فایل بصورت ورد (قابل ویرایش) و در 67 صفحه می باشد.
-1- مقدمه :
با پیشرفت سریع تکنیک اتوماسیون و پیچده تر شدن پروسه های صنعتی و کاربرد روز افزون این شاخه از تکنیک نیاز شدیدی به کاربرد سنسورهای مختلف که اطلاعات مربوط به عملیات تولید را درک و بر اساس این اطلاعات مقتضی صادر گردد ، احساس می شود .
سنسورها به عنوان اعضای حسی یک سیستم، وظیفه جمع آوری و با تبدیل اطلاعات را به صورتی که برای یک سیستم کنترل و با اندازه گیری قابل تجزیه و تحلیل باشد به عهده دارند . در سالهای اخیر سنسورها به صورت یک عنصر قابل تفکیک سیستمهای مختلف صنعتی مورد استفاده قرار گرفته و پیشرفت سریعی در جهت جوابگویی به تقاضاهای صنعت در این شاخه از علم الکترونیک انجام پذیرفته است .
سنسورها جهت تبدیل عوامل فیزیکی مانند حرارت ، فشار ، نیرو ، طول ، زاویه چرخش ، دبی و غیره به سیگنالهای الکتریکی بکار برده می شوند و به همین منظور سنسورهای مختلفی که قابلیت تبدیل این عوامل را به جریان برق دارا می باشند، ساخته شده اند .
خلاصه
نانوتکنولوژی به مواد و سیستمهایی مربوط میشود که ساختار و اجزای آن به دلیل ابعاد نانومتری، خواص، پدیدههای فیزیکی، شیمیایی و بیولوژیکی، رفتار جدیدی را نشان میدهند. مواد دارای اندازه ذره نانومقیاس در حوزهای بین اثرات کوانتومی اتمها و مولکولها و خواص توده قرار میگیرند. با توانایی ساخت و کنترل ساختار نانوذرات میتوان خواص حاصل را تغییر داده و خواص مطلوب را در مواد طراحی کرد. امروزه تاثیرگذاری نانوتکنولوژی بر همه صنایع همچنین صنعت نفت پوشیده نیست. در این مجال بررسی تاثیرگذاری نانوسنسورها برروی بخش لرزه نگاری در صنایع بالادستی نفت ارایه می شود.
عبارتهای تنش و کرنش غالباً در موقع استفاده با یکدیگر اشتباه می شوند و بنابراین لازم است در اینجا تعریف روشنی از این در کلمه بیان شود.
فهرست مطالب
فصل 1: کرنش و فشار
· کرنش مکانیکی
· تداخل سنجی
· روشهای فیبر نوری
· گیجهای فشار
· فشار گازی کم
· گیجهای یونیزاسیون
· استفاده از ترانسدیوسر
فصل 2: موقعیت ، جهت ، فاصله و حرکت
· موقعیت
· جهت
· اندازه گیری فاصله – مقیاس وسیع
· فاصله پیموده شده
· سیستمهای شتاب سنج
· دوران
فصل 3: سنسورهای دما و ترانسدیوسرهای حرارتی
· گرما و دما
· نوار بی متال
· انبساط مایع و گاز
· ترموکوپلها
· سنسورهای مقاومت فلزی
· ترمیستورها
· تشخیص انرژی گرمایی تابشی
· آشکارسازهای پایروالکتریک
· ترانسدیوسرهای حرارتی
· ترانسدیوسرهای حرارتی به الکتریکی
فصل 4: جامدات ، مایعات و گازها
· جرم و حجم
· سنسورهای الکترونیک
· آشکارسازهای مجاورتی
· سطح مایعات
· سنسورهای جریان مایع
· زمان سنجی
· گازها
· ویسکوزیته (گران روی)
فصل 5: فرآیندها
· فرآیندهای صنعتی
· بررسی رفتارهای کلی فرآیندهای صنعتی
· روشهای عملی تعیین تابع تبدیل فرآیندها
فصل 6: کنترل کننده ها
· کنترل کننده ها
· کنترل کننده ها از نظر انرژی محرکه
· کنترل کننده ها از نظر قانون کنترل
· اصل کلی ایجاد عملیات در کنترل کننده ها
· کنترل کننده های الکتریکی
· کنترل کننده های بادی
· کنترل کننده های هیدرولیکی
· انتخاب کنترل کننده ها
· تنظیم کنترل کننده ها
· جبرانسازی در سیستمهای کنترل صنعتی
فصل 7: عناصر نهایی و محرک ها
· شیرها
· محرک ها
· تثبیت کننده شیر
· شیرهای مخصوص
· تقویت کننده ها
· مراجع
این فایل در قالب ورد و قابل ویرایش در 110 صفحه می باشد.
مقدمه ۷
فصل ۱ : سنسور چیست ؟ ۸
فصل ۲ : تکنیک های تولید سنسور۱۱
فصل ۳ : سنسور سیلیکانی ۱۳
۳_۱ : خواص سیلیکان ۱۵-۱۳
۳_۲ : مراحل تولید در تکنولوژی سیلیکان۱۶-۱۵
۳_۳ : سنسور درجه حرارت ۱۷
۳_۴ : سنسور درجه حرارت مقاومتی ۱۷
۳_۵ : سنسور حرارت اینترفیس ۱۹
۳_۶ : سنسورهای حرارتی دیگر و کاربرد آنها۲۰
۳_۷ : سنسورهای فشار۲۱
۳-۸ : اثر پیزو مقاومتی ۲۲
۳-۹ : سنسورهای فشار پیزو مقاومتی ۲۳
۳_۱۰ : اصول سنسورهای فشار جدید۲۵
۳_۱۱ : سنسورهای نوری ۲۶
۳_۱۲ : مقاومت های نوری ۲۷
۳_۱۳ : دیودهای نوری و ترانزیستورهای نوری۲۸
۳-۱۴ : سنسورهای میدان مغناطیسی ۳۰
فصل ۴ : مولدهای هال و مقاومتهای مغناطیسی۳۱
۴_۱ : کاربردهای ممکن سنسورهای میدان مغناطیسی۳۲
فصل ۵ : سنسورهای میکرومکانیکی ۳۴
۵-۱ : سنسورهای شتاب / ارتعاش ۳۵
۵_۲ : سنسورهای میکروپل ۳۷
فصل ۶ : سنسورهای فیبر نوری ۳۹
۶_۱ : ساختمان فیبر ها ۴۰
۶_۲ : سنسورهای چند حالته ۴۱
۶_۳ : سنسورهای تک حالته ۴۴
۶_۴ : سنسورهای فیبر نوری توزیع شده ۴۶
فصل ۷ : سنسورهای شیمیایی ۵۲
۷_۱ : بیو سنسورها ۵۶
۷_۲ : سنسورهای رطوبت ۵۸
فصل ۸ : سنسورهای رایج و کاربرد آن ۶۰
۸_۱ : سنسورهای خازنی ۶۰
فصل ۹ : سنسور ویگاند۶۲
فصل ۱۰ : سنسورهای تشدیدی۶۶
۱۰_۱ : سنسورهای تشدیدی کوارتز۶۷
۱۰_۲ : سنسورهای موج صوتی سطحی ۶۹
فصل ۱۱ : سنسورهای مافوق صوت ۷۱
فصل ۱۲ : سنسور پارک ۷۹
۱۲-۱: پتاسیومترها ۷۹
۱۲-۲ : خطی بودن پتاسیومترها ۸۰
۱۲-۳ : ریزولوشن پتاسیومترها ۸۲
۱۲-۴ : مسائل نویزالکتریکی در پتاسیومترها۸۴
۱۲-۵ : ترانسدیوسرهای جابه جایی القایی ۸۵
۱۲-۶ : ترانسدیوسرهای رلوکتانس متغیر۸۵
۱۲-۷ : ترانسفورمورهای تزویج متغیر: LDTوLVDT 89
12-8 : ترانسدیوسرهای تغییرمکان جریان ادی ۹۴
۱۲-۹ : ترانسدیوسرهای تغییرمکان خازنی ۹۶
۱۲-۱۰ : رفتارخطی ترانسدیوسرهای تغییرمکان خازنی ۹۹
۱۲-۱۱: سنسورهای حرکت ازنوع نوری ۱۰۰
۱۲-۱۲ : ترانسدیوسرهای تغییرمکان اولتراسوند ۱۰۱
۱۲-۱۳ : سنسورهای پرآب هال سرعت چرخش وسیتم های بازدارنده
(کمک های پارکینگ ) ۱۰۴
۱۲-۱۴ : سیستم های اندازه گیری تغییرمکان اثرهال ۱۰۵
۱۲-۱۵ : سنسوردوبل پارک ۱۰۶
۱۲-۱۶ : آی سی ۵۵۵ درمواد ترانسمیتر۱۰۷
منابع۱۰۸
۱- اصول و کاربرد سنسورها نوشته پیتر هاپتمن
۲- Binder , J . sensors and actuaters 4
۳- Kawamura Y. Proc. TRANDUCER
۴- Baltes, H .P. and Popovic ,R.S . Proc . IEEE 74
۵- Angell, J.B . Silicon Micromechanical Device ,and Electro Optics
۶- Moretti ,M . Laser Focus
۷- Williams,D.E.,stonham,A.M.and Moseley,P.T
۸-Harada,k.et al;IEEE Trans.Magntics .
۹-Fernisse,E . P .et al;IEEE Trans.Ultrasonics,ferroelectrics frequ.control.
۱۰- Clifford, P.K Proc.int.meeting on chemical sensor
نوری الکترونی به صورت یک سیگنال الکتریکی تبدیل کند. بنابراین سنسور را میتوان به عنوان یک زیر گروه از تفکیک کنندهها که وظیفهی آن گرفتن علائم ونشانهها از محیط فیزیکی و فرستادن آن به واحد پردازش به صورت علائم الکتریکی است تعریف کرد. البته سنسوری مبدلی نیز ساخته شدهاند که خود به صورت IC میباشند و به عنوان مثال (سنسورهای پیزوالکترونیکی، سنسورهای نوری).
وقتی ما از سنسوری مجتمع صحبت میکنیم منظور این است که تکیه پروسه آمادهسازی شامل تقویت کردن سیگنال، فیلترسازی، تبدیل آنالوگ به دیجیتال و مدارات تصحیح میباشند، در غیر این صورت سنسوری که تنها سیگنال تولید میکند به نا سیستم موسوم هستند.
در نوع پیشرفته به نام سنسور هوشمند یک واحد پردازش به سنسور اضافه شده است تا خورجی آن عاری از خطا باشد منطقیتر شود. واحد پردازش سنسور که به صورت یک مدار مجتمع عرضه میشود اسمارت (Smart) نامیده میشود. یک سنسور باید خواص عمومی زیر را داشته باشد تا بتوان در سیستم به کار برد که عبارتند از:
حساسیت کافی، درجه بالای دقت و قابلیت تولید دوباره خوب، درجه بالای خطی بودن، عدم حساسیت به تداخل و تاثیرات محیطی، درجه بالای پایداری و قابلیت اطمینان، عمر بالای محصول و جایگزینی بدون مشکل.
امروزه با پیشرفت صنعت الکترونیک سنسوری مینیاتوری ساخته میشود که از جمله مشخصهی آن میتوان به موارد زیر اشاره کرد:
سیگنال خروجی بدون نویز، سیگنال خروجی سازگار با باس، احتیاج به توان پایین.
تکنولوژی سنسور امروزه براساس تعداد نسبتاً زیادی از سنسورهای غیرمینیاتوری استوار شده است. این امر با بررسی ابعاد هندسی سنسوریهایی برای اندازهگیری فاصله، توان، شتاب، سیال عبوری فشار و غیره مشاهده میشود. برای اکثر سنسورها این ابعاد از cm10 تجاوز میکند. اغلب ابعاد، سنسورها توسط خود سنسور تعیین نمیشود بلکه وسیله پوشش خارجی آن مشخص میگردد. با این وجود، حتی در چنین مواردی خود سنسورها از نظر اندازه در حد چند سانتیمتر هستند. چنین سنسوریهایی که میتواند گاهی خیلی گرانبها باشند، برای مثال در زمینة اندازهگیری پروسة. تکنولوژی تولید و رباتها، تکنولوژیهای میکروالکترونیک زیر اکثراً به کار برده میشوند:
تکنولوژی سیلیکان، تکنولوژی لایه نازک، تکنولوژی لایه ضخیم/هیبرید، سایر تکنولوژیهای نیمه هادیپرسوههای دیگری نیز در تولید سنسور بکار برده میشود، از قبیل تکنولوژیهای فویل سینتر، تکنولوژی فیبرنوری، مکانیک دقیق، تکنولوژی لیزر نوری، تکنولوژی مایکروویو و تکنولوژی بیولوژی. بعلاوه، تکنولوژیهایی از قبیل پلیمرها، آلیاژهای فلزی یا مواد پیزوالکتریکی نیز نقش حساسی را در تولید سنسور بازی میکنند.از آنجایی که سیلیکان و نیمه هادیهای دیگر بطور خیلی گسترده در میکروالکترونیک بکار برده می شوند. در ادامه به تشریح این پروسه تولید میپردازم.
استراتژی ترجیح داده شده در ساخت سنسوریها برمبنای سیلیکانی جدید بهرهمند شدن از تکنیکها و پردازشهایی هست که قبلاً در صنعت مدار مجتمع (IC) بر مبنای سیلیکان بنا نهاده شده است و به این طریق میتوانذ از تجربیات و نتایج این بخش صنعتی سود جست
سیلیکان یک ماده مناسب برای تکنولوژی سنسور است به ظرط آن که اثرات فیزیکی و شیمیایی کافی با قوت قابل قبول نشان دهد که میتواند در ساختارهای غیرپیچیده در طول گسترة وسیعی از درجه حرارتها بکار برده شود. استفاده از سیلیکان دارای چندین پی آمد برای سنسورها میباشد. نخست آن که، خواص فیزیکی سیلیکان میتواند مستقیماً برای اندازهگیری کمیت اندازهگیری شوند. مطلوب به کار برده شود.
در جدیدترین تحولی که در سال ۱۹۸۰ جلوهگر شد، ارتباط تکنولوژی میکروالکترونیک با تکنیکهای ایجاد شده بویژه برای تولید سنسور است، از قبل برداشتن نم غیریکسان، یا شیشه آندی در اتصال سیلیکانی. به این طریق خواص مکانیکی بسیار خوب سیلیکان تک کریستال میتواند برای ساخت سنسورهای بدیع به کار برده شود. ای تکنولوژی که به نام میکرومکانیک موسوم است منجر به تولید عناصر سیلیکانی مکانیکی یا مکانیکی/ الکترونیکی با ابعادی به اندازة مشابه الکترونیکی آنها میگردد، که از نظر اندازه چندین میکرومتر هستند. سیلیکان تک کریستالی بویژه بخاطر خواص مکانیکی عالی خود با این تکنولوژی بخوبی سازگار است. تک کریستالی تغییر ماهیت نمیدهد. با این وجود، شکنندگی آن میتواند یک ایراد باشد. همچون الماس، این کریستال میتواند در عرض ضخامت مختلف شکسته میشود. نتیجه آن که بسیاری از سنسورهای ساخته شده بر مبنای سیلیکان تک کریستالی به کاربردهایی که در آن درجه حرارت به بالاتر از ۱۵۰-۱۲۰ درجه سانتی گرد افزایش پیدا نمی کند محدود میشوند.
ساخت سنسورهای سیلیکانی بطور عمده براساس عملیات بکار برده شده در تکنولوژی نیمه هادی مدرن استوار است. که برای تولید عناصر میکروالکترونیکی ابداع شدهاند. تکنولوژی صفحهای سیلیکان نه فقط برتولیدات مدارات مجتمع غلبه میکند، بلکه یک عنصر تعیین کننده در تولید بسیاری از سنسورهای سیلیکانی نیز میباشد این امر منجر به مزایای زیر میشود:
ساخت کم هزینه سنسورها به تعداد زیاد، مینیاتورسازی سنسور تجمع یکپارچه و الکترونیک، ساخت سنسورهای چند گانه (سنسورهای چند گانه برروی یک چیپ تنها)، استفاده از چیپهای بزرگ یا، در بعضی موارد، و وینرهای کمل (مثلاً سلولهای خورشیدی، سنسوریهای نوری الکتریکی حساس به وضعیت)، امکان ساخت به بعدی که در آن تکنیکهای خاص برای برش عمیق و غیر ایزوتروپیک و لایههای توقف برش خاص برای خلق شکل سه بعدی عناصر سیلیکاتی مینیاتور شده به کار برده میشود، استفاده از دیسکهای خیلی نازک یا قسمتهای خیلی نازک (سنسوریهای فشار یا شتاب)، نشست دادن لایههای سنسور نازک بر و روی زمینة سیلیکان که خواص سنسور محدود سیلیکانی را توسعه میدهد.
ویژگیهای دیگر را میتوانید در کتابهای میکرومکانیک مطالعه نمایید. ولی قبل از خلاصهای از میکرومکانیک را خدمت شما عرض می کنم:عبارت میکرومکانیک، یا تشابهات آن به یک شاخه علمی گفته میشود که در آن هدف ساخت میکروسیستمهای پیچیده متشکل از سنسورهای بسیار مجتمع، یک طبقه پردازش سیگنال لا+ رنجشهای مکانیکی قابل حرکت میباشد. در این حرکت علمی به روشهای علمی برای ساخت دست پیدا کردهاند که در روشهای مکانیکی معمول امکان ساخت آن غیرممکن است محدوده ساخت آنها بین میلی متر و زیرمیکرومتر واقع میشود.
در بعد حرارت یکی از مهمترین کمیتهای فیزیکی میباشد. بسیاری از اصول مربوطه به اندازهگیری درجه حرارت از دتها پیش شناحته شدهاند، از قبل پدیدة انبسطا مکانیکی، ترموکوپل، ترمومتر و … پیشرفتهای حاصل شده در علم مواد در دهه ۱۹۵۰ سبب پیدایش مقاومتهایی با ضریب درجه حرارت مثبت (PTC) یا منفی (NTC) شد، بر طبق سنسورهای موجود میتوان سنسورهای موجود حرارتی را به ۱- سنسورهای مقاومتی ۲- سنسورهای درجه حرارت اینزفیس طبقهبندی کنیم.
چنین سنسورهایی از وابستگی درجه جرارت انتقال عامل استفاده میکند. اصلاح مقاومت توزیعی، از روش برای سنجش مقاومت ویژة یک نیمه هادی با استفاده از روش تک پروپی ناشی میشود.
سنسوریهای سیلیکانی دارای این مزیت هستند که می توانند با اطمینان بیشتر و با سطوح قابل تحمل پایینتر دوباره تولید شوند. H-si بطور عمده در کاربردهای تکنیکی به کار برده میشود.
طول کنارة زمینه mm2-1، ضخامت تقریباً mm200 است. کل قطر dدارای مقداری به اندازه mm50-10 میباشد. ابعاد کوچک و زمان پاسخ دهی کوتاه باعث کاربرد آن شده است مثلاً سنسور نوع (ValVo) KTY 84 یک سنسور NTC در محدوده درجه حرارت بین ۵۰- تا ۳۰۰ درجه سانتیگراد است.
این نوع سنسور بطور عمده از وابستگ حرارتی انتقال عامل با استفاده از اتصالات p-n به پایای دیودها، ترانزیستورها یا ترکیبات ترانزیستوری بهرهبرداری میکند. اثرات اصلاح وابستگی حرارتی پلاویتة انیترفیس مخازنهای Mos با تغذیه AC نیز میتواند توسط این نوع سنسور بکار برده شود. هر دو اثر در مبدلهای حرارتی- فرکانسی بکار برده میشوند. مثالهای تجارتی از این نوع سنسور حرارتی عبارت است از انواع AD 590 (دستگاههای آنالوگ) هستند.
آنها میتوانند در حد دقتی به اندازه تقریباً ۱k برای درجة حرارتهایc0۵۰- و c0۱۵۰ به کار برده شوند. اگر چه پیشرفتهای دیگری در حال تجربه هستند، بیشتر آنها هنوز در مرحلة آزمایشگاهی قرار دارند، مبدلهای حرارتی فرکانسی بدلیل توانائی آن ها برای ایجاد یک سیگنال خروجی فرکانسی- آنالوگ جهت غالب دیگری از تکامل را ارائه میدهند. این مدار متشکل از تعدادی طبقات معکوس کننده با تراتزیستورهای جانبی (T1) .و عمودی (T2) میباشد ظرفیت اتصال طبقات معکوسکنندة انفرادی سبب ایجاد یک تاخیر سوپینگ میشود که، با فرض یک جریان تزریقی معین، فرکانس عملیاتی نوسانساز حلقهای را تعیین میکند که با تعداد طبقات معکوسکنندة بکار برده شده تغییر مینماید. وابستگی حرارتی VBE مستقیماً فرکانس نوسان ساز را تحت تاثیر قرار میدهد. بنابراین برای درجه حرارتهایی بین ۰۲۰ و۰۸۰ درجه سانتیگراد یک وابستگی مغطی بین درجه حرارت و فرکانس با یک حساسیت نسبی، به اندازهی تقریباً k 3-10 وجود دارد. اگر چه آیندة چنین سنسورهایی خوب است، ولی آنها هنوز در زمینه قیمت با رقیبان خود قادر به رقابت نیستند.
در درجه حرارت بالا (۵۰۰ الی ۳۰۰۰ درجه سانتی گراد) غالباً با لومتر به عنوان یک عنصر حس کننده به کاربرده میشود. در این دستگاهها درجه حرارت در نتیجهی جذب تشعشع گرمایی توسط لایههای مقاومتی افزایش مییابد. غالباً مقاومتهای لایه ای سیاه فلزی ومقاومتهای لایهای ترکیب فلز- اکسید فلز مورد استفاده قرار میگیرند.
سیلیکون اغلب به عنوان زمینه به کار میرود. ترموپیلهای مجتمع علاوه بر کاربردهای حرارتی کاربردهای دیگری نیز دارند به عنوان مثال اندازه گیری دبی سیال، آشکار سازی تشعشع ماوراء قرمز و اندازه گیری فشار خلاء از آنجایی که سیلیکان یک هادی گرمایی خوب است، روشهای حکاکی اغلب میتواند به منظور وفق دادن ضخامت و شکل ترموپیلها در کاربردهای ویژه به کار روند. آفست (offest) کم ترموپیلهای مجتمع یک مزیت بزرگ است. بالابردن سی یک سیلیون نیز یک مزین است زیرا سیلیکون دارای اثر سی بک (ضریب) بیشتری نسبت به فلزات است از این رو برای اندازه گیری دماهای جزئی مورد استفاده قرار میگیرد (در حد میکروکلوین).
عبارتهای تنش و کرنش غالباً در موقع استفاده با یکدیگر اشتباه می شوند و بنابراین لازم است در اینجا تعریف روشنی از این در کلمه بیان شود.
کرنش نتیجه تنش است و به صورت تغییر نسبی ابعاد یک شی بیان می شود، بدین معنی که تغیر بعد تقسیم بر بعد اصلی می شود، به گونه ای که به عنوان مثال، از نظر طولی کرنش تغییرات طول تقسیم بر طول اصلی است. این کمیتی است که یک عدد خالص بوده و حاصل تقسیم یک طول بر طول دیگر است و بنابراین دیمانسیون فیزیکی ندارد.
کرنش به روشی مشابه تغییر کمیت تقسیم بر کمیت اصلی را می توان برای اندازه گیری های سطح و یا حجم تعریف کرد به عنوان مثال، کرنش سطح، عبارتست از تغییر سطح تقسیم بر سطح اصلی و کرنش حجم، تغییرات حجم تقسیم بر حجم اصلی است.
در مقابل، تنش، عبارتست از تقسیم مقدار نیرو بر مقدار سطح. همانگونه که درمورد یک سیم و یک میله در تنش کششس و یا فشای ، بهعنوان مثال، تنش کششی عبارت از نیروی وارده تقسیم بر سطحی که نیرو به آن وارد می شود که آن سطح،سطح مقطع سیم و یا میله است. درمورد موادی مانند مایعات و یا گازها، که می توانند در تمام جهات به طور یکنواخت فشرده شوند، تنش کلی نیرو بر واحد سطح است که همان فشار وارده است و کرنش تغییر حجم تقسیم بر حجم اصلی است. عمومی ترین ترانسدیوسرهای کرنش از نوع تنش مکانیکی کششی (Tensile mechanical stress) هستند. اندازه گیری کرنش، اجازه می دهد که مقدار تنش با دانستن مدول الاستیک (Elastic modulus) قابل محاسبه باشد. تعریف هر نوع از ضریب کشسانی کرنش/ تنش است (که دارای واحد تنش است،چون کرنش واحد فیزیکی ندارد) و کاربردی ترین مدول الاستیک ، مدول خطی یانگ ، مدول برشی (پیچش)و مدول بولک (فشار) است.
برای مقادیر کوچک کرنش مقدار کرنش متناسب با تنش است و مدول الاستیک کمیتی است که نسبت کرنش/ تنش را در ناحیه الاستیک، بیان می کند، (قسمتی از نمودار کرنش- تنش که خطی است) به عنوان مثال مدول یانگ نسبت کرنش کششی/ تنش کششی، به طور نمونه برای هر ماده به شکل سیم اندازه گیری می شود (شکل 1-1) روش اندازه گیری کلاسیک، هنوز هم در آزمایشگاه مدارس مورد استفاده قرار می گیرد و درآن از یک زوج سیم بلند استفاده می شود، که یکی از آنها به بار وصل شده و به سیم دیگر یک ورنیه مدرج نصب می شود.
آشکارسازی و تبدیل تنش کششی در برگیرنده اندازه گیری تغییرات خصی کوچک طول یک نمونه است. این به وسیله اثر تغییرات دما، که ایجاد انبساط و یا انقباض میکند کامل می شود. برای تغییرات حدود صفر تا 90 درجه سانتیگراد که دمای محیط اطراف ماست، انبساط و انقباض طول در همان حدود اندازه تغییراتی که توسط مقادیر زیادی فشار ایجاد می شود خواهد بود. بنابراین هر سیستمی برای آشکار سازی و اندازه گیری کرنش بایستی به نحوی طراحی شود که اثرات دما بتواند جبران سازی شود.
قوانینی که برای آشکار سازی کرنش خطی و یا سطحی استفاده می شود پیزورزیستیو و پیزو الکتریک نامیده می شوند.
معمول ترین روش اندازه گیری کرنش با استفاده از استرین گیجهای مقاومتی محقق می شود. یکاستریم گیج مقاومتی شامل یک ماده هادی به شکل یک سیم و یا نوار نازک است که به صورتی محکم به مادهای که کرنش آن بایستی آشکار شود متصل شده است. این ماده ممکن است دیوار یک ساختمان، تیغه یک توربین، قسمتی از یک پل، هر چیزی باشد که درآن تنش اضافی بتواند اغتشاش تهدید کننده ای آشکار کند. محکم کردن ماده مقاومتی معمولاً توسط رزینهای اپوکسی (مانند آرالدیت) انجام میگیرد، چون این مواد بسیار محکم هستند و عایقهای الکتریکی نیز به شمار می روند. سپس نوار استرین گیج به عنوان ییک از بازوهای مدار پلی مقاومتی به مدار وصل می شود (شکل 1-2) این یک مثال در مورد قانون پیزورزیستیو است، چون برای آشکار سازی از تغییر مقاومتی که به دلیل تغییر شکل ساختمان کریستالی ماده حاصل شده است استفاده می شود.
می توان با استفاده از یک استرین گیچ در ثل مقاومتی به طوری که تحت کرنش قرار نگرفته باشد به گونه ای مقایسه ای اثر تغییرات دما را به حداقل رسانید. این اقدام نه تنها به خاطر اینکه ابعاد ماده مورد بررسی در نتیجه تغییرات دما تغیر خواهد کرد بلکه به این دلیل است که خود مقاومت عنصر استرین گیچ نیز تغییر خواهد کرد. با استفاده از دو استرین گیچ یکسان، که یکی از آنها تحت کرنش نباشد، در مدارپل، این تغییرات در مقابل یکدیگر می توانند متعادل شوند و باعث شود تنها تغییرات مربوط به کرنش آشکار شوند. حساسیت این نوع سنجه، که غالباً سنجه پیزورزیستیو نامیده شده، تحت عنوان فاکتور گیج اندازه گیری می شود. این مفهوم به عنوان نسبت تغییرات مقاومت به تغییرات کرنش معرفی می شود و به طور معمول برای سنجه از نوع سیم فلزی در حدود 2 و برای نوع نیمه هادی آن حدود 100 است.
شکل 1-2 استفاده از استرین گیج- (a) شکل فیزیکی یک استرین گیج (b) یک مدار پل اندازه گیری برای استفاده استرین گیج. با استفاده از یک سنجه فعال (تحت کرنش) و یک سنجه غیر فعال (بدون قرار گرفتن تحت کرنش) در یک بازوی پل، چنانچه هر دو گیج به طور یکسان تحت تاثیر دما قرار گیرند، اثرات دما جبران سازی می شود. دو سنجه معمولاً به صورت پهلو به پهلو قرار می گیرند اما تنها یک سنجه به طور محکم به سطح تحت کرنش وصل می شود.
همان گونه که اعداد فاکتور در بالا نشان می دهند تغییر مقاومت یک گیج که با استفاده از المنتهای سیم مرسوم ساخته می شوند (که عمدتاً از جنس سین نیکرن نازک هستند) خیلی کوچک است.
به دلیل اینکه مقاومت یک سیم متناسب به طول آن است، تغییرات نسبی مقاومت با تغییرات نسبی طول خواهد بود، بهطوری که تغییرات کمتر از 1/0% قابل آشکارسازی است. چون مقاومت در مقایسه با مقاومت اتصالات در مدار خیلی کوچک باشد و این امر در موقع اندازه گرفتن مقدار کرنشهای کوچک، اندازه گیری را غیر مطمئن سازد. استفاده از نوار نیمه هادی به جای سیم فلزی اندازه گیری را بسیار آسانتر می کند، چون مقاومت چنین نواری به مقدار قابل توجهی بزرگتر خواهد بود و به دنبال آن، تغییرات مقاومت نیز به میزان قابل توجهی می تواند بزرگتر باشد و باستثنای کاربردهایی که درآنها دمای المنت بالا است (به عنوان مثال، تیغه های توربین گازی)، استرین گیج از نوع نیمه هادی ترجیح داده می شود.بستن و ثابت کردن آن همانند نوع فلزی است و ماده نیمه هادی توسط یک لایه غیر فعال محافظ از آلودگی فضای اطراف به وسیله اکسیداسیون روی است و ماده نیمه هادی توسط یک لایه غیر فعال محافظ از آلودگی فضای اطراف به وسیله اکسیداسیون روی سطح محافظت می شود این نکته بسیا ربا اهمیت است، چون اگر اتمسفر اطراف المنت گیج، لایه اکسید را از بین ببرد. آنگاه قرائتهای گیج تحت تاثیر عوامل شیمیایی قرار خواهند گرفت، درست همانگونه که تحت تاثیر کرنش قرار می گیرند و در نتیجه اندازه گیریها قابل اعتماد نخواهند بود.
استرین گیجهای پیزوالکتریک در مواردی که اندازه گیری در مدت زمان کوتاه انجام می شود و یا اینکه مقادیر آنها سریعاً تغییر می کنند مفید هستند. یک ماده پیزوالکتریک، ماده ای است که وقتی کریستال آن تحت کرنش قرار می گیرد، یونهای آن به صورت غیر متقارن حرکت می کنند، به گونه ای که بین دو صفحه کریستال EMF [1] تولید می شود (شکل 1-3) اگر کریستال به مقدار خیلی زیاد تحت کرنش قرار گیرد، می تواند EMF بسیار زیادی، حتی در حدود چند kV[2] ایجاد کند.
شکل 1-3 قوانین کریستال پیزوالکتریک . شکل کریستال مکعبی نیست، ولی برای ساده تر کردن مفهوم، جهت اثرات روی یک مکعب نشان داده شده اند. بیشترین اثر الکتریکی روی وجوهی از مکعب به دست می آیند که جهت آنها عمود بر وجوهی است که نیرو اعمال می شود. محور رسوم محور نوری نامیده می شود به دلیل اینکه نوری که در این جهت به کریستال تابانیده می شود بیشتر از جهات دیگر تحت تاثیر پلاریزاسیون قرار می گیرد.
به طوریکه گیج بتواند حس کند، اماآمپدانس خروجی خیلی زیاد و معمولآً خازنی اصست. شکل 1-4 مدار معادل الکرتیکی و شکل 1-5 پاسخ فرکانسی یک کریستال کوارتز اطارف فرکانسهای رزونانس اصلی را نشان می دهد. خروجی یک استریم گیج پیزوالکتریک DC نیست، لذا این نوع گیچ برای آشکار سازی تغییرات آهسته مفید استفاده نمی باشد و کاربرد اصلی آن برای آشکار سازی شتاب است.
دو شکل عمده انواع عناصر استرین گیج، عبارتند از پس ماند و لغزش. پس ماند روی نمودار بدین صورت بیان می شود که نمودار تعییر مقاومت نسبت به تغییرات طول در مسیر کاهش تنش دقیقاً همنان مسیر مربوط به افزایش تنش را طی نمی کند. (شکب 1-6) این اثر بایستی کوچ و از مرتبه 025/0 قرائت ماکزیمم باشد.
شکل 1-4 مدار معادل یک کریستال که شامل یک مدار رزونانس با اندوکتانس خیلی بالا، ظرفیت خازنی پایین و مقاومت تقریبآً صرفنظر کردمی است.
شکل 1-5 مشخصه الکتریکی کریستال کوارتز
شکل 1-6 اثر پس ماند روی یک استرن گیج که مقدار زیادی در آن مبالغه شده است. نمودار در جهت افزایش کرنش خطی است، اما زمانی که کرنش کاهش می یابد همان مسیر را نمیپیماید. نتیجه فوق در گیج دارای مقاومت دائماً متغیر زمانی که کرنش حدی می شود اتفاق می افتد.
کشش بیش از حد یک استرین گیج باعث افزایش زیاد در پس ماند می شود واگر خیلی زیاد باشد، باعث می شود که گیج یک تغییر دائمی طول را نشان دهد وفیر قابل استفاده شود مگر اینکه مجدداً کالیبره شود. مسئله دیگر، لغزش استرین گیج است، مه در نتیجه تغییر تدریجی طول المنت گیج اتفاق می افتد که ارتباطی با کرنش ماده ای که مورد اندازه گیری است ندارد. لغزش نیز بایستی خیلی کوچک و از مرتبه 025/0% قرائت معمولی باشد. پس ماند و لغزش هر دو اقرات غیرخطی هستند که به هیچ وجه حذف شدنی نیستند اما با انتخاب دقیق ماده مناسب استرین گیج می توان مقادیر آنها را کاهش داد. هر دو مقدار پس ماند و لغزش در اثر افزایش دمای کار گیج افزایش می یابند.
لودسلها در سیستمهای توزین الکترونیکی مورد استفاده قرار می گیرند. یک لودسل عبارت است از یک ترانسدیوسر نیرو که نیرو یا وزن را به سیگنال الکتریکی تبدیل می کند. اساساً، لودسل از یک مجموعه استرین گیج تشکیل شده است، که معمولآً چهار عدد هستند و به صورت مدار پل و ستون وصل شده اند. خروجی مدار پل ولتاژی است که مقدار آن متناسب با نیروی وارده به لودسل است. خروجی ولتاژ مورد نظر یا به طور مستقیم پردازش می شود و یا اینکه ابتدا دیجیتایز شده سپس آماده پردازش می شود.
1-2- تداخل سنجی
روش دیگری برای اندازه گیری کرنش که دارای امتیازات قابل توجهی نیز هست و حساسیت مناسبی هم دارد روش تداخل سنجی است. اگرچه وصول این روش کاملاً قدیمی است، اما استفاده علمی از آن تا زمانی که لیزرهای مناسب و تجهیزات وابسته به آن، به همراه شیوه های الکترونیک کاربردی قرائت اندازه گیری رایج نشده بود به عهده تعویق افتاد.
قبل از آنکه بخواهیم استرین گیج از نوع تداخل سنج لیزری را تشریح کنیم، لازم است اصول تداخل موج و مشکلات آن وقتی موجهای تداخلی از نوع نور هستند را بدانیم.
پدیده تداخل در همه انواع امواج روی می دهد (شکل 1-7) وقتی دو بار با یکدیگر تلاقی می گنند و با یکدیگر همفاز هستند (پیکهای هم علامت یکدیگر را تقویت می کنندن)، نتیجه این تداخل، موجی با دامنه بزرگتر است که یک موجب تقویت شده است. این نوع تداخل، تداخل فزاینده دامنه نامیده می شود. اگر چنانچه دو موجب با فازهای مخالف هم با یکدیگر تداخل کنند، مجموع دو موج یا دارای دامنه صفر خواهد بود یا اینکه دامنه آن کوچه خواهد بود و تداخل آن کاهنده دامنه نامیده می شود. تغییر تداخل فزاینده دامنه به کاهنده دامنه زمانی اتفاق می افتد که تعییر فاز یکی از دو موج نسبت به موج دیگر در مدت نیم سیکل صورت پذیرد. اگر امواج از دو منبع منشتر شوند، آنگاه حرکت یک منبع با فاصله ای باندازه نصف طول موج برای تغییرنوع تداخل از نوع فزاینده دامنه به نوه کاهنده دامنه و بالعکس کافی خواهد بود. اگر امواجی که استفاده می شوند دارای طول موج کوتاه باشند آنگاه فاصله نصف طول موج خیلی کوتاه خواهد بود واین روش اندازه گیری خیلی حساس و دقیقی برای اندازه گیری فاصله خواهد بود.
طول موج نور قرمز حدود nm 700 یا m 7-10 و یا mm 4-10 خواهد بود. به طوری که با شیفت دادن موج به اندازه نیمی از این فاصله بین دو منبع نور قرمز می توان انتظار داشت که تداخل از حالت کاملاً فزاینده دامنه به حالت کاملاً کاهنده دامنه تبدیل شود، در عمل می توان تغییرات خیلی کوچکتر از این مقدار را نیز آشکار کرد. اگر مشکل همدوس بودن امواج نوری وجود نمی داشت این روش بایستی خیلی زودتر از آنچه باید مورد استفاده قرار گرفت. تداخل تنها وقتی ممکن است که امواجی که با یکدیگر تداخل می کنند در دوره زمانی نسبتاً زیادی پیوسته باشند.
هرچند مولدهای نور معمولی امواج را به صورت پیوسته منتشر نمی کنند. در منبع نوری مانند یک لامپ رشته ای و یا لامپ فلورسنت، هر اتمی که یک پالس تشعشع نوری را منتشر می کند، طی مرحله فوق انرژی از دست می دهد و سپس انتشار نوری را منتشر می کند، طی مرحله فوق انرژی از دست می دهد و سپس انتشار انرژی تازمانی که مجدداً به تک تک اتمها است و به صورت یک کمیت موج پیوسته نیست این موضوع باعث می شود به دست آوردن هر اثر تداخلی بین دو منبع نور معمولی جداگانه غیر ممکن باشد و تنها راهی که تداخل نوری با استفاده از چنین منابع نوری به طور معمولی قابل نمایش است این است که نوری که از روزنه عبور داده شده با یک اختلاف مسیر خیلی کوچک، با انعکاس یافته خودش تداخل یابد.
با وجود نور لیزر همه مشکلات فوق رفع می شود. لیزر شعاعی از نور عرضه می کند که درآن همه اتمهای تشکیل دهنده نور به طور همزمان در حال نوسان هستند. این نوع شعاع نوری همدوس نامیده می شود. توسط شعاع نور همدوس می توان بآسانی اثرات تداخلی را نشان داد و امتیاز دیگر این است که از یک لیزر بآسانی می توان شعاعهای موازی دقیق را به دست آورد. توسط تداخل سنج همانگونه که در شکل 1-8 نشان داده شده می توان این دو خصوصیت را نشان داد.
نور حاصل از یک لیزر کوچک به یک مجموعه صفحات شیشه ای نیمه منعکس کننده تابانده می شود و مقداری از این نور به پرده منعکس می شود. بقیه نور به منعکس کننده برخورد می کند، به طوری که شعاع منعکس شده به صفحات شیشه ای بر می گردد و ضمناً روی پرده منعکس می شود. کنون تداخل پترنی بین نوری که از شعاع نوری خارجی شونده منعکس شده ونوری که از شعاع نوری بازگشتی ایجاد شده شکل می گیرد . اگر منعکس کننده دور بهاندازه یک چهارم طول موج نور حرکت کند، مسیر شعاع نور رفت و برگشت از منعکس کننده به اندازه نصف طول موج تغییر خواهد کرد وتداخل بین دو نوع فزاینده دامنه و کاهنده دامنه تغییر خواهد کرد. به دلیل اینکه این یک شعاع نوری است که باعث می شود روشنایی روی پرده بین حالت روشن و تاریک تغییر کند توسط یک فتوسل می تواند این تغییر را اندازه گیری کرد و با اتصال فتوسل به یک شمارنده دیجیتال از طریق یک تقویت کننده ، تعداد ربع طول موجهای حرکت منعکس کننده دور را می توان به صورت الکترونیکی اندازه گیری کرد.
شکل 1-8 قوانین تداخل سنجی موج. در قسمت (a) تنظیم لیزر و صفحات شیشه ای نشان داده شده است . صفحات شیشه ای مقداری زا نور را از خود عبور می دهند ومقداری از آن را منعکس می کنند. به گونه ای که هم کنعکس کننده وهم پرده مقداری نور از شعاع لیزر را دریافت می نمایند. علاوه بر آن، نور برگشتیی از منعکس کننده هم به پرده برخورد می کند و باعث ایجاد شکل تداخلی می شود همانگونه که در قسمت (b) نمایش داده شده است. با حرکت دادن منعکس کننده به اندازه نصف طول موج، شکل به اندازه فاصله بین باندها روی پرده حرکت خواهد کرد.
فهرست مطالب
عنوان صفحه
فصل 1: کرنش و فشار 1
فصل 2: موقعیت ، جهت ، فاصله و حرکت 28
فصل 3: سنسورهای دما و ترانسدیوسرهای حرارتی 68
فهرستمطالب
عنوان صفحه
فصل 4: جامدات ، مایعات و گازها 108
فهرستمطالب
عنوان صفحه
فصل 5: فرآیندها 174
فصل 6: کنترل کننده ها 220
فصل 7: عناصر نهایی و محرک ها 319
فهرستمطالب
عنوان صفحه
شیرها 321