کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود تحقیق عملیات حرارتی نیتروژن دادن سطحی به فولاد

اختصاصی از کوشا فایل دانلود تحقیق عملیات حرارتی نیتروژن دادن سطحی به فولاد دانلود با لینک مستقیم و پرسرعت .

دانلود تحقیق عملیات حرارتی نیتروژن دادن سطحی به فولاد


دانلود تحقیق عملیات حرارتی نیتروژن دادن سطحی به فولاد

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:9

چکیده:

نیتروژن دهی
نیتروژن دهی یک عملیات حرارتی نفوذی است که در آن نیتروژن در محدوده حرارتی 500-550 درجه سانتی گراد (محدوده پایداری فریت ) وارد سطح فولاد می شود . با توجه به اینکه نیتروژن دهی مستلزم حرارت دادن تا ناحیه آستنیت و سرد کردن سریع نیست ،احتمال تاب برداشتن حداقل و کنترل ابعاد بسیار عالی است . از آنجایی که نایترایدهای آهن در عین داشتن سختی بالا بسیار ترد و شکننده ، فولادهای مناسب برای نیتروژن دهی قرار نمی دهند. فولادهای ساده کربنی را معمولاً تحت عملیات نیتروژن دهی قرار نمی دهند. فولادهای مناسب برای نیتروژن دهی، فولادهای با کربن متوسط (در شرایط سخت و بازپخت شده) و حاوی عناصر نایترادساز قوی نظیر آلومینیوم، کرم، وانادیم، و مولیبدن اند.
خواص حاصل از نیتروژن دهی سطح قطعات فولادی را می توان به صورت زیر خلاصه کرد:
-سختی و مقاومت به سایش زیاد سطح همراه با کاهش احتمال پوسته شدن؛
-مقاومت خوب در برابر بازپخت و کاهش سختی در دماهای بالا؛
-بهبود مقاومت خوردگی و خوردگی سایشی برای فولادهایی به جز فولادهای ضدزنگ؛
-پایداری ابعاد در ضمن عملیات سخت کردن سطحی؛
-بهبود مقاومت خستگی و یا افزایش عمر خستگی فولاد.

9-14-2-روشهای مختلف نیتروژن دهی
نیتروژن دهی به چهار روش گازی، مایع، جامد و پلاسما امکان پذیر است.

الف-نیتروژن دهی گازی
در نیتروژن دهی گازی، گاز آمونیاک از روی قطعات مورد نظر، که تا 510 درجه سانتی گراد گرم شده اند، عبور داده می شود. آمونیاک بر اساس واکنش زیر تجزیه می شود:
(9-27)    
نفوذ به داخل فولاد   جذب سطحی  

بر اثر تجزیه آمونیاک، نیتروژن به صورت اتمی آزاد می شود که ابتدا جذب سطح فولاد می شود و سپس به داخل آن نفوذ می کند. در شکل پایین واکنش تجزیه آمونیاک و چگونگی جذب نیتروژن اتمی در فولاد نشان داده شده است. از نیتروژن دهی گازی موقعی استفاده می شود که عمق نفوذ در حدود 2/0 تا 7/0 میلی متر مورد نظر باشد.


دانلود با لینک مستقیم

پایان نامه اثرات دما و کشش سطحی درمکانسیم های مختلف تولید نفت خام

اختصاصی از کوشا فایل پایان نامه اثرات دما و کشش سطحی درمکانسیم های مختلف تولید نفت خام دانلود با لینک مستقیم و پرسرعت .

پایان نامه اثرات دما و کشش سطحی درمکانسیم های مختلف تولید نفت خام


پایان نامه اثرات دما و کشش سطحی درمکانسیم های مختلف تولید نفت خام

 

 

 

 

 

 

 

 


فرمت:word(قابل ویرایش)

تعداد صفحات:31

عنوان :اثرات دما و کشش سطحی درمکانسیم های مختلف تولیدوپیش بینی فعل و انفعالات سطحی سیستم های نفت خام- CO2 تحت شرایط مخزن

 

خلاصه:

موضوع این مقاله مطالعه اهمیت نسبی دو مکانیسم تکمیلی همچون جابجایی با آب و آشام طبیعی، ارزیابی تأثیر حالت های مختلف دما و کشش سطحی درنرخ تولید و برداشت نهایی نفت ازآزمایشهای آزمایشگاهی است. مکانیسم تولید به وسیله آشام طبیعی به طور تاریخچه ای باتولید درمخازن شکاف دار طبیعی همراه شده است. با وجود این اثر ناهمگونی ها و کانالی شدن، که معمولاً درمخازن غیرشکاف دار آرژانتین وجود دارد، نشان می دهد که مکانیسم آشام بطور قابل توجهی به تولید نفت کمک میکند.

ارزیابی همزمان هر دومکانیسم (آشام و جابجایی) به وسیله آزمایشهای آزمایشگاهی مشکل است. بنابراین آزمایشهای جابجایی و آشام به طور جداگانه انجام شدند.آزمایشهای جابه جایی با آب در دمای اتاق و در انجام شدند. درحالیکه آزمایشهای آشام درو سانتیگراد انجام شدند. هر دو مطالعه درابتدا با آب و سپس با آب و سورفاکتانت، با رسیدن به شرایط با کشش سطحی پایین انجام شدند.

زمانیکه پدیده به طور زیادی به ترکیب مولکولی سیالها و سنگ وابسته است، آزمایشها تا حدممکن عیناً به صورت شرایط مخزن طراحی شدند و به این علت آب ، نفت و سنگ همان سازند استفاده شدند. سنگ استفاده شده برای این مطالعه به طور زیادی Water wet است.

آزمایشهای جابجایی با سورفاکتانت بااستفاده از دو روش مختلف انجام شدند. A) شروع تزریق سورفاکتانت همزمان با شروع جابجایی است. B)تزریق سورفاکتانت بعد از تزریق یک حجم منفذی (pv) ازآب شروع می شود.

روش دوم به طور کلی زمانیکه پروژه های EOR متعاقب پروژه های تزریق آب هستند به کار گرفته شد. مشاهده شد که با تجمع سورفاکتانت و مستقل اززمان شروع تزریق، برداشت نهایی نفت افزایش می یابد.

پدیده آشام طبیعی یک مکانیسم مهم تولید درسنگهای water wet بدست آمد. استفاده از سورفاکتانتها و افزایش دما اثر مکانیسم آشام را مطلوب میکند. بازده مکانیسم جابجایی با کاهش کشش سطحی و افزایش دما بهبود می یابد.

یک روش جدید که ناهمگونی نمونه را به کمک مکانیسم آشام مشخص می کند به وجود می آید. روش براساس یک آنالیز کیفی منحنی های آزمایشی برداشت نفت دربرابر حجم منفذی (pv) است.

درپایان یک روش جدید اندازه گیری ثابت نفوذ پخش آشام به توصیف آشام به عنوان یک فرآیند انتشار پراکنده کننده توسعه وبرای داده های آزمایشی به کار گرفته می شود، یک راه ساده شده دیگر برای مدل کردن فرایند آشام است.

مقدمه :    مکانسیم های مختلف تولی

اکثر مطالعه انجام شده برمکانیسم تولید نفت، جابه جایی است که درآن نفت ازمحیط متخلخل به علت فعالیت یک نیروی بیرونی برقرارشده ازگرادیان فشار جابجا می شود. این مکانیسم شامل نیروهای ویسکوز و موئینگی است اما نقش نیروهای موئینگی به طور کامل درتئوریهای حال حاضر تثبیت نمی شود.

مکانیسم آشام به طور کلی درفهرست کتب مربوط به قدرت تولید مخازن به طور طبیعی شکافدار مطالعه میشود. این مکانیسم، به وسیله تولید طبیعی نفت ازسنگهای درمعرض گرادیان های اشباع آب که نیاز به یک نیروی بیرونی ندارند و همیشه درسنگهای water wet وجود دارند مشخص می شود.

دربیشتر حالتها این دو پدیده به طور جداگانه مطالعه میشوند و اهمیت نسبی یکی یا دیگری درمکانیسم کلی تولید نفت مشکل شناخته می شود مگر اینکه درطراحی پروژه های نگهداری فشار یا برداشت ثانویه درمخازن به طور طبیعی شکافدار، فرایند آشام به طور کلی درنظر گرفته نشود.

اخیراً با پیشرفت آزمایشها و تکنیک های شبیه سازی و امکان ایجاد یک توصیف لیتولوژی دقیق تر، نقش آشام دربازیافت نفت به وسیله تزریق آب می تواند بهتر درک و قبول شود.

برای مثال، دریک مخزن water wet که با تنوع فراوان لایه بندی شده، آب تزریقی به طورترجیحی از میان مناطق با تراوایی بالا کانال خواهد زد و یک درصد جاروب عمودی کمی رامی دهد. درنظر گرفتن تنها مکانیسم تولید جابجایی،فرایند می تواند تمام شده به نظر برسد و آن احتمالاً متوقف خواهدشد. به هرحال، اگر تزریق آب ادامه یابد و ارتباط عمودی وجودداشته باشد، آشام طبیعی آب از لایه های باتراوایی بالاتر به لایه های باتراوایی پایین تر اتفاق خواهد افتاد و نفت رابه مناطق کانالی شده می فرستد و ازمیان آن به سمت چاههای تولیدی می فرستد. ولو اینکه فرایند آشام –جابجایی به زمان بیشتر و تولید و تزریق درباره حجم زیادی از آب نیاز خواهد یافت، افزایش نفت تولید شده به وسیله مکانیسم آشام می تواند به طور مشخص بازیافت نهایی نفت را بهبود دهد.

مکانیسم آشام یک پدیده پیچیده وابسته به تعداد زیادی ازفاکتورهاست . چندین نویسنده ، آشام و وابستگی اش به چندین پارامتر همانند مشخصات پتروفیزیکی، ترکنندگی، دما و تأثیر محصولات شیمیایی رامطالعه کرده اند. به طور دقیق تأثیر تکنیکهای آزمایشی مختلف به اندازه گیری آشام شامل اثرات قدمت، شکل،ژئوفیزیک نمونه و سطوح درمعرض آشام انجام شد.

هرچند، نتایج به دست آمده هنوز بعید هستند که یک روش به طور کلی قابل قبول و یکسان از اندازه گیری و مقیاس داده ای آزمایشگاهی به مطالعات مهندسی مخازن عملی بدهد. داده آزمایشی تازمانی که آنها به طور دقیق قابل قیاس نیست یک نتیجه قطعی را نمی دهد. علت اصلی این مشکل آن است که فرایند آشام به طور زیادی به مشخصات و ترکیب سه جزء سیستم: سنگ، آب و نفت بستگی دارد. آزمایشهای گزارش شده درنوشته ها مخصوص سیسیتم های ویژه ای هستند و درآن حالت اندازه گیری شده اند و درکل ارتباط بین آنها مشکل و دربعضی اوقات غیرممکن است.

درطی مطالعات ما فهمیدیم که درآزمایشهای آشام با تعییر تنهایک جزء (برای مثال نفت) یاتغییر دمای فرایند نتایج کمی مهمی بدست آورده شدند.

با درنظر گرفتن این حقیقت، ما نتیجه گرفتیم که مشکلات پیدا کردن ارتباط و بدست آوردن قوانین کلی از آزمایشهای مؤلفان مختلف، به علت مشخصات مختلف سیستم های مطالعه شده (محیط متخلخل و سیالها) و اختلاف گسترده متغیرها (دما، کشش سطحی و غیره) هستند.

وابستگی زیاد نتایج به مشخصات سیستم ما را مجبور می کند که ازنمونه های آزمایشی و شرایطی که تا حدممکن بیان کننده حالت مخزن است استفاده کنیم. به علاوه نتایج آزمایشی بدست آمده دراین مقاله تنهابرای نمونه های مخزنی ویژه، دما و محصولات شیمیایی مطالعه شده تحت موقعیتهای آزمایشگاهی معتبر درنظر گرفته می شوند. اثرات قدمت درطی آزمایشها مطالعه نشد.

مواد و روشها:

نمونه های استفاده شده متعلق به سازند Magallanes Inferior در Austral Basin آرژانتین است. آنها براساس مشخصات پتروفیزیکی شان به منظور به دست آوردن یک گروه با خواص همگون (جدول ۱) انتخاب شده اند. نمونه ها ناهمگونی های لیتولوژیکی مشخصی با مشاهده بصری ندارند.

دسته بندی میکروسکوپی نمونه بوسیله microscopy(SEM) scannig electron، یک درجه بالای تغییرات را بایک توزیع کاملاً منظم از مواد کلری رسی شده، روی یک درصد معنی دار ازاجزاء دانه ای و مواد بین درزی منافذ راتعریف می کند. درمیکروفتوگرافی بدست آمده (شکل ۸) دو جزء دانه ای () با توسعه منظم و چشمگیر کلر روی سطوحشان همانند یک محصول ازتغییرات پس از رسوب می تواند پیش بینی شود.

فاصله های () و ارتباط های درون ذره ای ()  که به ترتیب منافذ را تعریف می کنند به علت وجود همان تغییرات است.

نظم و درجه توسعه این مواد رسی شده سطح مخصوص محیط متخلخل را به طور قابل ملاحظه ای افزایش می دهد. این دراشباع های بالای آب کاهش نیافتنی منتقل میشود. ازنفت سازند همان مخزن همانند نمونه های سنگی استفاده شد. شرایط نفت برای آزمایشها شامل فیلتر شدن و بی گازشدن است. ولو اینکه این دوفرایند مشخصات نفت اصلی را تغییر می دهند (حفظ پارافین و فقدان اجزاء سبک)، آنها برای توسعه مناسب آزمایش ها ضروری هستند.

آب سازند به صورت ترکیب یکسان با اصلش ساخته شد. محلوهای سورفاکتانت بصورت ۳۵/۰ % سورفاکتانت به آب آماده شدند. خواص سیال درجدول ۲و۳ مشاهده میشوند.

آزمایشهای یکسانی متعاقباً با نفت مصنوعی با ویسکوزیته مشابه با نفت اصلی انجام شد، که اهمیت استفاده از سیالهای طبیعی را تاکید کند. به علت اضطرارهای زمانی درپروژه، تأثیر قدرت درآزمایشها مطالعه نشد. درنمونه های قدیمی یک بازیافت نهایی پایین تری انتظار می رود.

آزمایشهای جابجایی : دردمای اتاق و در  انجام شدند. آزمایشها دردمای اتاق درسلولهای Hassler انجام شدند. نمونه ها تا اشباع آب کاهش نیافتنی تا زمانیکه تولید آب توقف یافت به وسیله جابجایی با نفت سیلاب زده شدند. آزمایشها در  درسلوهای سه محوری غوطه ور دریک حمام وابسته به ترموستات بااختلاف دمای  انجام شدند. درهمه حالتها، نمونه ها بااجتناب ازاثر قدمت بلافاصله بعد ازاینکه به اشباع آب کاهش نیافتنی رسیدند فوراً آماده شدند.

بعد ازهر آزمایش، نمونه ها با تلوئن و متانول برای استفاده شدن درآزمایشهای بعدی شسته شدند. نمونه های استفاده شده در آزمایشهای سورفاکتانت دوباره استفاده نشدند. خواص پتروفیزیکی بعداز هرآزمایش متفاوت شدند. جدول ۱ مقدارهای تراوایی مؤثر رادرنقاط نهایی اشباع های آب کاهش نیافتنی شامل می شود. این مقدارها یک میانگین بدست آمده درهر آزمایش ازهمان نمونه هستند. درهیچ حالتی اختلاف بیشتراز ۵/۱ % نبود.

تزریق محول سورفاکتانت : دردو روش مختلف و دردو دما انجام شد. دریک حالت محلول ازشروع جابجایی و دردیگری بعد از تزریق یک pv  تزریق شد.

آزمایشهای آشام : در و  درفنجان های Amott، درون یک اجاق با اختلاف دمای  انجام شدند. قطعه ها یا نمونه ها باتمام سطوح معلق شده در سیال ترکننده درمعرض فرایند آشام قرار گرفته شدند. همانند آزمایشهای جابجایی قطعه ها تا اشباع آب کاهش نیافتنی به وسیله جابجایی با نفت درسلوهای Hassler تااینکه تولید آب توقف یافت انجام شدند. همینکه این لحظه فرارسیده شد، نمونه های درون فنجان های Amott با اجتناب از اثر قدمت فوراً جایگزین شدند.

برای آزمایشهای آشام با محلول سوفاکتانت، عملیات، مشابه با توصیف قبلی است. دراین حالت، همینکه تولید نفت در  توقف یافت، دما تا  افزایش داده شد.

آزمایشها با نفت مصنوعی: نتایج بدست آمده از آزمایشهای جابجایی درادامه وجود دارند: در  اختلافهایی دراشباع آب کاهش نیافتنی و بازیافت نهایی نفت درآزمایشهای انجام شده با نفت مصنوعی وجود نداشت، اگر چه درآزمایشهای انجام شده دردمای اتاق مقدارهای مشابهی ازاشباع آب کاهش نیافتنی بدست آورده شدند اما بازیافتهای نفت دراثر وجود نفت مصنوعیooIP   ۱۰% بیشتر شدند.

درطی آزمایشهای آشام در ، بازیافتهای نفت با استفاده از نفت طبیعی ooIP  ۶% بیشتر بدست آورده شدند. همچنین درحالتهای پیشین، اختلاف فاحشی دراشباع آب کاهش نیافتنی وجود ندارد.

 


دانلود با لینک مستقیم

دانلود مقاله فعال کننده سطحی آنیونی سدیم دو دسیل سولفات

اختصاصی از کوشا فایل دانلود مقاله فعال کننده سطحی آنیونی سدیم دو دسیل سولفات دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله فعال کننده سطحی آنیونی سدیم دو دسیل سولفات


دانلود مقاله فعال کننده سطحی آنیونی سدیم دو دسیل سولفات

 
منظور از پاک کنندهها (detergehts) ، موادی هستند که ذرههای چربی و چرک را از پارچهها و یا اجسام دیگر بزدایند و در انواع مختلف تهیه میشوند   . اولین ماده ای که به عنوان شوینده ساخته شد، صابون بود. از عمر صابون صدها سال میگذرد.    آخرین دستگاههای صابون کشف شده ، مربوط به 2000 سال پیش است، 700 سال است که صابونسازی بطور صنعتی و به مقادیر زیاد ساخته میشود و 200 سال است که ساخت آن ، متحول گشته و به صورت کلاسیک و مدرن در آمده است.

از آن زمان تا کنون ، تعداد شویندهها به حدی رسیده که قابل شمارش نیست، بطوری که امروزه در حجم انبوهی از شویندهها ، به همراه تبلیغات آنها مواجه شدهایم.    در حال حاضر در برخی کشورها ، تقریبا بیش از 80 درصد از مواد پاک کننده مصرفی از شویندههای سنتزی تهیه میشوند. لکن در مصارف عمومی واژه صابون ، مشخص کننده یک نمک فلز قلیایی یا آمونیوم یک اسید کربوکسیلیک راست زنجیر با تعداد 10-18 اتم کربن است و نام مواد شوینده به مواد صناعی با ساختمان مشابه اطلاق میشود. از این مواد ، در مصارف عدیده ای از جمله برای پاک کردن ، شستشو و در فرایندهای نساجی و غیره استفاده میگردد.

از طرف دیگر ، صابونهای فلزی ، کربوکسیلاتهای قلیایی خاکی یا فلزات سنگین با زنجیره طویل هستند   . این صابونها در آب نامحلول بوده و در سیستمهای غیر آلی ، به عنوان مثال مواد افزودنی به روغنهای روان کننده ، جلوگیری کننده از زنگ زدگی ، ضد آب کردن مواد و سوختهای ژلاتیندار (مواد سوختنی مانند بنزین که با مواد غلیظ کننده ممزوج شدهاند و از آنها در بمبهای ناپالم و شعله افکنها استفاده میشود) ، قارچکشها دارای کاربرد میباشد.

خصوصیت قابل توجه این است که عدم توازن پلاریته (قطبیت) در داخل مولکول صابونها و مواد شوینده و پاک کننده ، موجب ابراز قابلیت انحلال و ماهیت فاز غیر معمول در حلالهای قطبی و غیر قطبی میشود.  این رفتار ، دقیقا باعث سودمندی چنین ترکیباتی در زمینههای خیس شوندگی ، قابلیت انحلال ، شویندگی (در مورد شستشو و خشک شویی بصورت ترامان) ، رنگرزی و بسیاری از سایر فراوردههای صنعتی و خانگی است.

ترکیب اساسی ساختمان مولکولی پاک کنندهها موجب بوجود آمدن چنین صفاتی میگردد.


انواع مواد پاک کننده

صابون (Soap)

صابونها را میتوان از هیدرولیز قلیایی چربیها و روغنهای طبیعی (استر اسیدهای چرب با گلیسرول) مانند پیه ، روغنهای نارگیل ، زیتون ، نخل و تالو تهیه کرد که این واکنش به نام فرایند صابونی شدن

تری اتانول آمین اولئات
پاک کننده های سنتزی (Synthetic detergents)
ROSO3Na
RSO3Na
R-C6H4-SO3Na
سدیم لوریل (دودسیل) سولفات
سدیم دودسیل بنزن سولفونات
C12H25-C6H4-SO3-Na
تورین
اسیدایزاتیونیک
HOCH2CH2SO3H
آلکان فسفوناتها
invert soaps
C16H33N(CH3)Br
R-O-(CH2CH2O)2H
R-N(CHsub>3)2
صابون مایع
شامپوها
مواد فعال سطحی آنیونی
سدیم لوریل اتر سولفات
تری اتانول آمین سولفات
آمفوتری
بتائین کوکوآمیدوپروپیل
غیر یونی
عامل تقویت کننده کف
بتائین
عامل حالت دهنده مو
عامل نگهدارنده
مواد ضدعفونی کننده
عامل صدفی کننده
اتیلن گلیکول
عامل غلیظ کننده
نمک طعام
عامل رنگ و بو
عصاره گیاهان
پودرهای لباسشویی
پر بورات
سفید کننده ها و رنگ برها
قیاس صابون و پاک کننده های سنتزی
سدیم تری پلی فسفات
کربوکسی متیل سلولز
کلرواستیک اسید
علت اثر پاک کنندگی مواد پاک کننده
مواد پاک کننده و آلودگی محیط زیست
آلکیل بنزن سولفوناتهای مشتق شده از مواد شیمیایی نفت
مواد تشکیل دهنده شامپو

 

شامل 32 صفحه فایل word


دانلود با لینک مستقیم

مقاله خود رهبری، یک بررسی چند سطحی

اختصاصی از کوشا فایل مقاله خود رهبری، یک بررسی چند سطحی دانلود با لینک مستقیم و پرسرعت .

مقاله خود رهبری، یک بررسی چند سطحی


مقاله خود رهبری، یک بررسی چند سطحی

نوع فایل : Word

تعداد صفحات : 31 صفحه

 

چکیده :

در بیش از سی سال گذشته تحقیقات واقعی بر خودرهبری متمرکز گردیده است. نویسندگان نگاه چند سطحی برای بررسی این تحقیق در سطوح فردی و گروهی را قبول نمودند. در سطح فردی مطالعات بطور پیوسته نشان می دهد که افزایش خودرهبری با دریافت پاسخ ها و کارائی بهتر مطابقت داشته است. یافته ها ، ساز گار با سطح گروهی نمی باشند. روابط بین خودرهبری سطح گروهی وهم اثر و کارائی نتایج عملکرد توسط عوامل زمینه ای متعادل نشان داده می شود. نویسندگان همچنین نفوذ نیروهای داخلی و خارجی را بر خود کنترلی تعریف می نمایند. در میان این نیروها رهبری بیرونی بخش مهمی است همانگونه که خودرهبری جایگزینی کاملی برای رهبری بیرونی نمی باشد. بویژه رهبری بیرونی در اشکال رهبری با اختیار و رهبری با شتراک گذاشته شده، خود کنترلی افراد و گروه را تسهیل می نماید. همچنین نویسندگان پرسش هایی از تحقیقات چند سطحی را تعریف می نمایند که چطور تحقیقات آینده راههایی که خودرهبری در سطح فردی و سطح گروه با یکدیگر تعامل می نمایند

 

فهرست :  

ساخت تعریف و زمینه تاریخی

خودرهبری

چارچوب نظری برای خود رهبری

خود رهبری برای گروهها

اندازه گیری خودرهبری

اندازه گیری در سطح گروه

خودرهبری و نتایج مرتبط

نتایج خودرهبری گروه

خلاصه و راهنمای تحقیق

خودرهبری فکری

خلاصه و خطوط راهنما

نیروهای داخلی سطح خودرهبری فردی و گروهی

نیروهای بیرونی

رهبری بیرونی

نظامهای پاداش

ساختار سازمانی فرهنگ

خلاصه و خطوط راهنما تحقیق

رویه های چند سطحی

 


دانلود با لینک مستقیم

روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

اختصاصی از کوشا فایل روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی دانلود با لینک مستقیم و پرسرعت .

روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی


روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

 

این فایل در قالب ورد و قابل ویرایش در 120 صفحه می باشد .             

 

 

 روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

 

تحلیل پایداری شیب با بهره گیری از

 

تکنیکهای عددی پیشرفته

 

خلاصه :

 

علی رغم پیشرفتهایی که در اندازه گیری و پیش بینی صورت گرفته ، خاکریزه ها خسارات اجتماعی ، اقتصادی و محیطی سنگینی را در فضاهای کوهستانی وارد میکند. قسمتی از آن بخاطر پیچیدگی فرایندها، عدم موفقیت شیب رانش و اطلاعات ناکافی ما از مکانیزم های اساسی می باشد. در هر صورت بطور افزاینده ای کارشناسان برای تحلیل و پیش بینی پایداری شیب ، تعیین ریسک آن ، مکانیزمهای شکست پتانسیلی و سرعتهای آن مناطق پر خطر حاضر شده و برای تعیین اندازه های چاره ساز ممکن فراخوانده می شوند.

 

این مقاله به معرفی موضوع تحلیل پایداری شیب سنگ و هدفی که این تحلیل در بررسی مکانیزمهای ریزش بالقوه شیب دنبال میکند ، می پردازد . سپس به بحث در مورد پیشرفتهایی که در تحول تکنیکهای آنالیز شیب بر پایه کامپیوتر به نسبت روشهای معمولی مورد استفاده ، می پردازد . همچنین تعیین امکان اجرای سینماتیک برای مدهای معمول متفاوت به اضافه راه حلهای تحلیلی و تعادلی محدود برای فاکتورهای ایمنی در برابر ریزش شیب ارایه شده است .

 

قسمت دوم به معرفی روشهای مدلسازی عددی و کاربردهای آنها در تحلیل پایداری شیب سنگ می پردازد . بحث روی پیشرفتهای استفاده از کدهای مدلسازی عددی پیوسته و ناپیوسته متمرکز می شود . همچنین مشارکت و نفوذ فشارهای تخلخل و بارگذاری دینامیک ارایه شده اند . مراحلی که در تحلیل عددی اجرا می شوند با تاکید بر اهمیت یک تمرین خوب مدلسازی بازنگری می شوند .

 

مدلسازی عددی وقتی که به درستی بکار رود ، میتواند بطور مشخص در فرایند طراحی با تهیه کردن بینش های کلیدی به مسایل پایداری پتانسیل و مکانیزمهای شکست ، استفاده گردد . در عین حال تاکید می کنیم که مدلسازی عددی یک ابزار است نه جایگزین برای قضاوت بحرانی است . همینطور ، مدلسازی عددی وقتی توسط یک کاربر با تجربه و کنجکاو بکار رود بسیار موثر خواهد بود .

 

 

 

 

 

 

 

  1 .  معرفی

 

تحلیل پایداری شیب سنگ بطور معمول به سمت و سوی طراحی بنیادی و ایمن شیبهای حفر شده ( مانند حفاری گودال باز ، برشهای جاده ای و غیره ) و با شرایط تعادلی شیبهای طبیعی جهت داده می شود . تکنیک تحلیل انتخابی به هر دو ، شرایط سایت و حالت ریزش بالقوه با ملاحظات دقیقی که به قدرتهای متغیر ، ضعفها و محدودیتهایی که در هر روشی وجود دارد ، بستگی دارد .

 

بطور کل ، موضوعات ابتدایی آنالیز پایداری شیب صخره عبارتند از :

 

  • تعیین شرایط پایداری شیب صخره ؛
  • بررسی مکانیزمهای ریزش بالقوه ؛
  • تعیین حساسیت آسیب پذیری شیبها به مکانیزمهای تریگرینگ متفاوت ؛
  • آزمایش و مقایسه حمایتهای متفاوت و گزینه های مستحکم کردن ،
  • طراحی شیبهای حفر شده بهینه از نقطه نظرهای ایمنی ، معتبر بودن و اقتصادی ؛

 

مطالعات بررسی سایت باید شامل هرگونه مطالعات پایداری و شامل المانهای زمین شناسی و نقشه برداری ناپیوسته برای تهیه داده های ورودی لازم برای آنالیز پایداری باشد . مجموعه داده ها بصورت ایده آل شامل توصیف جرم سنگ و نمونه برداری مواد سنگ برای آنالیز آزمایشگاهی ( یعنی قدرت و رفتار متشکله ) ، مشاهدات میدانی و اندازه گیری های درجا باشد . نمایش فضایی درجا و تغییرات موقتی در فشارهای تخلخل ، نابجایی های شیب ، فشارها و تغییر شکل جرم زیر سطحی سنگ ، داده های ارزشمندی را برای ارزشگذاری آنالیز پایداری تهیه می کند .

 

برای مدیریت مناسب اینطور بررسی ها و آنالیز و ارزشگذار مواقع خطرساز بالقوه که به سنگهای ناپایدار مربوط می شود ، درک فرایندها و مکانیزم های ناپایداری ضروری می باشد . حرکتهای خاکریز بعنوان های ریزش ، واژگون شدن ، ریختن ، پراکنده شدن یا جریان یافتن تلقی می شود و در برخی موارد شامل ترکیبات مختلفی از مدهای شکست متعدد ( ارجاع شود به خاکریزهای کامپوزیتی ) ، می شود . این مکانیزم ها اغلب پیچیده اند و در عمق عمل می کنند و بررسی ها و  توصیف عوامل تشکیل دهنده را دچار مشکل می کنند . همانطوری که شک و تردید در مورد تکنیک تحلیل بکار گرفته شده و اینکه چه داده ورودی ای لازم است ، بالا می رود ؛ این در مرحله تحلیل مشکل ایجاد می کند .

 

امروزه محدوده وسیعی از ابزارهای آنالیز پایداری شیب برای هر دو نوع سنگ و مخلوط سنگ و خاک وجود دارد . این ابزارها محدوده شان از شیب نامحدود ساده و تکنیکهای تعادلی در ریزش تا کدهای المان محدود دوتایی است . به یاد داشته باشیم که تنها 25 سال از وقتی که بیشترین محاسبات پایداری شیب بصورت گرافیکی یا با استفاده از ماشین حساب دستی انجام می شد ، بجز یک استثنای آنالیز پیشرفته که شامل روشهای جستجوی سطح بحرانی که در یک پردازشگر مرکزی و یا کارتهای فورترن اجرا می شد . سیل عظیمی از برنامه های آنالیز استحکام با نرم افزار کوچکی که بصورت تجاری در دسترس است ، در خانه انجام می شد . امروزه هر مهندس زمین شناس با یک کامپیوتر شخصی می تواند ، آنالیز عددی نسبتا پیچیده شیب سنگ را بر عهده بگیرد .

 

امروزه از آنجایی که افق وسیعی از کاربردهای دسترس عددی روشن شده ، درک تغییر استحکام و محدودیت های هر یک از این روشها برای شاغلین ضروری است . برای مثال ، روشهای تعادلی محدود هنوز جزء معمول ترین راه حلهای سازگار در مهندسی شیب صخره باقی مانده ، ولو اینکه بیشتر سرازیری ها شامل تغییر شکل داخلی و شکافهایی که شباهت کمی دارند با فرضیات بلوک صلب دو بعدی که برای آنالیز تعادلی محدود معکوس لازم است ، می شوند .

 

مکانیزم های راه اندازی یا شروع ممکن است ، شامل حرکتهای اسلایدینگ که به عنوان یک مسأله تعادلی محدود می تواند تحلیل شود ، باشد ولی بعد از آن وارفتگی ، تغییر شکل تصاعدی و شکستگی وسیع داخلی جرم صخره بوجود خواهد آمد . فاکتورهایی که باعث ریزش احتمالی می شوند معمولا پیچیده اند و بسادگی در تحلیل استاتیک ساده وارد نمی شوند . در ادامه توضیحات بالا ، آنالیز تعادلی محدود ممکن است وابستگی شدیدی به ریزش ساده بلوک در طول ناپیوستگی ها داشته باشد . در نتیجه در جایی کارآیی دارد ، که برای ماکزیمم کردن فواید هر دوی آنها ، تکنیکهای تعادلی محدود باید در عطف مدلسازی عددی بکار رود .

 

در این مفاهیم ، شاغلین امروز باید از خود پشتکار نشان دهند و ثابت کنند که از هر دو ابزار ارایه شده در دسترس و از همه مهمتر ، از ابزارهای درست استفاده کنند . چن ( 2000 ) در مشاهدات خود روی استفاده از تمام تکنیکهای تحلیل در پایداری شیب مربوطه در طراحی یا تحلیل معکوس تاکید کرده است .

 

 " در روزگار قدیم ، ریزش شیب بعنوان قضابلا بشمار می رفت . امروزه ، حقوقدانان همیشه می توانند کسی را برای تقصیر کار شمردن یا کسی را برای پرداخت خسارت ، مخصوصا در هنگامی که خرابی شامل تلفات جانی یا مالی باشند ، پیدا کنند ."

 

طراحی شیب با استفاده از تنها آنالیز تعادلی محدود ، احتمالا ناکافی خواهد بود ؛ اگر شیب با مکانیزم های پیچیده ریزش کند ( بعنوان مثال ، لغزشهای تصاعدی ، تغییر شکل داخلی و شکافهای شکننده ، آبدار شدن لایه های ضعیفتر خاک و غیره ) . بعلاوه در حین تحلیل و طراحی مهندسی شیب ، بیشترین استفاده مربوط به مفاهیم ارزیابی مخاطرات و ریسکهاست . تخمین و برآورد خطرپذیری باید شامل هر دوی پیامد ریزش شیب و خطرات یا احتمال ریزش باشد . هر دو نیاز به درک مکانیزم ریزش دارند ، برای اینکه احتمالات موقتی و سه بعدی بتوانند در نظر گرفته شوند .

در قسمتهای بعدی ، به دوره تکنیکهای آنالیز پایداری شیب با تمرکز بر توسعه روشهای مدلسازی عددی می پردازیم . بعد از این قسمتها یک بازنگری روی روشهای قراردادی تحلیل پایداری برای مشخص کردن توسعه اخیر در تعادل محدود بر پایه برنامه های کامپیوتر که برای افزایش تجسم مسایل پایداری شیب طراحی شده اند ، انجام خواهیم داد .

فهرست

 

 

  قسمت اول

     تحلیل پایداری شیب با بهره گیری ازتکنیکهای عددی پیشرفته ....................................... 1

خلاصه ............................................................................................................................................ 2

فصل اول

1 . معرفی.................................................................................................................................3

فصل دوم

2 . روشهای قراردادی تحلیل شیب سنگ....................................................................... 6

1 – 2 .  مقدمه................................................................................................................. 6

2 – 2 . آنالیز سینماتیک............................................................................................... 6

3 – 2 . آنالیز تعادل محدود.......................................................................................... 7

1 – 3 – 2 . تحلیل انتقالی................................................................................... 8

2 – 3 – 2 . تحلیل واژگونی................................................................................ 9

3 –  3 – 2 . تحلیل چرخشی............................................................................11

 4 – 2 . شبیه سازهای ریزش سنگ.........................................................................16

فصل سوم

3 . شیوه های عددی تحلیل شیب سنگ.....................................................................19

1 – 3 . روش پیوسته...................................................................................................20

2 – 3 . روش غیرپیوسته.............................................................................................23

1 – 2 – 3 . شیوه اجزای ناپیوسته...................................................................24

2 – 2 – 3 . تحلیل تغییر شکل ناپیوستگی....................................................32

3 – 2 – 3 . کدهای جریان ذره.........................................................................33

3 – 3 . روش هیبریدی...............................................................................................36

فصل چهارم

4 . توسعه و کاربرد مدل چندگانه.................................................................................37

فصل پنجم

5 . پیشرفتهای آینده.......................................................................................................42

قسمت دوم

شبیه سازی پایداری شیب از طریق رادارجهت استخراج معادن به طور روباز................44

خلاصه........................................................................................................................................45

فصل اول

1 . مقدمه..........................................................................................................................46

1 – 1 . پیش زمینه....................................................................................................46

2- 1 . احتیاجات کاربر..............................................................................................46

3 – 1 .  روش‌های ممکن........................................................................................46

1 - 3 – 1 .  نمایشگر زمین لرزه...................................................................47

 2 – 3 – 1 .  رادار...........................................................................................47

3 – 3 – 1 .  لیزر..............................................................................................48

4 – 3- 1 . عکس برداری................................................................................48

4 – 1 .  انگیزه برای استفاده از رادار....................................................................49

5 – 1 . کارهای سابق بر این برای نشان دادن شیب با استفاده از رادار.......49

6 – 1 .  شیب و محدودیت‌ها...............................................................................50

فصل دوم

2 . رادار با فرکانس مدرج..........................................................................................51

1 - 2 . مفهوم رادار با فرکانس مدرج.................................................................51

2 – 2 .  پارامترهای رادار.....................................................................................51

3 – 2 .  راه اندازی رادار.......................................................................................53

4 - 2 .  بررسی اجمالی از اینترفرومتری راداری.............................................53

فصل سوم

3 . شبیه سازی یک سلول منفرد، توسط اسکن...................................................56

1 – 3 . مفهوم شبیه سازی مطلب......................................................................56

1 – 1 – 3 . تولید نقاطی برای شبیه سازی یک هدف مسطح............56

2 – 1 – 3 . محاسبه مجموع انعکاس فرکانس........................................57

3 – 1- 3 – مدل سازی از طریق صدا.......................................................58

4 – 1 – 3 . مدل سازی یک تغییر و جابجایی در فاصله......................58

2 – 3 .  روش‌های به وجود آوردن محدوده فرکانس.....................................59

1 – 2 – 3 .  لایه گذاری از پایین‌ترین نقطه

                      برای افزایش رزولوشن تصویر......................................59

2 – 2 – 3 .  حذف زواید (بزرگنمایی) برای

                      پایین آوردن سطوح لبة فرعی....................................59

3 – 2 – 3 . پایه بندی برای حذف شیب فاز........................................60

3 – 3 .  تعیین تغییر در فاصله........................................................................61

1 – 3 – 3 .  انتقال به محدوده زمانی.......................................................61

2 – 3 – 3 .  پیوستگی فازی.......................................................................62

3 – 3 – 3 .  اختلاف فاز..............................................................................64

4 – 3 – 3 . ابهام در فاز اختلافی..............................................................65

5 – 3 – 3 . تعیین منطقه مورد نظر........................................................65

6 – 3 – 3 . حذف جهش‌های  در مقایر فاز...........................................66

7 – 3 – 3 .  محاسبه شیفت در دامنه....................................................66

 4 – 3 .  نتایج شبیه سازی...............................................................................68

5 -3 .  نتیجه گیری...........................................................................................70

فصل چهارم

4 . قرائت‌های آزمایشگاهی سلول منفرد............................................................71

1 – 4 .  پارامترهای رادار مورد استفاده برای قرائت‌ها...............................71

 2 – 4 .  اصطلاحات برای الگوریتم .............................................................73

1 – 2 – 4 .  جمع کردن اسکن‌ها برای بهبود ..................................73

2 – 2 – 4 .  انحنای ظاهری دیوار به واسطه پهنای اشعه بالا........73

 3 – 2 – 4 .  تغییر در پهنای باند بالای حذف

                      خطاهای موجود در شیفت بزرگ .........................76

3 – 4.  نتایج قرائت‌های تجربی ...................................................................76

1 – 3 – 4 .  خطاهای شیفت کوچک.................................................77

2 – 3 – 4 .  خطاهای شیفت بزرگ...................................................77

 4 – 4 . نتیجه گیری ...................................................................................78

فصل پنجم

5 . شبیه سازی کل اسکن...................................................................................79

1- 5 . مفهوم شبیه سازی مطلب..................................................................79

1 – 1 – 5 . تولید نقاط برای شبیه سازی سطح دیواره.................79

2 – 1 – 5 .  مدل سازی شیفت در دامنه ........................................79

2 – 5 .  نتایج شبیه سازی  انتقال جرم ....................................................81

1 – 2 – 5 . خطاهای شیفت کوچک..................................................82

2 – 2 – 5 . خطاهای شیفت بزرگ....................................................82

3 – 5 . نتیجه‌گیری ......................................................................................84

فصل ششم

6 . عدم ارتباط موقتی.........................................................................................85

1 – 6 .  تعریف عدم ارتباط موقتی ............................................................85

2 – 6 . مقدار اطمینان – پیک منحنی ارتباط فاز .................................86

3 – 6 . عدم ارتباط موقتی به واسطه تغییر در زاویه .............................87

1 – 3 – 6 . مدلسازی تغییر در زاویه ...............................................87

2 – 3 – 6 . کاهش در ارتباط به واسطه تغییر در زاویه................87

 3 – 3 – 6 . نتایج تشبیه سازی برای تغییر در زاویه ..................87

4 – 6  . عدم ارتباط موقت به واسطه شیفت موضعی............................91

1 – 4 – 6 .  مدلسازی شیفت موضعی ...........................................91

2 – 4 – 6 .  شیفت میانگین کل سلول .........................................91

3 – 4 – 6 . کاهش در ارتباط به واسطه شیفت موضعی.............92

 4 – 4 – 6 . نتایج برای شبیه سازی برای شیفت موضعی.........93

 5 – 6 . نتایج شبیه سازی برای شکست گوه‌ای .................................94

1 – 5 – 6 . مدلسازی شکست گوه‌ای ..........................................95

2 – 5 – 6 – نتایج شبیه سازی برای شکست گوه‌ای ...............95

6 – 6 . نتیجه‌گیری ...................................................................................96

1 – 6 – 6  . خلاصه نتایج شبیه سازی......................................97

2 – 6 – 6 .  مقدار اطمینان بر عنوان اندازه پایداری ...............98

3 – 6 – 6 .  تغییر در روش برای کاهش

                        عدم ارتباط موقتی ........................................98

فصل هفتم

7 . تغییرات اتمسفری..................................................................................100

1 – 7 .  اثر تغییرات اتمسفری.............................................................100

2 – 7 .  شبیه سازی رفلکتور گوشه‌ای .............................................101

3 – 7 .  شبیه سازی تغییر در شرایط اتمسفری ............................101

1 – 3 – 7 .  تغییر در دما ..........................................................102

2 – 3 – 7 – تغییر در فشار........................................................102

 3 – 3 – 7 .  تغییر در فشار جزئی بخار آب .........................104

4 – 7 .  تغییر اثرات اتمسفری با دامنه ...........................................106

5 – 7 .  الگوریتم ارتقاء یافته..............................................................107

6 – 7 .  نتایج برای شبیه سازی .......................................................107

7 – 7 . نتیجه گیری ...........................................................................108

فصل هشتم

8 . نتایج................................................................................................................110

1 – 8 . مرور فرضیه......................................................................................110

2 – 8 . خلاصه نتایج................................................................................112

 3 – 8 . ارزیابی نهایی تکنیک ..................................................................112

4 – 8 .  روش اسکن توصیه شده .............................................................113

منابع و معاخذ...........................................................................................................115


دانلود با لینک مستقیم