کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

تحقیق چگونه در درس ریاضیات موفق باشیم

اختصاصی از کوشا فایل تحقیق چگونه در درس ریاضیات موفق باشیم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

چگونه در درس ریاضیات موفق باشیم ؟

چگونه در درس ریاضیات موفق باشیم ؟ این سوال اکثر دانش آموزان و دانشجویان است که گه گاه مطرح می گردد . برای پاسخ به این سوال به طور خلاصه موارد زیر در یادگیری یک موضوع از ریاضیات ارائه می گردد :

- فهمیدن تعریف موضوع

-تمرکز در مثالهای اولیه ( که اساسا معرفی بیشتری از تعریف موضوع می باشند )

- درک صورت قضیه های ابتدایی

-سعی و تلاش در فهم برهان قضیه ها

-نکته برداری و یادداشت از آنچه که استنباط شده است .

-رفع اشکال تعاریف و قضیه ها و ارائه یادداشت ها به معلم ( یا استاد )

-استفاده از کتابهای مختلف دیگر در ارتباط با موضوع و نکته برداری از آنها

-سعی در حل نمودن هر تعداد و هر اندازه از تمرین ها

-رفع اشکال و ارائه حل تمرینها به معلم ( یا استاد )

-گذشت زمان و صبر و حوصله و مرور مجدد بر کتابها و یادداشت ها

بدون شک کار طاقت فرسایی خواهد بود ! اما اگر درسی را ابتدا خودتان بخوانیـد و آنچه که عنـوان شده را مرحله به مرحله اجرا نمایید مطمئن باشید که چه در هنگام درس گوش دادن و چه در هنگام رسیدن به پاسخ ها چنان لذتی می برید که خستگی را نه تنها می زداید بلکه شادی و اعتمـاد به نفس عمیقی به شما هدیه می نماید .

خوب است که جملاتی از مقدمـه کتاب ریاضیات سال اول دبیرستان نظام جدید آموزشـــی را یادآوری نمایم ، امیدوارم که بتوانید راه درست را ادامه دهید ، و اما جملات :

« مطالب ریاضی کاملا به هم پیوسته هستند .»

« در موقع تدریس ریاضی در کلاس کاملا به درس دبیر گوش فرا دهید و ((( اگر می توانید یادداشت مختصری بردارید ))) .»

متاسفانه امروزه دانش آموزان و معلمین آنها تنها به گفتن مطالب و جزوه نویسی اهتمام می ورزند .

« اگر شما یک تمرین ریاضی را با فکر و ابتکار خودتان حل کنید بهتر از آن است که

بیست تمرین در کلاس حل شود و شما فقط راه حل ها را رونویسی کنید .»

« فراگیری علم ریاضی ، محتاج دقت ، توجه و تفکر است .»

« اگر از حل تمرینی باز ماندید مایوس نشوید ، فکر کنید و قوه اندیشه خود را به کار برید حتما موفق خواهید شد .»

« همه ی افراد توانایی یادگیری ریاضیات را دارند ، ولی عده ای برای فراگیری آن باید زحمت بیشتری را متحمل شوند .»

« هیچگاه ، حل مرینات را از روی دفتر همکلاسیهای خود رونویسی نکنید ، زیرا این کار مانع رشد فکری و به کار افتادن قوه ی خلاقه ذهن شما می شود .»

امیدوارم که تا اینجا اسفاده برده باشید . باور کنید همه ی انچه که می شود در آموزش ریاضیات بیان نمود ، در همان مقدمه ی کتاب ریاضیات سال اول دبیرستان نظام جدید بیان شده است .

برای به اتمام رساندن نصیحت های خود ، چند کلام دیگر را نیز بیان می نمایم :

توجه کنید که اگر یک مربی تیم فوتبال خوب پنالتی بزند ، خوب ضربه به توپ بزنـــد یا خوب ضربات کاشته را به خوبی سوی دروازه روانه سازد و ... آیا بازیکنان بدون تمرین و سعـی و تلاش و فقط با نشان دادن ضربات متوالی مربی ، قادر خواهنــد بــود که ضربات خوبی را به توپ وارد سازند ؟

آیا تنها فوتبالیست بودن مربی ، قادر خواهد بود که بازیکنی را بدون تمرین و بدون زحمت ، یک بازیکن درست و حسابی کند ؟

بدون شک در تمام دروس بالاخص درس ریاضیات تمرین حل کردن معلم ( یا استاد ) جز چند مثال اول که چگونگی حل مساله را آموزش می دهد ، هیچ سودی به حال دانش آموز یا دانشجـو نخواهـد داشـت این سوال اکثر دانش آموزان و دانشجویان است که گه گاه مطرح می گردد . برای پاسخ به این سوال به طور خلاصه موارد زیر در یادگیری یک موضوع از ریاضیات ارائه می گردد :

- فهمیدن تعریف موضوع

-تمرکز در مثالهای اولیه ( که اساسا معرفی بیشتری از تعریف موضوع می باشند )

- درک صورت قضیه های ابتدایی

-سعی و تلاش در فهم برهان قضیه ها

-نکته برداری و یادداشت از آنچه که استنباط شده است .

-رفع اشکال تعاریف و قضیه ها و ارائه یادداشت ها به معلم ( یا استاد )

-استفاده از کتابهای مختلف دیگر در ارتباط با موضوع و نکته برداری از آنها

-سعی در حل نمودن هر تعداد و هر اندازه از تمرین ها

-رفع اشکال و ارائه حل تمرینها به معلم ( یا استاد )

-گذشت زمان و صبر و حوصله و مرور مجدد بر کتابها و یادداشت ها

بدون شک کار طاقت فرسایی خواهد بود ! اما اگر درسی را ابتدا خودتان بخوانیـد و آنچه که عنـوان شده را مرحله به مرحله اجرا نمایید مطمئن باشید که چه در هنگام درس گوش دادن و چه در هنگام رسیدن به پاسخ ها چنان لذتی می برید که خستگی را نه تنها می زداید بلکه شادی و اعتمـاد به نفس عمیقی به شما هدیه می نماید .


دانلود با لینک مستقیم


تحقیق چگونه در درس ریاضیات موفق باشیم

مقاله فلسفه ریاضیات

اختصاصی از کوشا فایل مقاله فلسفه ریاضیات دانلود با لینک مستقیم و پر سرعت .

مقاله فلسفه ریاضیات


مقاله فلسفه ریاضیات

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:15

فلسفه ریاضیات

فلسفه ریاضی یا فلسفه ریاضیات ، شاخه‌ای از فلسفه است که به بنیادهای وجودی ریاضیات می‌پردازد. از جمله پرسش‌ هائی که فلسفه ریاضی ، کوشش در پاسخ به آن دارد این‌ها است:

  • چرا ریاضی ، در توضیح طبیعت موفق است؟
  • وجود داشتن عدد یا دیگر موجودات ریاضی ، به چه معنا است؟
  • گزاره‌های ریاضی به چه معنائی صحیح‌اند و چرا؟(ناظر بر منطق و استدلال ریاضی)

بعضی مسائل موجود در دنیای طبیعی را نمیتوان به سادگی حل نمود ولی زمانیکه وارد دنیای ریاضیات میشویم آن مسئله به سادگی حل شده و وقتیکه نتیجه به دنیای طبیعی منتقل میشود کاملأ منطبق بوده به همین دلیل دنیای ریاضیات به سرعت گسترش یافته و در آن دنیاهای دیگری ایجاد شده است. از جمله دنیای جبر - هندسه - معادلات دیفرانسیل - لاپلاس - انتگرال و ... حال کافیست که شما بتوانید این المانهای دنیای طبیعی را به دنیای ریاضیات وارد نموده و بلعکس نتیجه را به دنیای طبیعی باز گردانید که این عمل معمولأ توسط علم فیزیک انجام میگردد.

در آغاز قرن بیستم سه مکتب فلسفه ریاضی برای پاسخ‌گوئی به این‌گونه پرسش‌ها به وجود آمد. این سه مکتب به نام‌های شهودگرایی و منطق‌گرایی و صورت‌گرایی معروف‌اند.

سرنوشت
هر بحث بستگی به سوالهایی بنیادی دارد که در آن مطرح می شود اینجا که بحث در مورد فلسفه ی ریاضیات است پرسش اساسی ما از ریاضیات درباره ی چیستی آن است
 پیداست مولفی دیگر که در سلسله مراتب قدرت جایگاهش با مولف این متن فرق دارد ممکن است سوال دیگری را بنیادی تر بداند هرچند پیشرفت در این راه به منظور رسیدن به پایان کار نیست بلکه کشف ویژگیهای راه است

ریاضیات چیست ؟

ما این سوال را در مرکز توجه قرار می دهیم وپیرامون آن حرکت می کنیم تا از زوایای  مختلف به آن بنگریم.

چیزی  که در این میان مهم جلوه می نماید حکومت منطق بر ریاضیاتی است که  چیستی اش را نمی دانیمدر اینجا با عملکرد منطق  سر وکار داریم و آن باز شناختن درست از نادرست است  وچیزی که در اکثر شاخه های  ریاضیات راه را تعیین می کند همین گزاره ی درست ونادرست بودن نقیض آنست  پذیرفتن  گزاره أی درست و ادغام آن با گزاره ی درست دیگر گزاره ی سومی پدید میآورد وریاضیات  پیش میرودنیچه در فراسوی نیک وبد می گوید : ((از کجا معلوم که ما نادرست را خواستار  نباشیم؟))

این  سوال ما را به یاد حرف دیگری ازنیچه می اندازد :

 ((از نظر  ما نادرستی یک حکم دلیل رد ناگزیر آن حکم نیست  باید ببینیم آن حکم تا کجا پیش برنده ی زندگی است  ))

 به عنوان  مثال هندسه ی اقلیدسی آنچنان که که باید پیش برنده ی زندگی نبود بنابراین چیزی که تا آن زمان درست بود به نادرست تبدیل شد و هندسه ی هیلبرت جای آنرا گرفت . این از لحاظ تاریخی! اما مساله به همین جا ختم نمی شود هیدگر مقایسه بین علم جدید وعلم  قدیم را جایز نمی داند او سخن ارسطو ونیوتون وانیشتین  هر سه را در مورد حرکت درست  می داند به این ترتیب بحث ما باید ریشه ای تر شود باز  یاد حرف دیگری از نیچه می افتیم ((دانشمندان جهان را توضیح نمی دهند بلکه تفسیر می  کنند))


دانلود با لینک مستقیم


مقاله فلسفه ریاضیات

مقاله درباره تاریخ ریاضیات

اختصاصی از کوشا فایل مقاله درباره تاریخ ریاضیات دانلود با لینک مستقیم و پر سرعت .

مقاله درباره تاریخ ریاضیات


مقاله درباره تاریخ ریاضیات

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

تاریخ ریاضیات

ریاضیات در چین

فهرست مطالب

خلاصه ایی از تاریخ ریاضیات در چین

تاریخچه ریاضیدانان و کارهای انجام شده دو حوضة ریاضیات

مراجع در دسترس

تاریخچه

روشهای دسترسی به سایر صفحات

خلاصه ایی از تاریخ ریاضیات در چین

منابع اولیه عبارتند از: «گسترش ریاضیات در چین و ژاپن» اثر Mikami و ریاضیات چینی اثر Li yan و Dushiran تاریخچه زیر را مشاهده نمائید:

1- نماسازی عددی، محاسبه ریاضی، مقیاسهای شمارش

نماد سازی اعشاری سنتی- یک نماد برای هر یک از 10.9.8.7.6.5.4.3.2.1،100 و 1000 و 10000 و..

بنابراین 2034 نوشته می‌شود با نمادهایی به شکل 2 و 1000و3و10 و4 یعنی دوبار 1000 و 3 بار 10 باضافة 4. که باز می‌گردد به روش نوشتاری چینی.

محاسبه با استفاده از تکه های کوچک خیزران بعنوان مقیاسهای شمارش شکل گرفت. شکل قرار گرفتن مقیاسهای شمارش نمایانگر یک روش اعشاری ساده بوده و برای نوشتن عبارات طولانی، عدد صفر نمایانگر یک فاصله بود. ترتیب نوشتن از چپ به راست شبیه روش شمارش عربی در 400 سال قبل از میلاد و یا زودتر بوده.

جمع: نمادهای شمارش برای دو عدد در پائین قرار می گرفتند و یک عدد بالای دیگری اعداد از چپ به راست با هم جمع می شدند و در صورت نیاز انتقال انجام می‌شد. منها نیز به همین روش.

ضرب: جدول ضرب 90*9 ضربهای اعداد بزرگ مانند روش ما با نتیجه‌گیری بر مبنای مقیاسهای فیزیکی انجام می‌شد. تقسیمهای اعداد بزرگ مانند روشهای رایج ولی نزدیکتر به روش galley بود.

2- Zhoubi suanjing (بهترین روش محاسبة شاخصها و منحنی های صعودی) (صد سال قبل از میلاد مسیح)

یکی از تئوریهای منحنی های صعودی راتوصیف می‌کند قبل از آن Han dynasty (206 سال قبل از میلاد مسیح) ریاضی زودتر در کتاب سوزی 213 قبل از میلاد مسیح.

بیان و کاربرد هندسه فیثاغورثی برای مساحی، ستاره شناسی و غیره. گسترش هندسه فیثاغورثی

محاسباتی شامل اعداد کسری معمولی

3- نه فصل در مورد هنر ریاضی اثر jiuzhang suanshu (صد سال قبل از میلاد مسیح) گرد آوری ریاضیات بر پایه Han dynasty 249 مسئله در 9 فصل.

کاملترین مرجع مساحی و موثرترین کتاب ریاضیات هینی. گزارشات و تفسیر‌های فراوان.

فصل 1: محاسبه مساحت: مباحث سیستماتیک در مورد الگوریتمهای مورد استفاده در شاخصهای شمارش اعداد کسری شامل alg برای LCM , GCD مساحت اشکال سطح شامل مربع، مستطیل. مثلث، ذوذنقه،دایره و قطاع دایره و قطاع کره دوایر متحد المرکز، بعضاً تخمینی و بعضاَ دقیق.

بخشهای 2و3و6 در مورد تناسب، سری ها، توزیع نسبت و ضرایب صحیح بخش 4، روشهای محاسبه سطح و حجم. توضیح روشهای معمول برای محاسبه ریشهای مربع و مکعب می اشد اما نتایج را به کمک محاسبه با نمادهای عددی بدست می آورد.

بخش 5: مشاوره های ساختمانی. حجم مکعب، متوازی السطوح، هرم ناقص هرم سه وجهی، هرم، استوانه، چهارضلعی. مخروط و مخروط ناقص و کره بعضاً تخمینی و بعضاً با 3-Pi

بخش 7: زیادی ها و کسرها: اشکال خطا و اشکال خطا دوگانه.

بخش 8: آرایش مستطیلی: بیان کننده روشهای محاسبه برای حل معادلات 3 مجهولی یا بیشتر. شامل بکارگیری اعداد منفی (مرکز برای اعداد مثبت و سیاه برای اعداد منفی) قواعد اعداد صحیح.


دانلود با لینک مستقیم


مقاله درباره تاریخ ریاضیات

تحقیق درباره تاریخچه مختصر ریاضیات

اختصاصی از کوشا فایل تحقیق درباره تاریخچه مختصر ریاضیات دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره تاریخچه مختصر ریاضیات


تحقیق درباره تاریخچه مختصر ریاضیات

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:38

تاریخچه مختصر ریاضیات

اولین مطلب :

تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی

که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند.

البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد.

قبل از تاریخ

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.

سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.

در نخستین قرون تاریخ چهار ریاضی‌دان مشهور در این کشور وجود داشت که عبارت بودند از:

آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده می‌شود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا (لیلاواتی) گذارده بودندکه معنی دلبری و افسونگری دارد. با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.

در سال 622م که حضرت محمدصلی الله علیه و آله وسلم از مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند.

و این توسعه‌طلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.

در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بین‌المللی گردید.

از ریاضی‌دانان بزرگ اسلامی یکی خوارزمی می‌باشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اول را بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر می‌نامیم، انجام داده است دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوم است.قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر می‌بردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمی‌یافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار می‌رفت اصلاح کرد. این دستگاه همان چرتکه بود.برجسته‌ترین نامهائی که در این دوره ملاحظه می‌نمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضی‌دان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی می‌باشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.

تاریخچه مسایلی که ایرانیان مطرح کردند:


دانلود با لینک مستقیم


تحقیق درباره تاریخچه مختصر ریاضیات

مقاله ریاضیات مهندسی 200

اختصاصی از کوشا فایل مقاله ریاضیات مهندسی 200 دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 46

 

ریاضیات مهندسی:

فصل اول: بررسی های فوریه:

مقدمه: تفکیک یک تابع به چند جزء مختلف و یا بسط آن به یک سری گسترده از توابع دارای بورد کاربردی مختلف در ریاضی و فیزیک است، یکی از این موارد بسط توابع برحسب مجموعه ای از توابع هارمونیک مثلثاتی با فرکانسها و دامنه ای مختلف است. در این فصل ضمن آشنایی قدم به قدم به اصول این روش با کاربردهای حاصل از آن نیز آشنا می شویم.

1-1- توابع متناوب: اگر شکل تابع در فواصل منظم تکرار شود آنرا تناوب گوئیم.

در مورد یک تابع متناوب می توان نوشت:

(1) f (x+T) = f(x)

در این رابطه f تابعی از متغیر x و دوره تناوب T می باشد.

براساس این تعریف ملاحظه می شود که اگر g,f توبام هم پریود باشند، تابعی که به صورت زیر تعریف می شود نیز با آنها هم پریود است.

(2) h = (f + (g

sin و cos از جمله توابع متناوبند.

Sin x 2

Cos x

مثال: دوره تناوب Sin x + 3 Cos x چقدر است؟

Sin x 2(

Cos x (

بنابراین دوره تناوب تابع مذکور 2( می باشد.

به این ترتیب دوره تناوب مجموعه ای توابع به صورت زیر برابر 2( خواهد بود.

(3)f(x)=a.+a1cosx+a2cos2x+…+anconx+b.+b1sinx+b2Sin2x+…+bnSinx

در بخشهای بعد دیده می شود که می توان برای تابعی با دوره تناوب 2( ضمن محاسبه ظرائب a1 تا a2 یک سری مثلثاتی مثل رابطه (3) پیدا کرد.

مثال: کوچکترین دوره تناوب توابع زیر را بدست آورید:

الف) sinx ب) sin2x ج) sin2(x د)

T=2( T=( T=1 T=T

هـ) sin2(nx و) ز)

T=1/x T=T/n T=4

ح) ط) 3sin4x+cos4x

T=12( T=(/4

1-2- توابع متاعد:

دو تابع f و g را در فاصله (a,b) عمود بر هم گوئیم هرگاه داشته باشیم:

 

که به اختصار آنرا به صورت (f.g)=0 نمایش می دهیم. براین اساس:

(Cosmx, Sin nx)=0

(Sin mx, Sin nx)=0

(Cos mx, Sin mx)=0

در فاصله (0,2) تمام این توابع بر هم عمود هستند.

 

 

 

 

توابع تناوب را اعم از اینکه دارای دوره تناوب 2( باشد یا نباشد می توان برحسب توابع هامونیک cos, sin نوشت. بسط حاصل از تفکیک یک تابع به اجزاء هارمونیکی یک سری فوریه می گوئیم. اکنون به معرفی سری فوریه می گوئیم.

1-3-1- بسط توابع دوره تناوب 2(

تابعی را با دوره تناوب 2( در نظر بگیرید. این تابع را با سری مثلثاتی رابطه (3) می توان جایگزین کرد یعنی می توان نوشت:

 

برای اثبات این ادعا لازم است ضرائب a0، an و bn را محاسبه کنیم. محاسبه این ضرائب با توجه به خاصیت متعاصر تابع های هارمونیکی قابل انجام است.

مثلا برای محاسبه an طرفین رابطه (8) را در cosx ضرب نموده و سپس انتگرال گیری نمائیم.

 

+

 

1-3-1- بسط تابع با دوره تناوب 2v

 

ضرائب a0، an و bn =؟

برای محاسبه a0 از طرفین T- تا T انتگرال می گوییم

 

 

برای تعیین ضرائب جملات کسینوسی طرفین را در Cosmx ضرب می کنیم و از –T تا T

انتگرال می گیریم.

 

 

 

تمامی جملات به جز جمله در حالتی که n,m باشد برابر صفرند و در حالت n,m مستقر برابر 2n است

 


دانلود با لینک مستقیم


مقاله ریاضیات مهندسی 200