به صورت­های مختلفی مورد استفاده قرار داده­اند. وانگ[1] و همکارانش [39]، تترا  n- بوتیل تیتانات را به آب دی­یونیزه افزوده و با اضافه­کردن اسید هیدروکلریک یا آمونیاک، ژلی تهیه کرده­اند که پس از خشک کردن، آسیاب کردن و کلسینه­کردن در دماهای مختلف، نانوپودر TiO2 حاصل شد. طیف­های XRD تهیه شده از پودرهای بازپخت شده در دماهای مختلف (شکل 2-14) نشان می­دهد که ...

.

.

 

2-3-4- سنتز نانوپودر تیتانیا به روش CVC[1]

 Yuو همکاران [40] با استفاده از فرآیند CVC، تیتانیوم تتراایزوپروپکساید (TTIP)[2] را با سرعت معینی به داخل لوله راکتوری با دیواره داغ تغذیه کردند. طی واکنش، ذرات TiO2 از فاز گازی روی سطح میله­ی کوارتزی که به طور افقی در مرکز لوله راکتور قرار گرفته است، رسوب کرده­اند. ذرات تولید شده از 4 منطقه مختلف روی میله جمع­آوری شدند (شکل2-21) ...

.

.

-3-5- خواص ساختاری و اپتیکی لایه­های نازک اکسیدتیتانیوم به روش    اسپری پایرولیزیز

- خواص ساختاری:

در این گزارش Patil و همکاران [41]، لایه­های نازک  TiO2را بر روی زیرلایه شیشه به روش اسپری پایرولیزیز و با پیش­ماده تیتانیل استیل استنات[1]و حلال اتانول تهیه کردند. لایه­نشانی در سه دمای زیرلایه 350، 400 و C˚450 انجام شده است. پارامترهای بهینه لایه­نشانی در جدول 2-2 گزارش شده است. واکنش­های انجام شده بر روی سطح داغ به­صورت زیر اتفاق می­افتند...

.

.

 

 

فهرست مطالب

 

فصل دوم: روش های سنتز نانوذرات و لایه های نازک دی اکسید تیتانیوم.. 1

2-1- روش های سنتز از فاز مایع. 1

2-1-1- روش سل ژل 2

2-1-1-1- روش سل ژل برای تهیه نانوذرات TiO2 2

2-1-1-2- مراحل فرایند سل-ژل.. 4

2-1-2- روش هم رسوبی.. 10

2-1-3- روش سولوترمال.. 10

2-1-4- سنتز نانوذرات به روش هیدروترمال.. 11

2-1-5- روش مایسل معکوس یا میکروامولسیون 12

2-1-6- روش احتراقی 13

2-1-7- روش الکتروشیمیایی 14

2-2- روش های سنتز از فاز گازی.. 15

2-2-1- لایه نشانی بخار شیمیایی (CVD) 15

2-2-2- لایه نشانی بخار فیزیکی (PVD) 19

2-2-3- کندوپاش (Sputtering) 19

2-2-4- روش چگالش از بخار شیمیایی (CVC) 21

2-2-5- روش لایه نشانی اسپری پایرولیزیز (SPD) 22

2-3- مروری بر مقالات بین المللی در زمینه خواص ساختاری و اپتیکی نانوذرات و لایه های نازک اکسید تیتانیوم  23

2-3-1- سنتز نانوذرات  TiO2به روش سل ژل.. 23

2-3-2- سنتز نانوذرات TiO2 در دمای پایین به روش سل-ژل.. 25

2-3-3- سنتز نانوذرات تیتانیا به روش هیدروترمال با امواج فراصوتی.. 27

2-3-4- سنتز نانوپودر تیتانیا به روش CVC.. 28

2-3-5- خواص ساختاری و اپتیکی لایه های نازک اکسیدتیتانیوم به روش اسپری پایرولیزیز. 30

2-3-6- مشخصه یابی لایه های نازک TiO2 تهیه شده به روش کندوپاش (اسپاترینگ) 32

2-3-7- سنتز لایه های نازک TiO2 به روش CVD.. 35

 مراجع. 37

 

 

فهرست جدول­ها

 

عنوان و شماره                                                                              صفحه

 

جدول2-1: شرایط فرایند CVD برای رسوب فلزات و نیمرساناها 18

جدول2-2: پارامترهای لایه نشانی با مقادیر بهینه به روش اسپری پایرولیزیز. 31

جدول2-3: تاثیر دمای زیرلایه بر روی خواص لایه های نازک TiO2 سنتز شده به روش اسپری.. 32

 

 

فهرست شکل­ها

 

عنوان                                                                                           صفحه

 

 

شکل2-1: نگاهی به فرایند سل ژل و کاربردهای آن.. 7

شکل2-2: مراحل تولید ژل.. 8

شکل2-3: مراحل فرایند سل-ژل.. 8

شکل2-4: مراحل مختلف تهیه ژل (a) سل (b) ژلتر (c) آئروژل (d) اگزروژل 10

شکل2-5: تشکیل مایسل معکوس... 14

شکل2-6: مراحل فرایند سنتز نانوذرات به روش مایسل معکوس 14

شکل2-7: سنتز  BaFe12O9به روش احتراقی. شعله از چپ به راست در حال انتشار است 15

شکل2-8: محفظه CVD.. 17

شکل2-9: رسوب انتخابی لایه رسوبی.. 19

شکل2-10: مراحل تشکیل لایه نازک در فرایند CVD.. 19

شکل2-11: طرحوارهای از لایه نشانی کندوپاش (سمت چپ) و جداشدن الکترون از هدف، ناشی از بمباران یونی (سمت راست) 21

شکل2-12: طرح شماتیکی از دستگاه سنتز نانودرات به روش CVC.. 22

شکل2-13: طرح شماتیک از دستگاه لایه نشانی و پارامترهای موثر به روش اسپری پایرولیزی.. 24

شکل 2-14: طیف های XRD نانوذرات TiO2 در دماهای بازپخت مختلف به مدت 2 ساعت 25

شکل 2-15: منحنی تغییر اندازه نانوذرات با افزایش دمای بازپخت 25

شکل 2-16: تغییرات اندازه ذرات با افزایش مدت زمان بازپخت در دمای (a) C˚350، (b) C˚500،             (c) C˚1000 26

شکل2-17: طیف پراش پرتو X نانوذرات تیتانیا (a) سنتز شده بدون عملیات پیرسازی (b) ماندگار شده در دمای C˚100به مدت 12 ساعت   27

شکل2-18: تصویر HRTEM پودر TiO2 پیرسازی شده به مدت 12 ساعت در C˚100 27

شکل2-19: طیف UV-Vis نانوپودر تیتانیا پیر شده در دماهای مختلف بازپخت... 28

شکل2-20: تصاویر TEM پودرهای TiO2 تهیه شده به روش هیدروترمال (a) به کمک امواج فراصوتی        (b) معمولی   29

شکل2-21: (a) شماتیکی از محل های جمع آوری ذرات داخل راکتور CVC (b) توزیع دمایی داخل راکتور 30

شکل2-22: طیفهای XRD پودرهای جمع آوری شده در هر منطقه. 30

شکل2-23: طیف های XRD لایه های تهیه شده در دماهای بستر مختلف (a) بدون بازپخت (b) بازپخت شده در دمای C˚500 به مدت 2 ساعت. 32

شکل2-24: طیف عبور اپتیکی لایه های نازک TiO2 در دماهای بستر مختلف... 33

شکل2-25: طیف های پراش پرتو X فیلم TiO2 لایهنشانی شده و بازپخت شده 34

شکل2-26: نمودار گاف اپتیکی (a) مستقیم و (b) غیرمستقیم لایه های تهیه شده به روش RF-Sputtring 35

شکل2-27: (a) ضریب شکست (b) ضریب خاموشی رسم شده برای لایه های تهیه شده به روش اسپاترینگ 35

شکل2-28: طیف پراش پرتو X لایه های TiO2 لایه نشانی شده روی زیرلایه شیشه در دماهای (a) C˚287 (b) C˚306 (c) C˚325 (d) C˚362  36

شکل2-29: تصاویر  SEMاز مقطع عرضی لایههای نشانده شده در دمای (a) C˚ 325 (b)C˚362. 37

 

 

فایلهای مرتبط : 

خواص و کاربردهای نانو ذرات اکسید تیتانیوم


دانلود با لینک مستقیم

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.