کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پایان نامه صوت سنج

اختصاصی از کوشا فایل پایان نامه صوت سنج دانلود با لینک مستقیم و پرسرعت .

پایان نامه صوت سنج


 پایان نامه صوت سنج

هدف از این پروژه ساخت دستگاهی جهت اندازه گیری شدت صوت بر حسب دسی بل می باشد. این دستگاه که در ورودی به یک میکروفن خازنی مجهز است صوت را دریافت کرده و پس از چند طبقه تقویت این سیگنال آنالوگ را به دیجیتال تبدیل کرده و با استفاده از میکرو کنترلر avr پردازش شده و بر روی یک lcd نمایش می دهد. در واقع این دستگاه یک تراز سنج صوت می باشد کهآلودگی صوتی یک محیط را بر حسب واحد دسی بل بیان می کند. در این پروژه فصل اول را به مقدمات که آشنایی مختصری درباره صوت و ماهیت آن و همچنین دستگاه های اندازه گیری می باشد پرداخته ایم و فصل دوم را به جزئیات پروژه اختصاص داده ایم. همچنین برنامه پروژه که به زبان بیسیک می باشد به همراه کاتالوگ برخی از قطعات مهم پروژه در قسمت ضمیمه آورده شده است.

ر ادامه سرفصل های این پروژه…

فصل اول: مقدمات

صدا چیست

اصوات خالص، امواج سینوسی، فرکانس و طول موج

کمیات لگاریتمی

تراز

تراز توان صوت swl

تراز شدت صوت sil

تراز شدت صوت spl

فصل دوم: تراز سنج های صوت

تراز سنج های صوت

مرحله ورودی

شبکه فرکانسی

شناساگر

تجمیع کننده

شناساگر اضافه بار

باتری

نمایشگر

میکروفن

پاسخ فرکانسی

حساسیت

پاسخ وابسته به جهت

پولاریزاسیون

دزیمتر

انواع ترازسنج های صوت

فصل سوم: طراحی مدار صوت سنج

شرح عملکرد مدار

بلوک دیاگرام مدار

بخش آنالوگ مدار

میکروفن

Ic lm358

ترانزیستور bc 327

رگولاتور ۷۸۰۵

بلوک دیجیتال

Lcd 2*16

فصل چهارم

نتیجه گیری

مراجع

ضمائم


دانلود با لینک مستقیم

دانلود پایان نامه امواج ماورای صوت

اختصاصی از کوشا فایل دانلود پایان نامه امواج ماورای صوت دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه امواج ماورای صوت


دانلود پایان نامه امواج ماورای صوت

پرتو X از لحظه کشف به استفاده عملی گذاشته شد, و در طی چند سال اول بهبود در تکنیک و دستگاه به سرعت پیشرفت کرد. برعکس, اولتراسوند در تکامل پزشکیش بطور چشمگیری کند بوده است. تکنولوژی برای ایجاد اولتراسوند و اختصاصات امواج صوتی سالها بود که دانسته شده بود. اولین کوشش مهم برای استفاده عملی در جستجوی ناموفق برای کشتی غرق شده تیتانیک در اقیانوس اطلس شمالی در سال 1912 بکار رفت سایر کوششهای اولیه برای بکارگیری ماوراء صوت در تشخیص پزشکی به همان سرنوشت دچار شد. تکنیکها, بویژه تکنیکهای تصویرسازی تا پژوهشهای گسترده نظامی در جنگ دوم بطور کافی بسط نداشت. سونار, Sonar (Sound Navigation And Ranging) اولین کاربرد مهم موفق بود. کاربردهای موفق پزشکی به فاصله کوتاهی پس از جنگ, در اواخر دهة 1940 و اوایل دهة 1950 شروع شد و پیشرفت پس از آن تند بود.

اختصاصات صوت

یک موج صوتی از این نظر شبیه پرتو X است که هر دو امواج منتقل کننده انرژی هستند. یک اختلاف مهمتر این است که پرتوهای X به سادگی از خلاء عبور می‌کنند درحالیکه صوت نیاز به محیطی برای انتقال دارد. سرعت صوت بستگی به طبیعت محیط دارد. یک روش مفید برای نمایش ماده (محیط) استفاده از ردیفهای ذرات کروی است, که نماینده اتمها یا ملکولها هستند که بوسیله فنرهای ریزی از هم جدا شده اند (شکل A 1-20). وقتی که اولین ذره جلو رانده می‌شود, فنر اتصالی را حرکت می‌دهد و می فشرد, به این ترتیب نیرویی به ذره مجاور وارد می آورد (شکل 1-20). این ایجاد یک واکنش زنجیره ای می‌کند ولی هر ذره کمی کمتر از همسایه خود حرکت می‌کند. کشش با فشاری که به فنر وارد می‌شود بین دو اولین ذره بیشترین است و بین هر دو تایی به طرف   انتهای خط کمتر می‌شود. اگر نیروی راننده جهتش معکوس شود, ذرات نیز جهتشان معکوس می‌گردد. اگر نیرو مانند یک سنجی که به آن ضربه وارد شده است به جلو و عقب نوسان کند, ذرات نیز با نوسان به جلو و عقب پاسخ می دهند. ذرات در شعاع صوتی به همین ترتیب عمل می‌کنند, به این معنی که, آنها به جلو و عقب نوسان می‌کنند, ولی در طول یک مسافت کوتاه فقط چند میکرون در مایع و حتی از آن کمتر در جامد.

اگر چه هر ذره فقط چند میکرون حرکت می‌کند, از شکل 1-20 می توانید ببینید که اثر حرکت آنها از راه همسایگانشان در طول خیلی بیشتری منتقل می‌شود. در همان زمان, یا تقریباً همان زمانی که اولین ذره مسافت a را می پیماید, اثر حرکت به مسافت b منتقل می‌شود. سرعت صوت با سرعتی که نیرو از یک ملکول به دیگری منتقل می‌شود تعیین می‌گردد.


امواج طولی

   ضربانات اولتراسوند در مایع به صورت امواج طولی منتقل می‌شود. اصطلاح «امواج طولی» یعنی اینکه حرکت ذرات محیط به موازات جهت انتشار موج است. ملکولهای مایع هدایت کننده به جلو و عقب حرکت می‌کنند و ایجاد نوارهای انقباض و انبساط (شکل 2-20) می‌کنند. جبهه موج در زمان 1 در شکل 2-20, وقتی طبل لرزنده ماده مجاور را می فشارد آغاز می‌شود. یک نوار انبساط, در زمان 2, وقتی که طبل جهتش معکوس می‌گردد, پیدا می‌شود. هر تکرار این حرکت جلو و عقب را یک سیکل (Cycle) یا دوره تناوب گویند و هر سیکل ایجاد یک موج جدید می‌کند. طول موج عبارت است از فاصله بین دو نوار انقباض, یا دو نوار انبساط, و بوسیلة علامت نشان داده می‌شود. وقتی که موج صوتی ایجاد شد, حرکت آن در جهت اولیه ادامه می یابد تا اینکه منعکس شود, منکسر شود یا جذب گردد. حرکت طبل لرزان که برحسب زمان رسم شده است, یک منحنی سینوسی را که در طرف چپ شکل 2-20 نشان داده شده است تشکیل می‌دهد. اولتراسوند, برحسب تعریف, فرکانسی بیش از 20000 سیکل بر ثانیه دارد. صوت قابل شنیدن فرکانسی بین 15 و 20000 سیکل بر ثانیه دارد (فرکانس میانگین صدای مرد در حدود 100 سیکل بر ثانیه و از آن زن در حدود 200 سیکل بر ثانیه می‌باشد). شعاع صوتی که در تصویرسازی تشخیصی بکار می رود فرکانسی از 000/000/1 تا 000/000/20 سیکل بر ثانیه دارد. یک سیکل بر ثانیه را یک هرتس (Hertz) گویند. یک میلیون سیکل بر ثانیه یک مگاهرتس (مختصر شده آن (MHz) است. اصطلاح هرتس به افتخار فیزیکدان مشهور آلمانی Heinrich R.Hertz می‌باشد که در سال 1894 وفات یافت.

سرعت صوت

برای بافتهای بدن در محدودة اولتراسوند پزشکی, سرعت انتقال صوت مستقل از فرکانس می‌باشد و عمدتاً بستگی به ساختمان فیزیکی ماده ای دارد که از میان آن صوت عبور می‌کند. خواص مهم محیط منتقل کننده عبارتند از : (1) قابلیت انقباض (compressibility) و (2) چگالی (Density). جدول 1-20, سرعت صوت را در بعضی از مواد شناخته شده, از جمله چندین نوع بافت بدنی, نشان می‌دهد. مواد به ترتیب افزایش سرعت انتقال مرتب شده اند, و می توانید ببینید که صوت در گازها از همه کندتر, در مایعات با سرعت متوسط, و از همه تندتر در اجسام جامد حرکت می‌کند. ملاحظه کنید که تمام بافتهای بدن, جز استخوان, مانند مایعات رفتار می‌کنند و بنابراین همگی صوت را تقریباً با یک سرعت منتقل می‌کنند. یک سرعت 1540 متر بر ثانیه به عنوان میانگین برای بافتهای بدن بکار می رود.

قابلیت انقباض: سرعت صوت با قابلیت انقباض ماده منتقل کننده نسبت معکوس دارد, به این معنی که هرچه ماده کمتر قابل انقباض باشد, صوت در آن تندتر منتقل می‌شود. امواج صوتی در گازها آهسته حرکت می‌کنند زیرا ملکولها از هم دورند و به آسانی قابل انقباضند. آنها به گونه ای رفتار می‌کنند که گویی بوسیلة فنر سستی بهم بسته اند. یک ذره باید فاصله نسبتاً طویلی را بپیماید پیش از اینکه بوسیله یک همسایه تحت تأثیر قرار گیرد. مایعها و جامدها کمتر قابل انقباضند زیرا ملکولهایشان به یکدیگر نزدیکترند. آنها فقط نیاز به طی مسافت کوتاهی دارند تا در همسایه اگر گذارند, بنابراین مایعها و جامدها صوت را تندتر از گاز منتشر می‌کنند.


دانلود با لینک مستقیم

دانلود مقاله صوت

اختصاصی از کوشا فایل دانلود مقاله صوت دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله صوت


دانلود مقاله صوت

پرتو X از لحظه کشف به استفاده عملی گذاشته شد, و در طی چند سال اول بهبود در تکنیک و دستگاه به سرعت پیشرفت کرد. برعکس, اولتراسوند در تکامل پزشکیش بطور چشمگیری کند بوده است. تکنولوژی برای ایجاد اولتراسوند و اختصاصات امواج صوتی سالها بود که دانسته شده بود. اولین کوشش مهم برای استفاده عملی در جستجوی ناموفق برای کشتی غرق شده تیتانیک در اقیانوس اطلس شمالی در سال 1912 بکار رفت سایر کوششهای اولیه برای بکارگیری ماوراء صوت در تشخیص پزشکی به همان سرنوشت دچار شد. تکنیکها, بویژه تکنیکهای تصویرسازی, تا پژوهشهای گسترده نظامی در جنگ دوم بطور کافی بسط نداشت. سونار, Sonar (Sound Navigation And Ranging) اولین کاربرد مهم موفق بود. کاربردهای موفق پزشکی به فاصله کوتاهی پس از جنگ, در اواخر دهة 1940 و اوایل دهة 1950 شروع شد و پیشرفت پس از آن تند بود.

اختصاصات صوت

یک موج صوتی از این نظر شبیه پرتو X است که هر دو امواج منتقل کننده انرژی هستند. یک اختلاف مهمتر این است که پرتوهای X به سادگی از خلاء عبور می‌کنند درحالیکه صوت نیاز به محیطی برای انتقال دارد. سرعت صوت بستگی به طبیعت محیط دارد. یک روش مفید برای نمایش ماده (محیط) استفاده از ردیفهای ذرات کروی است, که نماینده اتمها یا ملکولها هستند که  بوسیله  فنرهای  ریزی از هم جدا شده اند (شکل A 1-20). وقتی که اولین ذره جلو رانده می‌شود, فنر اتصالی را حرکت می‌دهد و می فشرد, به این ترتیب نیرویی به ذره مجاور وارد می آورد (شکل 1-20). این ایجاد یک واکنش زنجیره ای می‌کند ولی هر ذره کمی کمتر از همسایه خود حرکت می‌کند. کشش با فشاری که به فنر وارد می‌شود بین دو اولین ذره بیشترین است و  بین  هر  دو  تایی  به طرف   انتهای خط کمتر می‌شود. اگر نیروی راننده جهتش معکوس شود, ذرات نیز جهتشان معکوس می‌گردد. اگر نیرو مانند یک سنجی که به آن ضربه وارد شده است به جلو و عقب نوسان کند, ذرات نیز با نوسان به جلو و عقب پاسخ می دهند. ذرات در شعاع صوتی به همین ترتیب عمل می‌کنند, به این معنی که, آنها به جلو و عقب نوسان می‌کنند, ولی در طول یک مسافت کوتاه فقط چند میکرون در مایع و حتی از آن کمتر در جامد.

اگر چه هر ذره فقط چند میکرون حرکت می‌کند, از شکل 1-20 می توانید ببینید که اثر حرکت آنها از راه همسایگانشان در طول خیلی بیشتری منتقل می‌شود. در همان زمان, یا تقریباً همان زمانی که اولین ذره مسافت a را می پیماید, اثر حرکت به مسافت b منتقل می‌شود. سرعت صوت با سرعتی که نیرو از یک ملکول به دیگری منتقل می‌شود تعیین می‌گردد.

امواج طولی

    ضربانات اولتراسوند در مایع به صورت امواج طولی منتقل می‌شود. اصطلاح «امواج طولی» یعنی اینکه حرکت ذرات محیط به موازات جهت انتشار موج است. ملکولهای مایع هدایت کننده به جلو و عقب حرکت می‌کنند و ایجاد نوارهای انقباض و انبساط (شکل 2-20) می‌کنند. جبهه موج در زمان 1 در شکل 2-20, وقتی طبل لرزنده ماده مجاور را می فشارد آغاز می‌شود. یک نوار انبساط, در زمان 2, وقتی که طبل جهتش معکوس می‌گردد, پیدا می‌شود. هر تکرار این حرکت جلو و عقب را یک سیکل (Cycle) یا دوره تناوب گویند و هر سیکل ایجاد یک موج جدید می‌کند. طول موج عبارت است از فاصله بین دو نوار انقباض, یا دو نوار انبساط, و بوسیلة علامت  نشان داده می‌شود. وقتی که موج صوتی ایجاد شد, حرکت آن در جهت اولیه ادامه می یابد تا اینکه منعکس شود, منکسر شود یا جذب گردد. حرکت طبل لرزان که برحسب زمان رسم شده است, یک منحنی سینوسی را که در طرف چپ شکل 2-20 نشان داده شده است تشکیل می‌دهد. اولتراسوند, برحسب تعریف, فرکانسی بیش از 20000 سیکل بر ثانیه دارد. صوت قابل شنیدن فرکانسی بین 15 و 20000 سیکل بر ثانیه دارد (فرکانس میانگین صدای مرد در حدود 100 سیکل بر ثانیه و از آن زن در حدود 200 سیکل بر ثانیه می‌باشد). شعاع صوتی که در تصویرسازی تشخیصی بکار می رود فرکانسی از 000/000/1 تا 000/000/20 سیکل بر ثانیه دارد. یک سیکل بر ثانیه را یک هرتس (Hertz) گویند. یک میلیون سیکل بر ثانیه یک مگاهرتس (مختصر شده آن (MHz) است. اصطلاح هرتس به افتخار فیزیکدان مشهور آلمانی Heinrich R.Hertz می‌باشد که در سال 1894 وفات یافت.

ماوراء صوت (Ultrasound)
اختصاصات صوت
امواج طولی
سرعت صوت
شدت (Inteneity)
ترانسدوسرها (TRANSDUCERS)
ویژگیهای بلورهای پیزوالکتریک
ویژگیهای یک شعاع اولتراسوند
واکنش بین اولتراسوند و ماده
انعکاس (Reflection)
انکسار (Refraction)
تطابق یک چهارم موج
نمایش اولتراسوند
حالت TM
تصویر سازی جدول خاکستری
تنظیمها (Controls)
سرعت ضربانها (Pulse Rate)
اصول تصویرسازی

 

 

شامل 55 صفحه فایل word


دانلود با لینک مستقیم

پاورپوینت فراصوت و فرو صوت 11 اسلاید به همراه فایل Word

اختصاصی از کوشا فایل پاورپوینت فراصوت و فرو صوت 11 اسلاید به همراه فایل Word دانلود با لینک مستقیم و پرسرعت .

پاورپوینت فراصوت و فرو صوت 11 اسلاید به همراه فایل Word


امواج مایکرو ویو
مایکل فارادی با مطالعه میدان مغناطیسی انتشار نور در شیشه، به سال 1845 دریافت که نور را می‌توان به عنوان اختلالات مغناطیسی و به صورت عرضی در نظر گرفت که خاصیت‌های موجی شکل دارد. ماکسول نظریه الکترو مغناطیسی نور را رسماً در 20 سال بعد ارائه نمود و هانریش هرتز این نظریه را در سال 1888 به صورت کامل به اثبات رساند. او در یکی از آزمایش‌های خود، از منعکس‌کننده‌های سهموی برای تمرکز انرژی الکترومغناطیسی استفاده نمود و توانست بازده انتقال را بهبود بخشد که ایده آنتن‌های با بازدهی بالای مایکروویو امروزی از همان منعکس‌کننده‌های سهموی گرفته شده است. اولین کاربردی که می‌توان برای امواج الکترومغناطیسی در نظر گرفت، در حوزه مخابرات است. در سال 1895، گولیمور‌مارکونی توانست سیگنال‌های رادیویی را تا بیش از یک مایل انتقال دهد. او توانست با استفاده از منعکس‌کننده‌های سهموی، این مسافت را تا 4 مایل هم افزایش دهد تا آنکه در سال 1901 او نخستین پیام مخابراتی را در طول اقیانوس اطلس که در حدود 3000 مایل مسافت دارد به صورت بی‌سیم انتقال دهد. با اختراع تلفن در سال 1876 توسط بل و گری در عرصه مخابرات، بررسی دقیق‌تر سیگنال‌های الکتریکی در خطوط انتقال جایگاه ویژه‌ای پیدا کرد تا آنکه موجبرها نیز در این عرصه مورد توجه قرار گرفتند. موجبرها، لوله‌های فلزی توخالی هستند که قابلیت انتشار امواج الکترومغناطیسی را دارند. در همان سال‌ها موجبرهایی با قابلیت انتشار در فرکانس 5/1 و 4 گیگاهرتز توسط الیورلاچ ارائه گردیدند.


دانلود با لینک مستقیم

تاثیر روسازی جاده در میزان نفوذ صوت در رویشگاه جنگلی

اختصاصی از کوشا فایل تاثیر روسازی جاده در میزان نفوذ صوت در رویشگاه جنگلی دانلود با لینک مستقیم و پرسرعت .

تاثیر روسازی جاده در میزان نفوذ صوت در رویشگاه جنگلی


تاثیر روسازی جاده در میزان نفوذ صوت در رویشگاه جنگلی

 

• مقاله با عنوان: تاثیر روسازی جاده در میزان نفوذ صوت در رویشگاه جنگلی  

• نویسندگان: سیران زندی ، اصغر فلاح ، سید عطاالله حسینی ، مهران نصیری  

• محل انتشار: هشتمین کنگره ملی مهندسی عمران - دانشگاه صنعتی نوشیروانی بابل - 17 و 18 اردیبهشت 93  

• محور: طرح هندسی راه  

• فرمت فایل: PDF و شامل 7 صفحه می‌باشد.

 

چکیــــده:

از عوامل بسیار مهم در طراحی جاده‌های جنگلی در نظر گرفتن کیفیت زیبایی شناختی منطقه و ملاحظات زیست محیطی می‌باشد. آلودگی صوتی به عنوان یکی از مخاطرات انسانی همیشه مورد توجه دوست داران محیط زیست بوده و افزایش آن سبب نارضایتی افراد، بخصوص در مناطق تفریحی و گردشگری می‌شود. بنابراین این مطالعه به منظور بررسی نقش نوع روسازی راه‌های جنگلی بر میزان نفوذ صوت در جنگل دارابکلا واقع در جنوب شرق ساری انجام شد. در این مطالعه از دسی بل متر با دقت 1.5dB± و قدرت تفکیک 0.1dB استفاده و منبع صوت، صدای تولید شده توسط لندرور بر اثر عبور از هر یک از جاده‌ها در نظر گرفته شد. صدای حاصل از لندرور از فاصله 25 متری محور وسط (CL) جاده‌های خاکی و آسفالت و در داخل توده جنگلی درختان پهن برگ (ترکیبی از توسکا، ممرز و انجیلی) اندازه گیری شد. نتایج نشان داد که میانگین شدت صوت تولید شده در جاده خاکی بیشتر از جاده آسفالت بوده و مقایسات آماری نشان دهنده تفاوت معنی دار می‌باشد (P<0.05).

________________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **

** درخواست مقالات کنفرانس‌ها و همایش‌ها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **


دانلود با لینک مستقیم