جریان های هجومی و حفاظت ترانسفورماتورهای قدرت در مقابل آن
91 صفحه در قالب word
فهرست مطالب
1-1- جریان هجومی مغناطیس کننده ترانسفورماتور : 4
1-2- بررسی ریاضی جریان هجومی : 9
1-3- دامنه و مدت عبور جریان هجومی : 10
1-5- ثابت زمانی مدار ترانسفورماتور در حین عبور جریان هجومی: 14
1-6- فوران پسماند : ( Residual or Remaining Flux) 15
1-7- نحوه کنترل و کاهش شدت جریان هجومی : 19
1-8- مدل کردن جریان هجومی : 23
1-9- به دست آوردن مشخصه مغناطیسی ترانسفورماتور : 27
1-10- تشریح مشخصه مغناطیسی مورد استفاده در این پروژه : 29
1-10-1- نمایش منحنی مغناطیسی با سه خط شکسته : 31
1-10-2- نشان دادن منحنی مغناطیسی ترانسفورماتور به وسیله فرمول : 32
1-12- مدار معادل ترانسفورماتور : 34
2-1- حفاظت دیفرانسیل ترانسفورماتور و تاثیر جریان هجومی در آن : 41
2-2- روشهای به دست آوردن مشخصه مغناطیسی فوق اشباع ترانسفورماتور از طریق آزمایش : 46
2-3- اضافه ولتاژهای ناشی از جریان هجومی : 50
2-4- محاسبه اندوکتانس کلی ترانسفورماتور در حالتهای خطی و اشباع : 54
2-5- نحوه محاسبه هارمونیکهای جریان هجومی : 60
2-6- روش برازش منحنی به منظور پیدا کردن فرمول مناسب برای منحنی مغناطیسی : 62
2-7- بررسی جریان هجومی در ترانس سه فاز تغذیه شده به وسیله منبع با امپدانس زیاد : 64
فصل 3- نتیجهگیری و پیشنهاداتی برای ادامه کار : 67
3-2- پیشنهاداتی برای ادامه کار : 68
فصل 4- حالت گذرای ترانسفورماتورها : 71
4-2- جریان بیش از حد (Over Currents) : 72
4-2-1- جریان شروع ( جریان هجومی ) ( Starting Current ) : 72
4-2-2- جریان اتصال کوتاه ناگهانی : 76
4-3- پدیده حرارتی مدار اتصال کوتاه : 78
4-4- نیروهای مکانیکی به وجود آمده در زمان اتصال کوتاه ناگهانی :]6[ 78
4-5- ماهیت و علت اضافه ولتاژها در ترانسفورماتور : 81
4-6- مدار معادل ترانسفورماتور در حالت اضافه ولتاژ ]16[ : 82
4-7- توزیع ولتاژ اولیه در طول سیمپیچ ترانسفورماتور 85
4-8- حفاظت ترانسفورماتور در برابر اضافه ولتاژها : 89
فصل 1- مباحث پایه
1-1- جریان هجومی مغناطیس کننده ترانسفورماتور :
Transformer magnetizing inrush current
درشرایط معمولی یک ترانسفورماتور در حالت بی باری جریان مغناطیس کننده ای حدود 5/0 تا 2 درصد جریان نامی اش از منبع میکشد . این جریان بعلت اثرات اشباع آهن سینوسی نیست ( شکل 1)
مقداراعوجاج بستگی به مقدار چگالی فوران مغناطیسی دارد که هسته در آن چگالی کار میکند . تغییرات فوران هسته و جریان مغناطیس کننده بنحوی است که درهر پریود ( دوره تناوب ) یکبار دور حلقه هیسترزیس (Hysteresis loop ) طی میشود (شکل2)
همچنین تغییرات فوران هسته بنحوی است که در هر لحظه نیروی محرکه الکتریکی( emf ) لازم را برای برابری با ولتا ژ لحظه ای منبع تولید کند . در شکل 3 حلقه هیسترزیس همراه با منحنی مغناطیسی magnetizing curve مکان قرار گرفتن رئوس حلقه های هیسترزیس است که در ولتاژ های اعمال شده به ترانسفورماتور در حالت ماندگار ( steady state ) بدست آمده اند (شکل 4 ).
بدیهی است همانگونه که ولتاژ افزایش میابد و در نتیجه این امرفوران بیشتر وبیشتری از هسته عبور میکند. ماگزیمم جریان نیز بسرعت افزایش پیدامیکند زیرا هسته اشباع میشود.
در حلقه هیسترزیس شکل 5 تغییرات فوران بین میباشد که این امر در حالت ماندگار حاصل شده است . حال میخواهیم ببینیم در شرایط گذار که پس از وصل کلید و اعمال ولتاژ منبع به سیم پیچ ترانسفورماتور پیش میآید ، چه اتفاقی میافتد . بدین منظور به آخرین دفعهای بازمیگردیم که ترانسفورماتور برقدار بوده و سپس از منبع تغذیه قطع شده است. شکل 5 نشان میدهد که در لحظهای که جریان از صفر عبور میکند فوران پسماند در هسته وجود دارد ( Residual Flux ) ، که فقط با تغییر جهت جریان و تغییرات آن تا صفر میتوان آن را از بین برد .
لذا باید انتظار داشت که پس از قطع ترانسفورماتور از منبع نیز ، فوران قابل ملاحظهای در هسته باقی بماند . معمولاً این فوران پسماند از مقدار مشخص شده در شکل 5 کمتر است ، زیرا بعد از قطع جریان توسط کلید ، یک جریان گذرا در سیم پیچ عبور میکند که نتیجه تخلیه ظرفیت خازنی ترانسفورماتور یا جریان بار است . البته توضیح بیشتر راجع به کاهش یافتن فوران پسماند در قسمت 6 خواهد آمد . فرض میکنیم که مقدار فوران پسماند باشد . همچنین فرض میکنیم که در هنگام برقدار شدن مجدد ترانسفورماتور پلاریته ولتاژ به نحوی باشد که فوران در جهت مثبت افزایش یابد . اگر موج ولتاژ اعمال شده در لحظه وصل در حال عبور از صفر به طرف نیمه مثبت موج باشد ، فوران مجبور است به اندازه افزایش یابد تا زمانیکه موج ولتاژ در به ماکزیمم خود برسد . چون فوران از مقدار اولیه آغاز شده ، در به مقدار که مساوی است ، و در به ماکزیمم خواهد رسید ، این امر در شکل به وضوح دیده میشود ، که در آن فوران اولیه مساوی است .
این فوران زیاد باعث میشود که هسته به حالت اشباع مغناطیسی برود ، و در نتیجه جریان بسیار زیادی از منبع تغذیه کشیده خواهد شد ، که آنرا جریان هجومی (Inrush current ) مینامند . ( شکل 8 )
البته شرایطی که در بالا در نظر گرفته شد ، یعنی حداکثر پسماند مثبت و زاویه ولتاژ صفر موج ولتاژ در لحظه وصل ، بدترین شرایط برقرار شدن ترانسفورماتور است . دامنه جریان هجومی در بدترین شرایط میتواند تا چندین برابر جریان نامی ترانسفورماتور برسد .
جریان هجومی ، به علت وجود تلفات ترانسفورماتور که عمدتاً مربوط به سیمپیچ است پس از مدتی از بین رفته و جریان مغناطیس کننده به حالت ماندگار خود میرسد . در طول پریودهایی که جریان هجومی جاری است ، همیشه روی منحنیه یسترزیس جابجا شده حرکت میکند تا بتدریج بر روی منحنی هیسترزیس معمولی بازگشت نماید ( شکل 7 ) .
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
اهمیت تحلیل مغناطیسی و حرارتی در ماشین های الکتریکی از جمله ترانسفورماتورها بر همگان روشن می باشد. همانطور که می دانیم بحث تحلیل مغناطیسی و تحلیل حرارتی از یکدیگر جدا نبوده و با یکدیگر در ارتباط می باشند. لذا تصمیم گرفته شده در این پایان نامه به تحلیل حرارتی – مغناطیسی ترانسفورماتورهای توزیع تحت شرایط نامتعادل توسط نرم افزار Maxwell بپردازیم. در ابتدا به کارهای صورت گرفته در این زمینه پرداخته شده است. در فصل دوم به تحلیل مغناطیسی ترانسفورماتور توزیع تحت شرایط متعادل می پردازیم. با توجه به نتایج به دست آمده در این فصل تحلیل حرارتی ترانسفورماتور در شرایط متعادل در فصل سوم مورد بررسی قرار گرفته اتس. در نهایت در فصل چهارم با اعمال شرایط نامتعادل به مسئله مورد نظر تحلیل مغناطیسی و حرارتی را مورد بررسی و ارزیابی قرار می دهیم. با توجه به نتایج به دست آمده از تحلیل مورد نظر به این نتیجه می رسیم که در بعضی از موارد، شرایط نامتعادلی ایجاد شده می تواند باعث افزایش تلفات و در نتیجه افزایش دما در قسمت های مختلف و کاهش عمر ترانسفورماتور مورد نظر گردد.
مقدمه:
پس از ظهور ترانسفورماتور به تولید و توزیع برق متناوب توجه ویژه ای شد. به این دلیل که می توان با بالا بردن ولتاژ با ترانسفورماتور در سمت تولید و پایین آوردن آن در سمت مصرف میزان تلفات خط انتقال را کاهش داد و با افت ولتاژ در خط انتقال نیز مقابله کرد. با توجه به اهمیت روزافزون صنعت برق، متناوب بودن آن و لزوم تبدیلات ولتاژ نیاز شدیدی به ترانسفورماتور و تکامل آنها در صنعت برق احساس می شود. ترانسفورماتورها از اجزای مهم و گران قیمت در شبکه های قدرت هستند و با توجه به محل و نوع استفاده از آنها در خطوط انتقال و توزیع تقسیم بندی می شوند. ترانسفورماتورهای توزیع مهیا کردن انرژی برق برای مصارف عمومی را به عهده دارند. لذا تحلیل های مختلفی بر روی انواع ترانسفورماتورها توسط مدل ها و نرم افزارهای مختلف صورت پذیرفته است. یکی از این موارد تحلیل مغناطیسی و حرارتی می باشد که در این پایان نامه به این مورد پرداخته شده است.
به دلیل ساختار هندسی پیچیده ماشین های الکتریکی و همچنین مشخصه های غیرخطی مواد مورد استفاده حل مسائل میدانی به روش تحلیلی دشوار است. از این رو در بیشتر موارد فقط حل های عددی امکان پذیر می باشد. بدین منظور روش اجزاء محدود یک روش عددی مناسب است. این روش امکان حل مسئله میدان را با وجود تغییرات زمانی میدان، ناهمگنی مواد و غیر یکنواختی و مشخصه غیرخطی آنها فراهم می سازد. با استفاده از روش اجزای محدود کل ناحیه مورد تحلیل به نواحی کوچکتر به نام اجزاء محدود تقسیم شده و معادلات میدان به هرکدام از این نواحی اعمال می شود.
امروزه روش اجزای محدود رایج ترین روش جهت حل مسائل برداری است. مطالعه توزیع میدان، به ویژه در مسائل الکترومغناطیسی مزایای متعددی دارد. این عمل تحلیل های جزئی و دقیق محلی را ممکن می سازد که از نقاط بارز نتایج این تحلیل می توان به گرادیان خطرناک میدان، شدت میدان مغناطیسی، اشباع و مانند آن اشاره کرد. همچنین تخمین خوبی از عملکرد ادوات الکترومغناطیسی تحت مطالعه فراهم می سازد (به ویژه زمانی که روش های تحلیلی نتایج قابل قبول به دست نمی دهند). و سرانجام با این تحلیل تعداد قطعات نمونه ساخته شده به مقدار قابل ملاحظه ای کاهش می یابد.
شامل 130 صفحه فایل pdf
ترانسفورماتورها به تعداد زیاد در شبکه های برق برای انتقال و توزیع انرژی الکتریکی در مسافت های طولانی مورد استفاده قرار می گیرند. قابلیت اطمینان ترانسفو ماتورها در این میان نقشی اساسی در تغذیه مطمئن انرژی برق بازی می کند. بنابراین شناسائی هر چه سریعتر عیبهای رخ داده در داخل یک ترانسفورماتور ضروری به نظر می رسد. یکی از چنین عیبهائی که به سختی قابل تشخیص است،
تغییرات مکانیکی در ساختار سیم پیچهای ترانسفورماتور است. اندازه گیری تابع تبدیل تنها روش کارامدی است که در حال حاضر برای شناسائی این عیب معرفی شده و بحث روز محققین می باشد.استفاده روش مذکور با محدودیتها و مشکلا تی روبرو می باشد که تشخیص انواع عیوب مختلف را به روشهای متداول و مرسوم محدود ساخته است. از این رو امروزه تحقیقات بر روی استفاده از الگوریتمها و روشهای هوشمندی متمرکز شده است که بتواند یک تفکیک پذیری نسبتا خوبی بین انواع عیوب و صدمات وارده به ترانسفورماتور را فراهم سازد. در این پایان نامه سیم پیچهای ترانسفورماتور به منظور پایش با روش تابع تبدیل مطالعه و شبیه سازی شده اند. برای این کار مدل مشروح سیم پیچها مورد استفاده قرار گرفته و نشان داده شده که این مدل قادر به شبیه سازی عیبهائی (اتصال کوتاه بین حلقه ها، جابجائی محوری وتغییر شکل شعاعی) است که توسط روش تابع تبدیل قابل شناسائی می باشند. شبیه سازیهای مر بوطه توسط مدل مشروح نشان می دهند که به کمک این مدل می توان به طور رضایت بخش توابع تبدیل محاسبه شده در محدوده از چند کیلوهرتز تا یک مگاهرتز را ارائه نمود . این مدل مشخصه های اساسی توابع تبدیل (فرکانسهای تشدید و دامنه ها در
فرکانسهای تشدید ) را به طور صحیح نتیجه می دهد. مقادیر عناصر مدار معادل از روی ابعاد هندسی سیم پیچها و ساختار عایقی مجموعه محاسبه می شوند. با محاسبه و تخمین این مقادیر در حالتهائی که تغییراتی در ساختار سیم پیچ بوجود آمده اند، اثرات عیبهای مکانیکی در مدل در نظرگرفته شده اند. دقت مدل مشروح علاوه بر تعداد عناصر آن به دقت محاسبات پارامترهای آن نیز بستگی دارد. ارتباط بین عیبهای بررسی شده (اتصال کوتاه بین حلقه ها، جابجائی محوری و تغییر شکل شعاعی ) و تغییرات ناشی از آنها در توابع تبدیل به خوبی توسط مدل نتیجه می شوند . تغییر نسبی مقادیر فرکانسهای تشدید در حوزه فرکانس و زمان فرونشست در حوزه زمان در یک تابع تبدیل به عنوان معیار تغییرات در تابع تبدیل در اثر یک عیب مورد استفاده قرار گرفته اند. ارزیابی توابع تبدیل محاسبه شده برای شناسایی عیب، به کمک توابع تبدیل گوناگون تعریف شده در مقالات مختلف، منجر به حصول نتایج زیر شده اند:
– نتایج محاسبات تغییرات یکسانی را در توابع تبدیل در اثر هر کدام از عیبهای فوق الذکر نشان می دهند.
– نتایج محاسبات در خصوص آنالیز حساسیت جابجائی محوری نشان می دهد که اثر جابجائی محوری روی تابع تبدیل در محدوده فرکانسی بالاتر از 100 کیلوهرتز به طور واضح بیشتر ا زمحدوده کمتر از 100 کیلوهرتز می باشد.
– نتایج محاسبات برای آنالیز تغییر شکل شعاعی سیم پیچ نشان می دهد که تغییر شکل شعاعی روی کل محدوده فرکانسی تابع تبدیل تأثیر تقریباً یکسانی می گذارد.
– بعضی از فرکانسهای تشدید در یک تابع تبدیل درمقایسه با سایر فرکانسهای تشدید در اثر بروز یک عیب حساستر میباشند.
برای بدست آوردن نتایج بیشتر در مورد وابستگیهای بین مدل مشروح و تغییرات محاسبه شده در توابع در اثر یک عیب، اثرات پارامترهای مدل روی توابع تبدیل به طور مجزا بررسی و تحلیل شده اند. این تحلیلها نشان می دهند که:
– تغییرات ظرفیتهای خازنی بین دو سیم پیچ در اثر جابجائی محوری قابل چشم پوشی می باشند.
– تغییرات توابع تبدیل در اثر تغییر شکل شعاعی عمدتاً از تغییرات ظرفیتها ناشی می شوند. در نظر گرفتن تغییرات اندوکتانسها در این حالت ضروری نمی باشند.
چشم پوشیهای فوق باعث کاهش قابل ملاحظه ای در زمان محاسباتی می شوند و اعمال آنها در پایش ترانسفورماتورها مفید است.
مقدمه
از آنجائیکه قدرت شبکه های برق همواره در حال افزایش بوده و بایستی تاحد ممکن تغذیه انرژی برق مطمئن انجام شود، بالا بودن قابلیت اطمینان، طول عمر و کیفیت تک تک عناصر و تجهیزات موجود در شبکه ضروری است. ترانسفورماتورهای مرتبط کننده سطوح ولتاژ مختلف در شبکه از مهمترین عناصر شبکه اند که خروج از مدار آنها به قابلیت اطمینان توزیع انرژی آسیب جدی وارد کرده و باعث هدررفتن هزینه زیادی می شود. برای افزایش قابلیت اطمینان تغذیه انرژی برق، شناسایی سریع عیبهای رخ داده در ترانسفورماتورها الزامی می باشد. بر این اساس در پایان نامه مذکور ابتدا مقدمه ای بر روشهای مختلف عیب یابی و پایش ترانسفورماتورهای قدرت بیان شده است. در ادامه در فصل سوم، روش آنالیز پاسخ فرکانسی به عنوان روش جدید در عیب یابی ترانسفورماتورها معرفی و اصول و مبانی آن تشریح می گردد. به منظور تحلیل انواع عیوب متداول وارده به ترانسفور ماتور (که معمولا در حالت کار عادی برای ترانسفور ماتور قدرت اتفاق می افتد) سیم پیچ ترانسفورماتور با روش تابع تبدیل مطالعه و شبیه سازی شده است .این مطالعه با تمرکز بر روی مدل مشروح ترانسفورماتور انجام پذیرفته است که جزئیات آن در فصول چهار و پنج ارائه شده اند. فصل شش نتایج حاصل از شبیه سازی یک ترانسفورماتور قدرت 63/20 kV و 30MVA را نشان می دهد و حالتهای مختلف صدمات فیزیکی ترانسفورماتور و اثرات آن بر روی تابع انتقال را مورد بررسی قرار میدهد. نتایج حاصل از شبیه سازیها، این امکان را فراهم ساخته است تا الگوهای مناسبی متناظر با خطاها و عیوب مختلف ترانسفورماتور استخراج گردد. نهایتا در فصل هفت یک شبکه عصبی هوشمند ارائه شده است که می تواند با استفاده از الگوهای استخراج شده مذکور ، یک راهکار مناسب برای تشخیص دقیق و مطمئن از خطای وارد شده بدست دهد.
شامل 130 صفحه فایل pdf
دانلود مقاله کاربرد الکترونیک قدرت در تپ چنجر ترانسفورماتورهای توزیع با فرمت ورد و قابل ویرایش تعدادصفحات 20
یکی از حوزه های استفاده از الکترونیک قدرت در صنعت برق، تپ چنجر ترانسفورماتورها می باشد . تپ الکترونیکی برخلاف نوع مکانیکی ، کنترل دائم و تنظیم جریان ولتاژ ترانسفورماتور را ممکن میسازد . بدین منظور ، بایستی امکان تغییر تپ در شرایط بار کامل ترانس فراهم گردد . مهمترین مسئله در طراحی مبدل قدرت برای این منظور، اندوکتانس سرگردان تپ های سوئیچ شده می باشد . اگر عمل تغییر تپ بین دو تپ مختلف در فرکانس بالا صورت بگیرد ، امکان تنظیم دائمی ولتاژ ثانویه در بار کامل ترانس وجود دارد . کل سیستم در شکل زیر نشان داده شده است :
شکل ( 1 ) - مبدل قدرت ، اتصالی بین شبکه قدرت و ترانس
طراحی مبدل قدرت
به دلایل زیر از لحاظ فنی، امکان استفاده از یک مبدل قدرت معمول تجاری سه فاز حتی در سیستم توزیع وجود ندارد :
1. ولتاژ فاز شبکه توزیع (در محدوده تا 20 کیلوولت) از حد ظرفیت بلوکه کردن نیمه هادیهای قدرت معمول ، بیشتر است .
2. کل سیستم مذکور ، شامل مبدل قدرت ، بایستی در شرایط وقوع اتصال کوتاه ترانس در مدار باقی بمانند ( مثلا برای جریان نامی 22 آمپر اولیه ، جریان اتصال کوتاه تا 550 آمپر را تحمل کند) .
3. با برقدار کردن ترانس، جریانی در حدود چهار برابر جریان نامی برقرار میشود که در نتیجه ثانویه ترانس، تا لحظاتی قادر نیست برق 400 ولت مورد نیاز دستگاههای کنترلی فوق را تامین کند .
بنابراین ، برای ساختن مبدل قدرتی که بر مشکلات فوق غلبه کند ، موارد زیر در مرحله تحقیق و بررسی قرار دارند :
1. تحقیق در مورد توپولوژی و مفاهیم کنترلی (مدولاسیون) مبدل .
2. مدل شبیه سازی شده از ترانس قدرت با مبدلهای قدرت برای توپولوژیهای مختلف .
3. توپولوژیهای مختلف ممکن از مبدل قدرت و تکنیکهای مرتبط کنترل از طریق شبیه سازی .
4. انتخاب توپولوژی بهینه از مبدل قدرت با توجه به قابلیت اطمینان سیستم ، پیچیدگی و هارمونیکها و دقت شکل موج ترانس .
5. اثبات توپولوژی در نظر گرفته شده از لحاظ تجربی .
6. انجام آزمون در یک آزمایشگاه ولتاژ بالا و ارزیابی نتایج با توجه هارمونیکهای شکل موج مبدل .
منبع : Its
آدرس : http://ee.its.tudelft.nl/EPP/ReInd_001.htm
آیا تانک ترانسفورماتورها باید تحت فشار قرار گیرند؟
از شرکت سرویس دهنده ترانسفورماتور ، DYNEX اغلب این پرسش می شود که آیا یک تانک روغن ترانسفورماتور باید تحت فشار باشد یا درحالت خلأ نگهداری شود و یا اصلا" چنین موضوعی اهمیت دارد؟
نشتی در اثر تلفات فشار (مثبت یا منفی) بوجود می آید. در یک ترانسفورماتور تحت فشار در صورت ایجاد نشتی احتمال اینکه روغن از تانک با فشار خارج گردد خیلی بیشتر می باشد. روغن ریزی حادثه ناخوشایندی می باشد زیرا روغن های بکاررفته آلوده کننده می باشند و گاهی سبب مشکلات زیست محیطی می گردند. وقتی تانک ترانسفور تحت فشار باشد کشیدن یک نمونه روغن راحتتر است و در اثر نشتی آلودگیها به داخل ترانسفورماتور کشیده نمی شوند.
اثرات فشارمنفی
اگر از یک تانک ترانسفورماتور که در خلأ نگهداری می شود یک نمونه روغن کشیده شود، چه اتفاقی خواهد افتاد؟
روغن نمونه معمولا" از کف تانک کشیده می شود (غیر از آسکارل ) هنگامی که شیر باز می شود ممکن است که هوا به داخل تانک کشیده شود. اگر هوا بوسیله رطوبت، گرد و غبار، یا ناخالصی ها آلوده باشد، روغن می تواند آلوده گردد حتی اگر برای فقط یک مدت زمان کوتاه باشد. همچنین این امکان را فراهم می آورد تا یک حباب هوا درون روغن حرکت کند و این می تواند بطور لحظه ای قدرت دی الکتریک متوسط بین دو نقطه در جایی که یک اختلاف پتانسیل بالا وجود دارد را ضعیف کند که در نتیجه آن ممکن است یک جرقه الکتریکی تولید گردد.
یک ترانسفورماتور که در فشار اتمسفر نگهداری شده بسیار خوب عمل می کند. در حقیقت، اگر ترانسفورماتور آب بندی شده باشد، فشار داخلی با درجه حرارت بالا و پایین می رود و این فقط به واسطه انبساط حرارتی گازهای داخلی ( هوا، نیتروژن یا هر آنچه داخل آن است ) ، روغن و خود تانک ترانس می باشد و دستگاه کاملا"بطور رضایت بخشی از همه جهت وبر اساس طول عمر مورد انتظار عمل خواهد کرد.
وضع نهایی مشخص شده بوسیله DYNEX نشان می دهد که یک فشار مثبت نسبتا" کم از 1 تا 2 پوند در هر اینچ مربع مطلوب است. در حالیکه این میزان فشار سبب صدمه دیدن گاسکت (واشر) و ایجاد نشتی نمی گردد . استخراج نمونه های روغن برای تجزیه های پریودیک معین جهت تشخیص علائم آغازین خطاهای داخلی بآسانی انجام می گیرد و بوسیله کنترل فشار علایم نشتی ها می تواند تشخیص داده شود. همچنین اگر چنانچه یک نشتی گسترش یابد، احتمال اینکه ناخالصیهایی از محیط اطراف به داخل وارد گردند کمتر است. در این حالت نشتی های روغن ترانسفورماتور می توانند برطرف گردند و این کار هزینه کمتری نسبت به تعویض یا تعمیر ترانسفورماتور دارد.
شرح مختصر : گزارش حاضر، گزارش نهایی پروژه “بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق فارس” میباشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته میشود. در روال انجام پروژه مدلسازیهای مربوط به حالت دائمی و گذرای ترانسفورماتور و سایر اجزای پست شامل CT، PT، برقگیر، کلید و سیستم زمین مورد بررسی دقیق قرار گرفته و بهترین مدلها ارائه شده است. در ادامه بر روی دو پست نمونه تلبیضاء و نورآباد شبیهسازی حالت گذرا انجام شده و با تغییر مقاومت زمین و مقدار انرژی صاعقه مربوط به آنها بر روی ترانسفورماتورهای مذکور مورد بررسی قرار گرفته و نتایج آن در گزارش “شبیهسازی و بررسی اجزای اصلی پست” ارائه گردیده است. در گزارش حاضر دلایل اصلی ایجاد خطا که منشاء آنها داخلی یا خارجی میتواند باشد بررسی شده است. از طرف دیگر با توجه به اطلاعات مربوط به خطاهای ترانسفورماتورهای KV66، دلایل اصلی ایجاد خطاها استخراج و روشهای پیشگیرانه توضیح داده شده است (در فصل ششم گزارش حاضر) که از این میان میتوان به روشهای پیشگیرانه اصلی مونیتورینگ هیدروژن و آشکارسازی تخلیه جزئی اشاره نمود.
فهرست :
پیشگفتار
مقدمه
خطاهای داخلی ترانسفورماتور
اشکالات در مدارت مغناطیسی ترانسفورماتور
اثر جریان های گردابی ناخواسته
وجود ذرات کوچک هادی
عدم متعادل شدن نقطه خنثی ترانسفورماتور
اثر هارمونیک ها در افزایش تلفات ترانسفورماتور
اشکالات بوجود آمده در سیم پیچ ها شامل کویل ها، عایق کاری های سیم پیچ ها و ترمینالها
اتصال کوتاه در سیم پیچ ها ناشی از محکم نبودن آنها
عدم خشک کردن کامل ترانسفورماتور
اتصالات بد بین سیم پیچ ها
نیروهای الکترودینامیکی ناشی از اتصال کوتاه
اشکالات در عایقهای ترانسفورماتور شامل روغن، کاغذ و عایقکاری کلی
اشکالات ناشی از ضعف عایقی کاغذ و عایقکاری کلی ترانسفورماتور
اشکالات ساختاری
مقدمه
خطاهای الکتریکی خارج ترانسفورماتور
صاعقه (Lightning)
استفاده از عایق غیرهمگن
اضافه ولتاژهای ناشی از قطع و وصل (کلیدزنی)
اضافه ولتاژهای ناشی از رزونانس
فرورزونانس در خطوط انتقال انرژی ولتاژ بالا
اضافه ولتاژهای موقت
جریان هجومی در ترانسفورماتورها
اتصال نادرست ترانسفورماتور و تپ چنجر
خطاهای ناشی از اضافه بار
خطاهای مکانیکی
اتصالات سخت لولهشمش در پستها
در نظر نگرفتن اثرات زلزله، سیل و طوفان بر روی فونداسیونها و تجهیزات پست
حمل و نقل غیر صحیح ترانسفورماتورها
نبود حفاظتهای جلوگیری کننده از ورود حیوانات
خطاهای شیمیایی
زنگزدگی بدنه ترانسفورماتور
فرسودگی بیش از حد ترانسفورماتور به علت عدم سرویس به موقع
مقدمه
مشخصات مورد انتظار روغن ترانسفورماتور
نقش کاغذ در ترانسفورماتور
تاثیر رطوبت در خواص عایقی کاغذ
اثر رطوبت در روغن ترانسفورماتور
راههای ورود رطوبت به ترانسفورماتور و جلوگیری از آن
تاثیرات مخرب تضعیف مواد عایقی ترانسفورماتور
برنامه آزمایشهای روغن ترانسفورماتور
آزمایش روغن قبل از پرکردن ترانسفورماتور با آن
آزمایش روغن بعد از پر کردن ترانسفورماتور
آزمایش دوره ای روغن
تصفیه روغن ترانسفورماتور
تصفیه فیزیکی روغن ترانسفورماتور
تصفیه فیزیکی – شیمیایی روغن ترانسفورماتور
شرایط نمونه برداری روغن ترانسفورماتور
مقدمه
ایجاد گاز در ترانسفورماتور
ایجاد قوس الکتریکی با انرژی زیاد در داخل روغن
ایجاد قوس الکتریکی با انرژی کم در داخل روغن
گرمای بیش از حد در محلهای به خصوص
تخلیه کرونا در داخل روغن ترانسفورماتور
تجزیه عایق ترانسفورماتور در اثر گرما
حلالیت گازها در روغن ترانسفورماتور
مقادیر مورد نیاز برای آنالیز گازها
مراحل آزمایش روش گاز کروماتوگرافی جهت مشخص کردن نوع خطا
حلالیت گازها در روغن ترانسفورماتور
خرابی عایق سلولزی ترانسفورماتور (کاغذ ترانسفورماتور)
امتحان غلظت و حل شده در روغن
امتحان غلظت Co و Co در گازهای آزاد بدست آمده از رله های جمع آوری گاز
کاربرد روش تحلیلی در گازهای آزاد درون رله های جمع آوری گاز
محاسبه غلظتهای گاز حل شده معادل در روغن ترانسفورماتور با غلظتهای گاز آزاد
روش تشخیص خطا با استفاده ازگازهای حل شده و حل نشده در روغن ترانسفورماتور
تعیین نرخ رشد گازها
ارائه فلوچارت تصمیم گیری
تعیین زمانهای آزمایش گاز کروماتوگرافی روغن
تشخیص نوع خطا با استفاده از گازهای متصاعد شده
تشخیص نوع خطا با استفاده از نسبت گازهای متصاعد شده
فصل پنجم
روشهای شناسایی محل خطا در ترانسفورماتور
روشهای غیر الکتریک تعیین خطا
طبیعت صوت
انواع سیستمهای آکوستیکی
روشهای الکتریکی تعیین محل خطا
مانیتورینگ وضعیت ترانسفورماتور در حال کار با استفاده از روش آزمون ضربه ولتاژ پایین LVI
عیب یابی ترانسفورماتورهای قدرت با استفاده از روش تابع انتقال
عیب یابی در محل
روش آشکار سازی بر اساس تخلیه جزئی
سیستم GULSKI AND KREUGER
آنالیز با استفاده از روش مونت کارلو یا سیستم HIKITA
خطاهای بوجود آمده در ترانسفورماتورهای کیلوولت برق فارس
مقدمه : آشنایی با صنعت برق در استان فارس تا سال
آمار حوادث منجر به ایجاد خطا و یا خروج ترانسفورماتور از شبکه
ضمیمه