فرمت فایل : word(قابل ویرایش)
تعداد صفحات:137
فهرست مطالب:
چکیده
فصل ۱- مقدمه
۱-۱- تاریخچه صنعت برق
۱-۲- انواع پست برق از نظر وظیفه
۱-۲-۱- پست های نیروگاهی (بالابرنده ولتاژ)
۱-۲-۲- پستهای توزیع
۱-۲-۳- پستهای کلیدی
فصل ۲- آشنایی کلی با پست و تجهیزات آن
۲-۱- انواع پستهای باز
۲-۱-۱- پستهای معمولی
۲-۱-۲- پستهای GIS
۲-۱-۳- پستهای هوایی
۲-۲- پستهای بسته(داخلی)
۲-۲-۱- پستهای GIS
۲-۲-۲- پستهای معمولی بسته
۲-۳- اجزاء تشکیل دهنده یک پست فشار قوی
۲-۳-۱- تعریف سوئیچگیر
۲-۳-۲- ترانسفور ماتورهای قدرت
۲-۳-۳- ترانسفورماتورهای زمین و تغذیه داخلی
۲-۳-۴- سیستم های جبران کننده بار راکتیو
۲-۳-۵- سیستمهای کنترل و حفاظت
۲-۳-۶- سیستم زمین
۲-۳-۷- سیستم حفاظت از رعدو برق
۲-۳-۸- سیستم تغذیه داخلی
۲-۳-۹- سیستم روشنایی محوطه
۲-۳-۱۰- سیستم مخابراتی
۲-۳-۱۱- سیستم کابل
۲-۳-۱۲- سیستم اطفاء حریق
۲-۳-۱۳- تاسیسات ساختمانی
۲-۳-۱۴- فونداسیونها
۲-۳-۱۵- جاده های دسترسی
۲-۳-۱۶- ساختمان نگهبانی
۲-۳-۱۷- ساختمان دیزل ژنراتور
فصل ۳- فواصل الکتریکی از نظر تعمیراتی ، بهره برداری و ایمنی
۳-۱- فواصل هوایی فاز ـ زمین
۳-۱-۱- فاصله هوایی میان هادیها و گنتری ها
۳-۱-۲- فاصله هوایی میان هادی و زمین
۳-۱-۳- فاصله هوایی بخشهای برق دار تجهیزات و گنتریها
۳-۲- فواصل هوایی فاز ـ فاز
۳-۳- فواصل ایمنی SF
۳-۳-۱- محاسبه مقدار پایه
۳-۳-۲- محاسبه فاصله ایمنی
۳-۳-۳- حرکت پرسنل
۳-۳-۴- حرکت وسایل نقلیه
۳-۳-۵- کار روی تجهیزات
۳-۴- فواصل از نظر زیست محیطی
۳-۴-۱- محل پست
۳-۴-۲- معماری پست
۳-۴-۳- جانمایی تجهیزات
۳-۴-۴- آلودگی محیط
۳-۴-۵- میدانهای الکتریکی و مغناطیسی
۳-۴-۶- خطوط ورودی و خروجی
۳-۵- آرایش فیزیکی تجهیزات (Switchyard Layout)
۳-۵-۱- ترتیب قرار گرفتن فازها روی باس بار
۳-۵-۲- فواصل الکتریکی
۳-۵-۳- ترتیب قرار گرفتن تجهیزات پست
۳-۵-۴- محاسبه فواصل هوایی ایزو لاسیون
۳-۵-۵- انتخاب فواصل هوایی وایمنی حد اقل فاصله فاز به زمین
۳-۶- دیاگرام تک خطی
۳-۶-۱- اصول کلی در تهیه دیاگرام تک خطی
فصل ۴- ترانسفورماتور
۴-۱- تعریف ترانسفورماتور
۴-۲- قسمتهای اصلی و ملحقات ترانسفورماتور
۴-۲-۱- هسته
۴-۲-۲- سیم پیچها
۴-۲-۳- تانک
۴-۲-۴- منبع انبساط روغن(کنسرواتور)
۴-۲-۵- سیم پیچ سوم
۴-۳- اطلاعات مورد نیاز جهت طراحی
۴-۳-۱- مشخصات و ویژگیهای شبکه و سیستمی که ترانسفورماتور در آن نصب می گردد
۴-۳-۲- مشخصات محیطی و شرایط اقلیمی محل بهره برداری که ترانسفورماتور
۴-۴- شاخص ها و پارامترهای مشخص کننده طراحی
۴-۴-۱- انواع ترانسفورماتورهای قدرت
۴-۴-۲- فرکانس کارترانسفورماتور
۴-۴-۳- سیستم خنک کنندگی و ظرفیت ترانسفورماتور در هر حالت
۴-۴-۴- توان نامی سیم پیچهای ترانسفورماتور
۴-۴-۵- ولتاژ نامی سیم پیچ
۴-۵- نحوه اتصالات سیم پیچها و گروه برداری
۴-۵-۱- نحوه اتصالات سیم پیچها
۴-۵-۲- گروه برداری
۴-۶- تنظیم ولتاژ و مشخصات تپ چنجر
۴-۶-۱- موقعیت تپ چنجر
۴-۶-۲- هدف از کاربرد تپ چنجر در ترانسفورماتورها
۴-۶-۳- میزان کل تنظیم ولتاژ و درصد هر مرحله
۴-۶-۴- جریان نامی تیپ چنجر
۴-۶-۵- سطوح عایقی
۴-۷- حد اکثر ولتاژ هر یک از سیم پیچها
۴-۸- تاثیر زمین نمودن نوترال در عایق بندی
۴-۹- تعیین سطوح عایقی داخلی و خارجی و نوترال
۴-۱۰- میزان افزایش مجاز درجه حرارت روغن و سیم پیچ
۴-۱۰-۱- انواع عایقهای ترانسفورماتور
۴-۱۱- روش خنک کنندگی
۴-۱۲- تلفات بارداری و بی باری
۴-۱۳- میزان مجاز صدا
۴-۱۴- مقادیر اتصال کوتاه سیستم
۴-۱۵- مقاومت تانک ترانسفورماتور در مقابل خلاء و اضافه فشار
۴-۱۶- نوع ترانسفورماتور از نظر ساختمانی
۴-۱۷- اضافه بار در ترانسفورماتور
۴-۱۸- شرایط مربوط به موازی نمودن ترانسفورماتورها
۴-۱۹- استفاده از محفظه کابل در طرف فشار ضعیف
۴-۲۰- فاصله خزشی بوشینگها
۴-۲۱- نصب ترانسفورماتور
فصل ۵- کلید قدرت
۵-۱- نقش کلیدهای قدرت در شبکه
۵-۲- اجزاء تشکیل دهنده کلید
۵-۳- نیازهای کلی
۵-۴- اطلاعات مورد نیاز جهت طراحی
۵-۵- شاخص هاو پارامترهای مشخص کننده طراحی
۵-۵-۱- نوع کلید
۵-۵-۲- نوع مکانیزم عملکرد کلید قدرت
۵-۵-۳- تعداد پل ها
۵-۵-۴- کلاس کلید
۵-۵-۵- ولتاژ نامی کلید قدرت
۵-۵-۶- سطوح عایقی نامی
۵-۵-۷- جریان نامی
۵-۵-۸- جریان نامی قطع شارژ خط
۵-۵-۹- جریان نامی قطع شارژ کابل
۵-۵-۱۰- جریان نامی قطع شارژ یک واحد بانک خازنی
۵-۵-۱۱- جریان نامی قطع شارژ بانک خازنی پشت به پشت
۵-۵-۱۲- جریان نامی هجومی وصل بانک خازنی
۵-۵-۱۳- جریان نامی قطع بار اندوکتیو کم
۵-۵-۱۴- جریان نامی قطع اتصال کوتاه
۵-۵-۱۵- ضریب افزایش ولتاژ فاز سالم
۵-۵-۱۶- مشخصه های نامی مربوط به اتصالی های عیب با فاصله کم از کلید
۵-۵-۱۷- جریان نامی اتصال کوتاه وصل
۵-۵-۱۸- توالی عملکرد نامی
۵-۵-۱۹- مدت زمان اتصال کوتاه
۵-۵-۲۰- جریان نامی قطع غیر هم فاز
۵-۵-۲۱- زمان قطع نامی
۵-۵-۲۲- مشخصات مکانیزم عملکرد کلید شامل
۵-۶- محاسبات اتصال کوتاه
۵-۶-۱- مقدمه
۵-۶-۲- محاسبات اتصال کوتاه
۵-۷- معیارهای طراحی و مهندسی انتخاب کلیدهای قدرت
فصل ۶- سکسیونر و تیغه های زمین
۶-۱- کلیات
۶-۲- اطلاعات مورد نیاز جهت طراحی
۶-۲-۱- مشخصات و ویژگیهای شبکه و سیستمی که سکسیونر یا تیغه های زمین در آن نصب و بهره برداری خواهد شد
۶-۲-۲- مشخصات محیطی و شرایط اقلیمی محلی که سکسیونر یا تیغه های زمین در آن شرایط مورد استفاده خواهند گرفت
۶-۳- شاخص ها و پارامترهای مشخص کننده طراحی
۶-۳-۱- نوع سکسیونر یا تیغه های زمین
۶-۳-۲- نوع مکانیزم عملکرد
۶-۳-۳- تعداد پلها
۶-۳-۴- کلاس داخلی یا بیرونی
۶-۳-۵- ولتاژ نامی
۶-۳-۶- سطوح عایقی نامی
۶-۳-۷- فرکانس نامی
۶-۳-۸- جریان نامی ( فقط برای سکسیونر و نه برای تیغه های زمین )
۶-۳-۹- جریان نامی پیک قابل تحمل
۶-۳-۱۰- جریان نامی وصل اتصال کوتاه ( فقط برای تیغه های زمین )
۶-۳-۱۱- مدت زمان جریان اتصال
۶-۳-۱۲- نیروی مکانیکی نامی ترمینالها
۶-۳-۱۳- مشخصات مکانیسم عملکرد سکسیونر و تیغه های زمین
۶-۴- روش قدم به قدم طراحی
۶-۴-۱- مشخصات و ویژگیهای سیستم
۶-۴-۲- شرایط محیطی محل نصب
۶-۴-۳- پارامترها و مشخصه های طراحی سکسیونر و تیغه های زمین
فصل ۷- ترانسفورماتور زمین – کمکی
۷-۱- خصوصیات
۷-۲- تجهیزات جانبی ترانسفورماتور زمین – کمکی
۷-۳- اطلاعات مورد نیاز جهت طراحی
۷-۳-۱- ویزگیهای شبکه و سیستمی که ترانسفورماتور زمین –کمکی درآن نصب می گردد
۷-۳-۲- مشخصات محیطی که ترانسفورماتور زمین – کمکی در آن مورد بهره قرار میگیرد
۷-۴- شاخص ها و پارامترهای مشخص کننده طراحی
۷-۴-۱- نوع ترانسفورماتور
۷-۴-۲- فرکا نس کار
۷-۴-۳- سیستم خنک کننده
۷-۴-۴- ظرفیت نامی
۷-۴-۵- مقدار نامی ولتاژ سیم پیچها
۷-۴-۶- حداکثر ولتاژ سیم پیچ ها
۷-۴-۷- جریان نامی
۷-۴-۸- امپدانس ولتاژ
۷-۴-۹- راکتانس
۷-۴-۱۰- بهره برداری در ولتاژ بالاتر از ولتاژ نامی
۷-۴-۱۱- افزایش دما پس از بارگذاری جریان کوتاه مدت
۷-۴-۱۲- فاصله خزشی بوشینگها
۷-۴-۱۳- گروه برداری
۷-۴-۱۴- تپ چنجر
۷-۴-۱۵- سطح صدا
۷-۴-۱۶- استقامت سیم پیچ ها در برابر اتصال کوتاه
فصل ۸- ترانسفورماتور ولتاژ
۸-۱- مقدمه
۸-۲- اطلاعات مورد نیاز جهت طراحی ترانسفورماتور ولتاژ
۸-۲-۱- مشخصات و ویژگیهای شبکه و سیستمی که ترانسفورماتور ولتاژ خازنی در آن نصب میشود
۸-۲-۲- مشخصات محیطی و شرایط اقلیمی منطقه و محل نصب ترانسفورماتورهای ولتاژ خازنی
۸-۳- پارامترهای طراحی ترانسفورماتور ولتاژ
۸-۳-۱- نوع ترانسفورماتور ولتاژ از لحاظ عایق بندی
۸-۳-۲- نوع ترانسفورماتور از لحاظ ساختاری
۸-۴- ولتاژ نامی اولیه
۸-۴-۱- ولتاژ نامی ثانویه
۸-۵- حداکثر ولتاژ سیستم Um
۸-۶- فرکانس نامی
۸-۷- ظرفیت خروجی ثانویه
۸-۸- کلاس دقت
۸-۹- سطوح عایقی
۸-۱۰- فاصله خزشی مقره
۸-۱۱- ضریب ولتاژ نامی
۸-۱۲- مشخصات خازن ترانسفورماتور خازنی
۸-۱۲-۱- مقدار ظرفیت خازنی نامی
۸-۱۲-۲- مقاومت سری معادل
۸-۱۲-۳- ضریب دما
۸-۱۲-۴- محدوده تغییرات مجاز
۸-۱۳- محدوده افزایش درجه حرارت
۸-۱۴- روش انتخاب ترانسفورماتورولتاژ برای یک مکان خاص
۸-۱۴-۱- مشخصات و ویژگیهای سیستم
۸-۱۴-۲- شرایط محیطی و اقلیمی محل نصب
۸-۱۴-۳- پارامترهای مربوط به انتخاب ترانسفورماتور ولتاژ
فصل ۹- ترانسفورماتور جریان
۹-۱- اندازه گیری جریان به منظور اندازه گیری توان عبوری از یک نقطه
۹-۲- فاراده از ترانسفورماتور جریان برای تبدیل جریان در شرایط غیر عادی شبکه
۹-۳- اطلاعات مورد نیاز جهت انتخاب ترانسفورماتورهای جریان
۹-۳-۱- مشخصات و ویژگیهای شبکه و سیستمی که ترانسفورماتور جریان در آن نصب و بهره برداری می شود
۹-۳-۲- مشخصات محیطی و شرایط اقلیمی منطقه و محلی که ترانسفورماتورهای جریان در آن مورد استفاده قرار می گیرد
۹-۴- مشخصه های فنی ، پارامترها و شاخص های مورد نیاز جهت انتخاب ترانسفورماتور جریان
۹-۴-۱- نوع ترانسفورماتور جریان
۹-۴-۲- ولتاژ حداکثر
۹-۴-۳- سطوح عایقی نامی
۹-۴-۴- فاصله خزشی
۹-۴-۵- فرکانس نامی
۹-۴-۶- جریان نامی اولیه
۹-۴-۷- جریان نامی ثانویه
۹-۴-۸- نسبت تبدیل نامی
۹-۴-۹- جریان اتصال کوتاه مدت نامی
۹-۴-۱۰- جریان دائمی حرارت نامی
۹-۴-۱۱- محدودیت افزایش درجه حرارت
۹-۴-۱۲- ظرفیت نامی خروجی
۹-۴-۱۳- کلاس دقت
۹-۴-۱۴- انشعاب (TAP) در سیم پیچ ثانویه
فصل ۱۰- برقگیر ( LIGHTNING ARRESTER )
۱۰-۱- انواع برقگیرها
۱۰-۱-۱- برقگیر بافاصله هوائی (Gap Type Arrester)
۱۰-۱-۲- برقگیر میله ای یا آرماتور
۱۰-۱-۳- برقگیر از نوع مقاومت غیر خطی یا برقگیر بافنتیل(Non Linear resistor type arrester)
۱۰-۱-۴- برقگیر از نوع اکسید روی (Gapless Zn oxide arrester (zno) )
۱۰-۲- انتخاب و محل نصب برقگیرها
۱۰-۳- پارامترهای اساسی در انتخاب برقگیر
۱۰-۳-۱- سطح حفاظت مورد نیاز برقگیر: (PROTECTION LEVEL)
۱۰-۳-۲- حداکثر ولتاژ کار مداوم برقگیر
۱۰-۳-۳- جریان تخلیه موجی برقگیر:Id
۱۰-۳-۴- ولتاژ سیکلیک برقگیر
۱۰-۳-۵- فاصله سطحی یا خزشی برقگیر
۱۰-۴- ولتاژ اسمی برقگیر
۱۰-۵- حفاظت در مقابل صاعقه
۱۰-۵-۱- موج گیر
۱۰-۶- ساختمان موج گیر
۱۰-۷- حفاظت موج گیر
۱۰-۸- مشخصات الکتریکی موج گیر
۱۰-۹- حالات نصب موج گیر
۱۰-۱۰- محل نصب موج گیر
فصل ۱۱- باسبار یا شین (Bus Bar)
۱۱-۱- تعریف شین
۱۱-۲- شینه بندی (Busbar Arrangment)
۱۱-۲-۱- پارامترهای مؤثر در انتخاب نوع شینه بندی
۱۱-۳- انواع شینه بندی
۱۱-۳-۱- شینه بندی ساده ( Single Busbar )
۱۱-۳-۲- شینه بندی ساده جدا شده ( Bus Section )
۱۱-۳-۳- شینه بندی ساده U شکل ( Single Busbar U )
۱۱-۳-۴- شینه بندی اصلی و انتقالی ( Main And Transfer Bus)
۱۱-۳-۵- شینه بندی دوبل باسبار ( Doubge Busbar )
۱۱-۳-۶- شینه بندی ۵/۱ کلیدی ( Breaker and Half Busbar )
۱۱-۳-۷- شینه بندی دو کلیدی ( Dodble Breaker Busbar )
۱۱-۳-۸- شینه بندی ترکیبی ( Combine Busbar )
۱۱-۳-۹- شینه بندی رینگی یا حلقوی ( Ring Busbar )
منابع و مراجع
چکیده:
امروزه می توان گفت که تمام وسایل صنعتی و خانگی و تجاری بطور مستقیم یا غیر مستقیم با انرژی الکتریکی سروکار دارند که نحوه تولید و توزیع این صنعت عظیم متضمن هزینه ها، نیروها و تخصص های مختلف است. یکی از مهمترین بخشهای صنعت برق همانا طراحی و احداث پست های فشار قوی می باشد که به علل گوناگون ضروری می نماید که از جملة این علتها :
1- مصارف صنعتی، خانگی و تجاری در تمام ساعات روز یکنواخت نمی باشند . بدین معنیکه مصارف خانگی بیشتر در شبها مورد استفاده قرار می گیرند و مصارف تجاری بیشتر در ساعت روز و مصارف صنعتی به نسبه مصارف یکنواختی در طول شبانه روز دارند. این ناهمگونی مصارف در طول ساعات شبانه روز سبب می گردد که اگر بفرض شهری یا منطقه أی صنعتی باشد در تمام روز یکنواختش انرژی الکتریکی تولید می گردد. در حالیکه برای شهرها یا بخش هایی که عمدتاً مصارف روشنائی و خانگی دارند در ساعات شب، پیک تولید داشته باشند و در ساعات روز کمتر انرژی تولید گردد .
2- مراکز تولید برق (نیروگاهها) متضمن هزینه های ثابت و مخارج جاری که شامل هزینه های پرسنلی و استهلاک دستگاهها و سوخت مصرفی می باشد .
3- از آنجا که تولید انرژی الکتریکی بعواملی چون انرژی اولیه یعنی نیروی ( آب، سوخت، زغال، گازوئیل و غیره ) نیاز دارد بنابراین نیروگاهها برحسب میزان دسترسی به سوخت و انرژی های مختلف احداث می گردند. برای مثال نیروگاه آبی در جائیکه امکان ایجاد سد وجود دارد و نیروگاه بخار در نقاطی که نزدیک مراکز سوخت است ایجاد میگردد .
4- چون مراکز مصرف با توجه به آنچه که در مورد بند 3 توضیح داده شده عموماً در جوار مراکز تولید نیستند لذا لازم است برق بواصل دور منتقل شود. ولتاژ انتقالی با فاصله و قدرت مصرفی بستگی دارد. بطور کلی هر چقدر طول مسیر یا قدرت انتقالی بیشتر باشد ولتاژ بیشتر مورد نیاز است .
5- برای اینکه بتوان از انرژی الکتریکی که مورد نیاز مثلا"درنقطه a نمی باشد درمحل دیگری مانندb استفاده کرد لازم است که شبکه ارتباط دهنده ما مرکز تولید و مصرف مانند شبکه سراسری برق ایران وجود داشته باشد .
6- چون لازم است که از یک طرف در نقاط مختلف ( تولید، انتقال و توزیع ) ولتاژهای متفاوت داشته باشیم و از طرف دیگر شبکه ارتباطی وجود داشته باشد بنابراین مراکزی که این اعمال ( وصل کردن و تبدیل سطح ولتاژ هر نقطه با نقاط مختلف دیگر ) را بتوانند انجام دهند ضرورت پیدا میکند که این مراکز به پست های فشار قوی موسوم است .
فرمت فایل : word(قابل ویرایش)
تعداد صفحات : ۲۶۸
عنوان پروژه : مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری (علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس)
توضیحات:
پروژه علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق یک استان با جداول و عکس و فهرست منبع، پیشگفتار: گزارش حاضر، گزارش نهایی پروژه « بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق یک استان » میباشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته…
پیشگفتار:
گزارش حاضر، گزارش نهایی پروژه « بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق یک استان » میباشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته میشود.
در روال انجام پروژه مدلسازیهای مربوط به حالت دائمی و گذرای ترانسفورماتور و سایر اجزای پست شامل CT، PT، برقگیر، کلید و سیستم زمین مورد بررسی دقیق قرار گرفته و بهترین مدلها ارائه شده است. در ادامه بر روی دو پست نمونه تلبیضاء و نورآباد شبیهسازی حالت گذرا انجام شده و با تغییر مقاومت زمین و مقدار انرژی صاعقه مربوط به آنها بر روی ترانسفورماتورهای مذکور مورد بررسی قرار گرفته و نتایج آن در گزارش ‘شبیهسازی و بررسی اجزای اصلی پست’ ارائه گردیده است.
در گزارش حاضر دلایل اصلی ایجاد خطا که منشاء آنها داخلی یا خارجی میتواند باشد بررسی شده است. از طرف دیگر با توجه به اطلاعات مربوط به خطاهای ترانسفورماتورهای KV66، دلایل اصلی ایجاد خطاها استخراج و روشهای پیشگیرانه توضیح داده شده است (در فصل ششم گزارش حاضر) که از این میان میتوان به روشهای پیشگیرانه اصلی مونیتورینگ هیدروژن و آشکارسازی تخلیه جزئی اشاره نمود.
فهرست مطالب:
پیشگفتار
مقدمه
فصل اول
1- خطاهای داخلی ترانسفورماتور
1-2- اشکالات در مدارت مغناطیسی ترانسفورماتور
1-2-1-اثر جریان های گردابی ناخواسته
1-2-2-وجود ذرات کوچک هادی
1-2-3-عدم متعادل شدن نقطه خنثی ترانسفورماتور
1-2-4-اثر هارمونیک ها در افزایش تلفات ترانسفورماتور
1-3- اشکالات بوجود آمده در سیم پیچ ها شامل کویل ها، عایق کاری های سیم پیچ ها و ترمینالها
1-3-1-اتصال کوتاه در سیم پیچ ها ناشی از محکم نبودن آنها
1-3-2-عدم خشک کردن کامل ترانسفورماتور
1-3-3-اتصالات بد بین سیم پیچ ها
1-3-4-نیروهای الکترودینامیکی ناشی از اتصال کوتاه
1-4- اشکالات در عایقهای ترانسفورماتور شامل روغن، کاغذ و عایقکاری کلی
1-4-2- اشکالات ناشی از ضعف عایقی کاغذ و عایقکاری کلی ترانسفورماتور
1-5- اشکالات ساختاری
فصل دوم
2-1- مقدمه
2-2-خطاهای الکتریکی خارج ترانسفورماتور
2-2-1-صاعقه (Lightning)
2-استفاده از عایق غیرهمگن
2-2-2- اضافه ولتاژهای ناشی از قطع و وصل (کلیدزنی)
2-2-3- اضافه ولتاژهای ناشی از رزونانس
2-2-4- فرورزونانس در خطوط انتقال انرژی ولتاژ بالا
2-2-5- اضافه ولتاژهای موقت
2-2-6- جریان هجومی در ترانسفورماتورها
2-2-7- اتصال نادرست ترانسفورماتور و تپ چنجر
2-2-8- خطاهای ناشی از اضافه بار
2-3- خطاهای مکانیکی
2-3-1- اتصالات سخت لوله-شمش در پستها
2-3-2- در نظر نگرفتن اثرات زلزله، سیل و طوفان بر روی فونداسیونها و تجهیزات پست
2-3-3- حمل و نقل غیر صحیح ترانسفورماتورها
2-3-4- نبود حفاظتهای جلوگیری کننده از ورود حیوانات
2-4- خطاهای شیمیایی
2-4-1- زنگزدگی بدنه ترانسفورماتور
2-4-2- فرسودگی بیش از حد ترانسفورماتور به علت عدم سرویس به موقع
فصل سوم
3-1- مقدمه
3-2- مشخصات مورد انتظار روغن ترانسفورماتور
3-3- نقش کاغذ در ترانسفورماتور
3-4- تاثیر رطوبت در خواص عایقی کاغذ
3-5- اثر رطوبت در روغن ترانسفورماتور
3-6- راههای ورود رطوبت به ترانسفورماتور و جلوگیری از آن
3-7- تاثیرات مخرب تضعیف مواد عایقی ترانسفورماتور
3-8- برنامه آزمایشهای روغن ترانسفورماتور
3-8-1- آزمایش روغن قبل از پرکردن ترانسفورماتور با آن
3-8-2- آزمایش روغن بعد از پر کردن ترانسفورماتور
3-8-3- آزمایش دوره ای روغن
3-9- تصفیه روغن ترانسفورماتور
3-9-1- تصفیه فیزیکی روغن ترانسفورماتور
3-9-2- تصفیه فیزیکی – شیمیایی روغن ترانسفورماتور
3-10- شرایط نمونه برداری روغن ترانسفورماتور
فصل چهارم
4-1- مقدمه
4-2- ایجاد گاز در ترانسفورماتور
4-2-1- ایجاد قوس الکتریکی با انرژی زیاد در داخل روغن
4-2-2- ایجاد قوس الکتریکی با انرژی کم در داخل روغن
4-2-3- گرمای بیش از حد در محلهای به خصوص
4-2-4- تخلیه کرونا در داخل روغن ترانسفورماتور
4-2-5- تجزیه عایق ترانسفورماتور در اثر گرما
4-3- حلالیت گازها در روغن ترانسفورماتور
4-4- مقادیر مورد نیاز برای آنالیز گازها
4-5- مراحل آزمایش روش گاز کروماتوگرافی جهت مشخص کردن نوع خطا
4-6- حلالیت گازها در روغن ترانسفورماتور
4-7- خرابی عایق سلولزی ترانسفورماتور (کاغذ ترانسفورماتور)
4-7-1- امتحان غلظت و حل شده در روغن
4-7-2- امتحان غلظت Co2 و Co در گازهای آزاد بدست آمده از رله های جمع آوری گاز
4-8- کاربرد روش تحلیلی در گازهای آزاد درون رله های جمع آوری گاز
4-9- محاسبه غلظتهای گاز حل شده معادل در روغن ترانسفورماتور با غلظتهای گاز آزاد
4-10- روش تشخیص خطا با استفاده ازگازهای حل شده و حل نشده در روغن ترانسفورماتور
4-10-1- تعیین نرخ رشد گازها
4-10-2- ارائه فلوچارت تصمیم گیری
4-10-3- تعیین زمانهای آزمایش گاز کروماتوگرافی روغن
4-10-4- تشخیص نوع خطا با استفاده از گازهای متصاعد شده
4-10-5- تشخیص نوع خطا با استفاده از نسبت گازهای متصاعد شده
فصل پنجم
روشهای شناسایی محل خطا در ترانسفورماتور
5-1- روشهای غیر الکتریک تعیین خطا
5-1-1- طبیعت صوت
5-2-2- انواع سیستمهای آکوستیکی
5-3- روشهای الکتریکی تعیین محل خطا
5-3-1- مانیتورینگ وضعیت ترانسفورماتور در حال کار با استفاده از روش آزمون ضربه ولتاژ پایین LVI
5-3-2- عیب یابی ترانسفورماتورهای قدرت با استفاده از روش تابع انتقال عیب یابی در محل
5-3-3- روش آشکار سازی بر اساس تخلیه جزئی
سیستم GULSKI AND KREUGER
5-3-4-آنالیز با استفاده از روش مونت کارلو یا سیستم HIKITA
فصل ششم
6- خطاهای بوجود آمده در ترانسفورماتورهای 66 کیلوولت برق استان
مقدمه: آشنایی با صنعت برق در استان تا سال 1378
6-1- آمار حوادث منجر به ایجاد خطا و یا خروج ترانسفورماتور از شبکه
ضمیمه 1
ضمیمه 2
فهرست اشکال
شکل (1-1): خطا در نگهدارنده فلزی سیم پیچ به واسطه اتصال کوتاه درونی
شکل (1-2): خرابی پایین سیم پیچ فشار ضعیف بواسطه ورود رطوبت
جدول (1-1): مقادیر ضریب
شکل (1-3): ضریب پیک جریان اتصال کوتاه
شکل (1-4): اثر نیروهای اتصال کوتاه بر سیم پیچ متقارن
شکل (1-5): تغییر شکل حلقه های درونی و تعداد جدا کننده ها
شکل (1-6): تاثیر نیروی اتصال کوتاه بر سیم پیچ غیر متقارن
شکل (1-6): تغییر شکل در اثر تنش فشاری
شکل (1-7): تغییر شکل توسعه یافته در طول سیم پیچ
شکل (1-8): کج شدن هادیهای سیم پیچی در اثر نیروی محوری
شکل (1-9): تاثیرات اتصال کوتاه خارجی روی سیم پیچ
شکل (2-1) -شکل موج استاندارد ضربه صاعقه
شکل (2-2): مدار معادل ترانسفورماتور هنگام برخورد ضربه صاعقه
شکل (2-3): توزیع ولتاژ ضربه بر حسب های مختلف
شکل (2-4): شیلد الکترواستاتیک برای یکنواخت کردن توزیع ولتاژ
شکل (2-5): توزیع ولتاژ در ترانسفورماتور بر حسب زمان پیشانی موج ضربه
شکل (2-6): شکل موج ضربه اصابت شده
شکل (2-7): شکل موج ضربه استاندارد قطع و وصل
شکل (2-8): قطع جریان توسط کلید در بارهای اندوکتیو کم
شکل (2-9): منحنی شارهای مغناطیسی در هسته
شکل (2-10) -منحنی مغناطیسی هسته
شکل (2-11): دمای نقاط ترانسفورماتور بر حسب دمای محیط
شکل (2-12): یک نمونه از اتصالات لولهای ترانسفورماتور
شکل (2-13): اتصالات اصلاحی لوله
شکل (2-14): شکل مناسبی از اتصالات لوله به همراه سیم
شکل (2-15) -نصب عایق بر روی شینهها در پست
شکل (3-1): رابطه درجه پلیمریزاسیون با طول عمر کاغذ فرسودگی حالت ایده آل عمر طبیعی
شکل (3-2): تاثیر عمل استخراج آب و اسید از روغن ترانسفورماتور بر طول عمر کاغذ فرسودگی حالت ایده ال عمر طبیعی
شکل (4-2): فلوچارت تعیین نوع خطا با استفاده از گازهای حل شده و حل نشده در روغن
شکل (4-3): شناسایی نوع خطا با توجه به گازهای متصاعد شده
شکل (4-4): فلوچارت روش تشخیص خطا به روش DOERNENBURG
شکل (4-5): فلوچارت روش تشخیص خطا به روش ROGER
شکل (5-1): مسیر انتشار صوت
شکل (5-2): معادل شدت صوت و مدار الکتریکی
شکل (5-3): مدار میکروفون خازنی
شکل (5-4): مکان یابی منشا پالسهای فراصوتی در هوا به وسیله یک میکروفن فراصوتی
شکل (5-5): مکان یابی نستباً دقیق تخلیه جزیی با استفاده از یک هدایتگر ساده موج
شکل (5-6): فرم شماتیکی از سیتم مکان یاب صوتی پالسهای تخلیه جزئی
شکل (5-7): نشکل شماتیک مدار أشکار ساز صوتی تخلیه جزئی در روغن ترانسفورماتور
شکل (5-8): ولتاژ و جریان نمونه ضبط شده
شکل (5-9): اندازهگیری ادمیتانس بر روی ترانسفورماتور سه فاز
شکل (5-10): مقایسه اندازهگیری ادمیتانس توسط اندازهگیری مستقیم ولتاژ در C-TAP
شکل (5-11): مدل دو قطبی در نظر گرفته شده برای ترانسفورماتور
شکل (5-12): عیب یابی در محل برای ترانسفورماتورهای قدرت
شکل (5-13): ارزیابی آزمون اتصال کوتاه یک ترانسفورماتور MVA125 با روش تابع تبدیل
شکل (5-14): تابع تبدیل دو ترانسفورماتور مشابه MVA125
شکل (5-15): استفاده از خواص تقارنی در ترانسفورماتور قدرت MVA125
شکل (5-16): شبیه سازی تجربی تغییر شکل شعاعی سیم پیچی تپ ترانسفورماتور MVA200
شکل (5-17): شبیه سازی تجربی انتقال محوری دو سیم پیچ استوانهای
شکل (5-18): مدار اصلی آشکار سازی الکتریکی تخلیه جزیی
شکل (5-19): نحوه قرار گرفتن امپدانس آشکار ساز
شکل (5-20): اجزاء مدار آشکار ساز مستقیم تخلیه جزئی
شکل (5-21): بلوک دیاگرام قسمت آنالوگ
شکل (5-22): بلوک دیاگرام مدار دنبال کننده پالس (PTC)
شکل (5-23): تجهیزات اندازه گیریهای توزیع دامنه تخلیه جزئی
شکل (5-24): بلوک دیاگرام قسمت دیجیتال
شکل (5-25): مدار استفاده شده در سیستم GULSKI
مشخصه های و برای یک حفره دایروی
مشخصه های و برای یک حفره در تماس الکترود
مشخصه های و برای یک حفره باریک
مشخصه های و برای حفره های چند گانه
مشخصه های و برای یک حفره مسطح
شکل (5-26) – مشخصه تخلیه جزئی اندازهگیری شده
مشخصه های و برای تخلیه سطحی در هوا
مشخصه های و برای تریینگ روی یک هادی
مشخصه های و برای یک حفره به همراه تریینگ
شکل (5-26): مشخصههای تخلیه جزئی اندازهگیری شده (ادامه)
شکل (5-27): مدار تست برای اندازه گیریهای تخلیه جزئی در سیستم مونت کارلو
شکل (5-28): سنسور خازنی در داخل باس داکت
شکل (6-1): روند گسترش ظرفیت ایستگاه های فوق توزیع
شکل (6-2): تولید انرژی برق به تفکیک مناطق در سال 1378
شکل (6-3): تبادل انرژی شرکت های برق منطقه ای در سال 1378
شکل (6-4): تعداد و ظرفیت ترانس های کل کشور به تفکیک ولتاژ در پایان سال 1378
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس
ضمیمه 1
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس
شکل (2): فلوچارت روند عملکرد به منظور تعیین وضعیت ترانس
شکل (3): ارزیابی گازهای کلیدی
شکل (4): فلوچارت روش DOERNENBERG
شکل (7): فلوچارت روش ROGERS
شکل (6): مثلث DURVALبه منظور تعیین نوع خطا
شکل (7): آشکارساز هیدروژن موجود در روغن
شکل (8): اصول کار سنسورهیدران
شکل (9): شمایی دیگر از اصول کار سنسور هیدران
شکل (10): افزایش ناگهانی هیدروژن در ترانس MVA370 و KV230/735
شکل (11): مقدار هیدروژن در یک رآکتور شانت KV735
شکل (12): نرخ افزایش هیدروژن در ترانس KV8/13/500
شکل (13): تغییر هیدروژن در ترانس KV4/21 و MVA300
شکل (14): نمونهبرداری از گاز با سرنگ
شکل (15): نمونهبرداری از گازهای آزاد به روش جابجایی روغن
شکل (17): نمونهبرداری از روغن با سرنگ
2شکل (18): اولین روش آمادهسازی استاندارد گاز
شکل (20): نمونهای از دستگاه STRIPPER
شکل (22): محلهای نصب سنسور هیدران
شکل (23): نحوه نصب سنسور هیدران
ضمیمه 2
شکل (1): رلهگذاری دیفرانسیلی درصدی برای حفاظت ترانسفورماتور
شکل (2): حفاظت دیفرانسیلی یک ترانسفورماتور
شکل (3): حفاظت دیفرانسیل ترانسفورماتور سه پیچه
شکل (4): ساختمان داخلی رله بوخهولتز
شکل (5): نحوه اتصال رله جریان زیاد زمین
شکل (7): رله تویبر
شکل (8): انواع برقگیرهای اکسید روی
فهرست جداول
جدول (3-1): آزمایشات و مشخصات مطلوب روغن قبل از پر کردن ترانسفورماتور با آن
جدول (3-2): آزمایشهای اضافی روی روغن قبل از برقدار کردن ترانسفورماتور
جدول (3-3): حد مشخصات روغن برای انجام تصفیه فیزیکی
جدول (3-4): حد مشخصات روغن برای انجام تصفیه فیزیکی- شیمیایی
جدول (4-1): گازهای تولید شده در روغن ترانسفورماتور در اثر معایب مختلف
جدول (4-2): تعیین نوع عیب حرارتی یا الکتریکی براساس نسبت گازهای حل شده در روغن ترانسفورماتور
جدول (4-3): تعیین بهتر و مشخص تر نوع عیب براساس نسبت گازهای حل شده در روغن ترانسفورماتور
جدول (4-4): حلالیت گازهای متفاوت در یک نوع روغن ترانسفورماتور
جدول (4-5): ضرایب استوالد در 20 و 50
جدول (4-6): غلظت گازهای حل شده در روغن
جدول (4-7): نوع عملکرد در رابطه با نتایج آزمایش TCG
جدول (4-8): نوع عملکرد در رابطه با نتایج آزمایش TDCG
جدول (4-9): حد نرمال گازهای حل شده در روغن
جدول (4-10): روش تشخیص نوع خطا با استفاده از نسبت گازها به روش DOERNENBURG
جدول (4-11): روش تشخیص نوع خطا با استفاده از نسبت گازها به روش ROGER
ضمیمه 1
جدول (1): تجمع گازهای حل شده درون روغن
جدول (2): دورههای نمونهبرداری برحسب سطوح TCG
جدول (3): دورههای نمونهبرداری بر حسب سطوح مختلف TDCG
جدول (4): مجمع گازهای حل شده درون روغن
جدول (5): نسبت گازهای کلیدی در روش DOERNENBERG
جدول (6): نسبت گازهای کلیدی در روش ROGERS
جدول (7): نسبت ROGRES با جزئیات بیشتر نقاط داغ
جدول (8): سطوح قابل قبول گازها برحسب عمرترانس
جدول (9): سطوح قابل قبول گازها برحسب نوع ترانس
جدول (10): سطوح خطرناک گازها برحسب نوع خطا
جدول (11): مقادیر خطرناک اتیلن بر حسب نسبت CO2/CO
جدول (12): ضرایب حلالیت برای روغن نمونه
جدول (13): حدود مجاز به منظور آشکارسازی
جدول (14): صحت مقادیر گازها
فرمت:word(قابل ویرایش)
تعداد صفحات:72
موضوع پایان نامه:
تاثیر فعالیت های فوق برنامه بر موفقیت تحصیلی دانشجویان دختردانشکده ادبیات و علوم انسانی دانشگاه فردوسی مشهد
پایان نامه تحصیلی جهت اخذ درجه کارشناسی
رشته پژوهشگری علوم اجتماعی
فهرست مطالب:
مقدمه۲
۲-۱ بیان مسئله ۴
۳-۱ ضرورت و اهمیت تحقیق ۵
۴-۱ اهداف تحقیق ۶
۵-۱ تعریف مفاهیم و اصطلاحات ۶
۱-۵-۱ اوقات فراغت ۶
۱-۵-۲ اوقات فراغت در لغت ۷
۱-۵-۳ اوقات در لغت ۷
۱-۵-۴ فراغت در لغت ۹
۱-۵-۵ موفقیت در لغت ۹
۱-۵-۶ موفقیت تحصیلی ۹
فصل دوم : پیشینه تحقیق
۱-۲ پژوهش های انجام شده در داخل کشور ۱۰
۱-۱-۲چگونگی اوقات فراغت دانشجویان دانشگاه اصفهان با تاکید برفعالیتهای ورزشی — ۱۱
۲-۱-۲ نحوه گذران اوقات فراغت دانشجویان دانشگاه کشورباتاکید بر فعالیتهای ورزشی—-۱۲
۳-۱-۲ بررسی مشکلات گذران اوقات فراغت دانشجویان دانشگاه شهید چمران ——- ۱۳
۴-۱-۲اوقات فراغت و شکل گیری شخصیت فرهنگی در دبیرستان تهران ———— ۱۴
۵-۱-۲بررسی میزان علاقه مندی و تعیین اولویت های مورد علاقه دانشجویان دانشگاه های علوم پزشکی۱۴
۶-۱-۲بررسی نحوه گذران اوقات فراغت دانشجویان پسر دانشگاه آزاد اسلامی – ۱۶
۷-۱-۲بررسی اوقات فراغت شهروندان شهر مشهد ۱۶
جنسیت و اوقات فراغت در عرصه های زندگی شهری ۱۷
۲-۲پژوهش های انجام در خارج از کشور ۱۷
۱- ۲-۲فراغت در شهر ۱۸
۲- ۲-۲اوقات فراغت جوانان ۱۹
۳- ۲-۲تئوری فراغت ۱۹
فصل سوم : چهار چوب نظری
۱-۳بررسی آراء و اندیشه های صاحب نظران۲۱
نظریات رایزرمن
نظریات رایت میلز
نظریات فلوئید هاوس
نظریات اسپنسر
۲-۳تئوری رفتار واتسن ۲۸
۳-۳تئوری انگیزه جورج هومز۲۹
۴-۳تئوری طبقات گرازیا ۳۰
۵-۳تئوری مربوط به رابطه فراغت بازی ۳۱
۶-۳فرضیات تحقیق ۳۲
۷-۳مدل تحلیلی تحقیق ۳۳
فصل چهارم : مبانی روش تحقیق
۱-۴روش تحقیق ۳۵
۲-۴جامعه آماری ۳۵
۳-۴واحد تحلیل ۳۵
۴-۴شیوه ی نمونه گیری ۳۵
۵-۴حجم نمونه ۳۶
۶-۴تعریف عملیاتی تحقیق ۳۷
۷-۴ اعتبار و پایایی۳۸
فصل پنجم : یافته های تحقیق
۱-۵تحلیل های تک متغیره۳۹
۲-۵تحلیل های دومتغیره۶۴
فصل ششم : نتیجه گیری
۱-۶ نتیجه گیری ۷۴
۲-۶ فهرست منابع و ماخذ ۷۶
فهرست جداول
۱-۵تحلیل های تک متغیره
۱-۱-۵ دوره تحصیلی ۴۰
۲-۱-۵ معدل کل۴۱
۳-۱-۵ وضعیت تاهل ۴۲
۴-۱-۵ رشته تحصیلی ۴۳
۵-۱-۵ شغل پدر ۴۴
۶-۱-۵ میزان تحصیلات پدر ۴۵
۷-۱-۵ درآمد ماهیانه خانوار۴۶
۸-۱-۵ آیا در طول سال تحصیلی به فعالیت ورزشی می پردازید؟۴۷
۹-۱-۵ نوع فعالیت ورزشی شما چیست؟ ۴۸
۱۰-۱-۵ انگیزه شما از انجام فعالیت ورزشی چیست ؟ ۴۹
۱۱-۱-۵ میزان رضایت شما از انجام فعالیت ورزشی چیست ؟ —————– ۵۰
۱۲-۱-۵ آیا در کلاس های فرهنگی ورزشی شرکت می کنید؟—————- ۵۱
۱۳-۱-۵ در چه کلاسهای فرهنگی و آموزشی شرکت می کنید ؟ ————– ۵۲
۱۴-۱-۵ انگیزه شما از انجام این فعالیت چیست ؟ ————————- ۵۳
۱۵-۱-۵ میزان رضایت شما از انجام این فعالیت چیست ؟ ——————– ۵۴
۱۶-۱-۵ آیا به فعالیت مذهبی هم می پردازید؟ ————————— ۵۵
۱۷-۱-۵ نوع فعالیت مذهبی شما چیست ؟ ——————————- ۵۶
۱۸-۱-۵ انگیزه شما از انجام این فعالیت چیست؟ ————————– ۵۷
۱۹-۱-۵ میزان رضایت شما از انجام این فعالیت چیست؟ ——————— ۵۸
۲۰-۱-۵ آیا در انجمن ها و تشکل های مذهبی شرکت می کنید؟ ————– ۵۹
۲۱-۱-۵ نوع انجمنی که در آن فعالیت می کنید چیست ؟ ——————– ۶۰
۲۲-۱-۵ انگیزه شما از انجام این فعالیت چیست؟ ————————– ۶۱
۲۳-۱-۵ میزان رضایت شما از انجام این فعالیت چیست ؟ ——————– ۶۲
۲۴-۱-۵ در اوقات فراغت به چه تفریحاتی می پردازید؟ ——————— ۶۳
۲-۵ تحلیل های دو متغیره
۱- ۲-۵ رابطه بین دوره ی تحصیلی با میزان شرکت در فعالیت های فوق برنامه —– ۶۴
۲- ۲-۵ رابطه وضعیت تاهل با میزان شرکت در فعالیت های فوق برنامه ———- ۶۵
۳- ۲-۵ رابطه بین نوع فعالیت های فوق برنامه با موفقیت تحصیلی ————– ۶۷
۴- ۲-۵ رابطه پایگاه اجتماعی با میزان شرکت در فعالیت های فوق برنامه ——– ۶۹
۵- ۲-۵ رابطه بین انگیزه شرکت در فعالیت های فوق برنامه با میزان شرکت در
این فعالیتها ۷۰
۶- ۲-۵ رابطه بین میزان رضایت از شرکت در فعالیت های فوق برنامه با میزان شرکت در این فعالیت ها ۷۱
۷- ۲-۵ رابطه بین میزان رضایت از شرکت در برنامه های فوق برنامه با موفقیت
تحصیلی ۷۲
دانلود افزونه پیشرفته فرم ساز وردپرس ARForms
نسخه نهایی
Exclusive Form builder plugin with multiple Email Marketing Tools support.
Multiple popular Email Marketing Tools integration with form.
A very unique and very rich Form Styling Tool with Google Font support.
To make your forms even better, ARForms supports Form Level Custom CSS as well as Field Level Custom CSS.
Multiple column layout support. Now build your forms beautifully with 2 columns and 3 columns.
Multiple Form Steps facility to build Survey style forms and Wizard style forms
Transparent Modal Forms facility to make your form even richer
Flyin Forms & Sticky Forms to enhance your representation of forms
Dynamic field setting using Conditional laws. You can Hide/Show fields based on rules applied on field.
Data Migration is another very awesome feature of ARForms. You can Import / Export your Forms and Form Entries.
You can build forms with Custom Background Image
Build forms with Transparent Fields over background image and make give your form unique look
Find Arforms in your native language. Multilingual plugin with WPML support.
Absolutely no programming skill required.
Ready form templates for free.
Fully customizable form styling tool.
Ajax enabled forms to give smooth experience to users.
Twitter bootstrap integrated
Wide range of useful form elements to create various forms quickly.
progressive file upload facility without FLASH
fancy checkbox and radio buttons with multiple color options.
To avoid spamming, ARForms has RECaptcha and Custom Captcha Support.
Email notification to users and admin.
Form Analytics.
Recaptcha enabled to avoid spamming.
Responsive forms.
Export form data.
Global as well as form level Email Marketing Tools configuration.
Instant preview.
Different ways to create form.
– popup
- widget
Embedded Objects supported.
Multiple browser compatible.
Quick form duplication.
Multiple calendar themes.
Dedicated support.