کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

مقاله ی مروری بر انواع قاب مهاربندی زیپی، خواص و نحوه عملکرد آن

اختصاصی از کوشا فایل مقاله ی مروری بر انواع قاب مهاربندی زیپی، خواص و نحوه عملکرد آن دانلود با لینک مستقیم و پرسرعت .

مقاله ی مروری بر انواع قاب مهاربندی زیپی، خواص و نحوه عملکرد آن


مقاله ی مروری بر انواع قاب مهاربندی زیپی، خواص و نحوه عملکرد آن

نام محصولمقاله ی مروری بر انواع قاب مهاربندی زیپی، خواص و نحوه عملکرد آن

فرمت : word

تعداد صفحات : 12

زبان : فارسی

سال گردآوری : 94

 

 

مقدمه :

سیستم باربر جانبی باید از سختی و مقاومت لازم جهت حفظ و کنترل تغییر شکل­های جانبی ساختمان برخوردار باشد. در صورت افزایش تغییر شکل­های جانبی ساختمان علاوه بر افزایش خسارت در عناصر غیر سازه­ای، امکان ناپایداری و خرابی کلی سازه نیز وجود دارد. سیستم­های مهاربند همگرا از متداول­ترین سیستم­های باربر جانبی هستند که از نظر رفتار لرزه­ای به دو دسته معمولی و ویژه تقسیم­بندی می­شوند.

پیدایش مهاربندهای ویژه به اواخر دهه 80 و اوایل دهه 90 میلادی و در پی تحقیقات ژئول و همکارانش باز می­گردد. تفاوت عمده مهاربند ویژه نسبت به انواع معمولی، توانایی آن­ها در جذب و تغییر شکل­های غیرخطی بزرگ است.

مطالعات گذشته نشان می­دهد که سازه­های قاب مهاربندی هم مرکز تمایل به تمرکز نیروی زلزله در یک طبقه خاص را دارند، بنابراین با طبقه خاص آسیب­پذیر و ابتلا به طبقه نرم روبه­رو می­باشیم که سازه را به سمت فروپاشی جانبی دینامیکی می­راند، قاب­های شورون، یکی از انواع قاب­های مهاربندی شده هم مرکز هستند. رفتار چنین سیستم­هایی توسط کمانش مهاربندها کنترل می­شود.

قاب­های همگرای ویژه نسبت به قاب­های شورون از عملکرد لرزه­ای بهتری برخوردار می­باشند انتظار می­رود اگر پیکربندی زیپی به درستی طراحی شود، بر مشکلات رفتاری متعدد غلبه کند و پاسخ لرزه­ای سیستم مهاری شورون را بهبود بخشد.

2- قاب مهاربندی زیپر

به منظور کاهش تشکیل طبقه نرم و برای رسیدن به پاسخ لرزه­ای غیر الاستیک پایدار در قاب­های شورون، افزودن ستون زیپر  در نقطه اتصال مهارها و تیر توسط خطیب و همکارانش پیشنهاد شد. هدف از اضافه کردن ستون زیپر را می­توان کمانش هممه مهارهای فشاری و تسلیم همه مهارهای کششی دانست به طوری که مقدار زیادی از انرژی مستهلک شود. مقررات لرزه­ای سازه­های فولادی ساختمان آمریکا سیستم قاب مهاربندی زیپی را به عنوان یک سیستم پیکربندی که عملکرد لرزه­ای غیر الاستیک بادبند شورون را بهبود بخشیده، پیشنهاد می­کند. مکانیسم خرابی در قاب­های مهاربندی شده زیپرمعمولی که توسط خطیب پیشنهاد شد در شکل زیر آمده است.


کمانش تقریباً هم زمان مهاربندها در کل ارتفاع سازه باعث توزیع یکنواخت خرابی و خسارت در سازه می­شود اما زمانی که مکانیسم زیپر در قاب تشکیل شود، ظرفیت جانبی قاب کاهش یافته و ناپایدار می­شود، به منظور مقابله با این مشکل قاب­های مهاربندی زیپر در سه حالت زیر بررسی شد:

1) ستون زیپر ضعیف(رفتار غیر الاستیک)

2) ستون زیپر قوی(رفتار الاستیک)

3) زیپر معلق

مطالعه بر روی سیستم قاب مهاربندی هم مرکز با ستون زیپر، توسط خطیب و مهین در سال 1998 آغاز شد، در سال 2000 با معرفی سیستم قاب مهاربندی هم مرکز با ستون زیپر ضعیف توسط سابلی ادامه پیدا کرد، سیستم قاب مهاربندی هم مرکز با ستون زپیر قوی در سال 2003- 2004 توسط ترمبلی و تریکا ترویج شد، و در نهایت در سال­های 2004-2007 سیستم زیپر معلق توسط یانگ و لئون توسعه یافت. در دهه گذشته چندین محقق مطالعات تحلیلی در زمینه رفتار وطراحی قاب مهاربندی زیپر انجام داده­اند، اما مطالعات تجربی صورت گرفته را می­توان محدود به سیستم زیپر معلق دانست.

2-1 روش ستون ضعیف:

در این روش ستون­های زیپر باید برای رفتار غیر الاستیک طراحی شوند.


 

 


دانلود با لینک مستقیم

فاصله مورد نیاز ساختمان های با قاب خمشی فولادی به منظور جلوگیری از برخورد در حین زلزله با تحلیل غیر خطی به روش ارتعاشات تصادفی

اختصاصی از کوشا فایل فاصله مورد نیاز ساختمان های با قاب خمشی فولادی به منظور جلوگیری از برخورد در حین زلزله با تحلیل غیر خطی به روش ارتعاشات تصادفی دانلود با لینک مستقیم و پرسرعت .

فاصله مورد نیاز ساختمان های با قاب خمشی فولادی به منظور جلوگیری از برخورد در حین زلزله با تحلیل غیر خطی به روش ارتعاشات تصادفی


فاصله مورد نیاز ساختمان های با قاب خمشی فولادی به منظور جلوگیری از برخورد در حین زلزله با تحلیل غیر خطی به روش ارتعاشات تصادفی

• پایان نامه کارشناسی ارشد مهندسی عمران گرایش سازه با عنوان: فاصله مورد نیاز ساختمان های با قاب خمشی فولادی، به منظور جلوگیری از برخورد در حین زلزله، با تحلیل غیر خطی به روش ارتعاشات تصادفی  

• دانشگاه خلیج فارس  

• استاد راهنما: دکتر علیرضا فیوض  

• پژوهشگر: علی پورحیدر  

• سال انتشار: دی 1387  

• فرمت فایل: Word (قابل ویرایش) و شامل 138 صفحه

 

چکیــــده:

یکی از پدیده هایی که در خلال زلزله های شدید قابل رویت است برخورد بین ساختمان‌های مجاور هم در نتیجه ارتعاش ناهمگون ساختمان‌ها می‌باشد. نیرویی که از برخورد بین ساختمان‌ها بوجود می‌آید ( نیروی تنه‌ای) (Pounding) در طراحی در نظر گرفته نمی‌شود و در نتیجه منجر به شکل گیری تغییر شکل‌های پلاستیک و گسیختگی‌های موضعی و کلی می‌گردد. از مهمترین راهکارهای ارائه شده در زمینه حذف نیروی تنه‌ای می‌توان به تعبیه درز انقطاع کافی بین دو ساختمان مجاور هم، اشاره کرد. در این تحقیق فاصله مورد نیاز بین سازه‌های با سیستم قاب خمشی فولادی با تحلیل غیر خطی به روش ارتعاشات پیشا محاسبه شده و اثر پارامترهای دینامیکی (زمان تناوب، میرایی، جرم) روی این فاصله بررسی گردید. همچنین رابطه‌ای برای محاسبه درز انقطاع مدل‌های سازه‌ای مورد نظر پیشنهاد شده و نتایج حاصل از این رابطه با روابط آیین نامه‌های IBC2006 و استاندارد 2800 ایران مقایسه گردید.

نتایج نشان می‌دهند که با نزدیک شدن زمان تناوب دو سازه و همچنین افزایش میرایی، فاصله بین سازه‌ها کاهش می‌یابد. با مقایسه درز انقطاع محاسباتی به روش ارتعاشات تصادفی در دو حالت تحلیل خطی و غیر خطی مشاهده می‌شود که برای مدل‌های تا چهار طبقه نتایج  تحلیل خطی و غیر خطی تقریبا نزدیک به هم می‌باشند. ولی برای سازه‌های بیشتر از چهار طبقه، نتایج تحلیل خطی بیشتر از تحلیل غیر خطی می‌باشد و با افزایش تعداد طبقات این اختلاف بیشتر می‌شود. همچنین، درز انقطاع محاسباتی بر اساس استاندارد 2800 ایران برای سازه‌های تا 7 طبقه، کمتر و برای سازه‌های بیشتر از 7 طبقه، بیشتر از مقدار بدست آمده بر اساس آیین نامه IBC2006 و روش استفاده شده در این تحقیق می‌باشد.

 

مقدمه

در هنگام زلزله در اثر حرکات زمین، ساختمان‌ها تحت نیروهای دینامیکی قرار می‌گیرند و به ارتعاش در می‌آیند. در ساخت و سازهای شهری به مواردی برخورد می‌کنیم که ساختمان‌های مجاور به هم چسبیده و یا با فاصله کم از یکدیگر قرار دارند. این سازه‌ها بدلیل اختلاف خواص دینامیکی در یک جهت معین دارای زمان تناوب‌های مساوی نمی‌باشند. تفاوت زمان تناوب در سازه باعث اختلاف در واکنش‌های آنها نسبت به شتاب زمین خواهد شد و در نتیجه با توجه به تعییر مکان‌های آنها در لحظات مختلف، در طول زلزله دو سازه گاهی به هم نزدیک و گاهی از هم دور خواهد شد. و اگر فاصله دو سازه به اندازه کافی بزرگ نباشد، در هنگام زلزله ممکن است با یکدیگر برخورد کرده و ضربه‌ای به همدیگر وارد نمایند برای جلوگیری از این رخداد باید فاصله بین ساختمان‌های مجاور قرار داده شود تا از برخورد آنها جلوگیری گردد، این فاصله را درز انقطاع گویند. در این پایان نامه درز انقطاع بین دو سازه با روش ارتعاشات تصادفی و فرض رفتار غیر خطی اعضاء محاسبه و اثر پارامتر های مختلف بر روی آن بررسی می‌شود.

ابتدا نیروی تنه‌ای تعریف می‌شود. سپس، مطالبی در مورد اهمیت مسئله ذکر شده و استفاده از درز انقطاع به عنوان یکی از راهکارهای کاهش نیروی تنه‌ای معرفی می‌گردد. در فصل دوم تاریخچه نسبتاً مفصلی از تحقیقات صورت گرفته در طی سالیان گذشته برای تعیین درز انقطاع ارائه می‌گردد. در فصل سوم مدل تحلیلی مورد استفاده در تعیین پاسخ تغییر مکانی سازه معرفی و روش تحلیل به همراه توضیحات کامل در مورد فرضیات به کار گرفته شده ارائه می‌گردد. در فصل چهارم فاصله لازم بین مدل‌های سازه‌ای مورد نظر با روش ارتعاشات پیشا محاسبه شده و اثر پارامترهایی مثل زمان تناوب، میرایی، جرم و رفتار خطی و غیرخطی اعضاء سازه روی این فاصله بررسی می‌گردد. در فصل پنجم رابطه‌ای  برای تعیین درز انقطاع با در نظر گرفتن رفتار غیر خطی اعضاء سازه ارائه می‌شود و با روابط آیین نامه‌های مختلف مقایسه می‌شود. در فصل هفتم نتایجی که از این تحقیق بدست آمده در قالب پیشنهاداتی ارائه می‌گردد.

نتایج نشان می‌دهند که با نزدیک شدن زمان تناوب دو سازه و همچنین افزایش میرایی، فاصله لازم برای درز انقطاع کاهش می‌یابد. همچنین  درز انقطاع محاسباتی  بر اساس استاندارد 2800 ایران برای سازه های تا 7 طبقه، کمتر و برای سازه های بیشتر از 7 طبقه، بیشتر ازمقدار بدست آمده بر اساس آیین نامه IBC2006 و روش استفاده شده در این تحقیق می‌باشد.

مقصود از نیروی تنه‌ای (Pounding) نیروی حاصل از برخورد ساختمان‌ها در هنگام زلزله‌ می‌باشد. در بسیاری از زلزله‌های بزرگ گذشته در اکثر کلان شهرهای موجود در سراسر دنیا، خرابی ناشی از نیروهای تنه‌ای مشاهده شده است. بحث نیروی تنه‌ای (Pounding) یکی از رایجترین و مرسوم ترین پدیده‌های است که در خلال زلزله‌های شدید قابل رویت است.  نیروی تنه‌ای می‌تواند باعث ایجاد خسارت‌های سازه‌ای و معماری در ساختمان شده و بعضاً باعث ریزش کلی ساختمان می‌گردد.

در خلال زلزله 1985 مکزیکوسیتی حدود 15%  از 330 ساختمان تحت اثر نیروی برخورد (تنه‌ای) تخریب شدند. همچنین در خلال زلزله 1989 لوماپریوتا، تا حدود 200 مورد شکل گیری نیروی تنه‌ای مشاهده گردید. در این زلزله حدود 79 درصد از ساختمان‌ها دچار تخریب معماری شدند.

در طی زلزله 1964 آلاسکا  برج هتل آنچوراگ وستوارد  دراثر برخورد با قسمتی از یک سالن رقص سه طبقه مجاور هتل، تخریب شد. همچنین، خرابی‌های ناشی از نیروی تنه‌ای  در زلزله‌های  1967 و نزوئلا و 1971 سانفرناندو نیز مشاهده گردید.

از طرف دیگر برخورد بین عرشه‌ها وپایه‌های کناری پل‌ها در طی زلزله 1971 سانفرناندو مشاهده شد. در سال 1995در اثر زلزله هایاکو کن نانبو در ژاپن حرکت طولی المان‌های پل هان شین  تا 3/0متر نیز رسید. از این زلزله به بعد تحقیقات اساسی بر روی نیروی تنه‌ای شکل گرفت.

 جنبه‌های اساسی تحقیقات انجام گرفته در زمینه نیروی تنه ای شامل موارد زیر می‌باشد:

1- بررسی خسارت‌های ایجاد شده در گذشته، شناخت و ارائه راهکارهای مقابله با این  پدیده مبهم و پیچیده

2- تلاش جهت درک دینامیکی نیروی تنه‌ای (عمده رفتار نیروی تنه‌ای بصورت غیر خطی می‌باشد)

3- تلاش برای فراهم کردن یکسری ضوابط طبقه‌بندی شده جهت آموزش به مهندسین و کاربرد آنها در آیین نامه‌ها معتبر

4- کاهش خسارت‌های ناشی از نیروی تنه‌ای به کمک روش‌های مرسوم

نکته مهم اینکه نیروی تنه‌ای بین دو ساختمان یکی از پیچیده‌ترین پدیده‌هایی است که منجر به شکل‌گیری تغییر شکل‌های پلاستیک و همچنین گسیختگی‌های موضعی و کلی می‌گردد. در دهه‌های گذشته روش‌های مختلفی جهت کاهش نیروی تنه‌ای توسط محققین مختلف معرفی شده است که از مهمترین آنها می‌توان به موارد زیر اشاره کرد.

1- قرار دادن ساختمان‌های جدید در فاصله مناسب از ساختمان‌های قبلی (رعایت درز انقطاع)

2- متحد کردن پاسخ دو سازه از طریق یکسری فنرهای ارتباطی

3- استفاده از دیوارهای ضربه گیری (Bomber wall)

4- پر کردن فاصله ساختمان‌ها با ملات‌های ضربه گیر

5- تعبیه عناصر مقاوم جانبی کافی جهت محدود کردن جابجایی سازه

از بین روش‌های اعمال شده راحت‌ترین و موثرترین روش، ایجاد درز انقطاع بین ساختمان‌ها مجاور یکدیگر است. این فاصله بستگی به عوامل مختلفی از قبیل جرم و سختی طبقات، میرائی ساختمان‌ها، ارتفاع طبقات و بزرگی و مدت زلزله مورد نظر دارد. علاوه بر آن نوع رفتار دو ساختمان هم جوار نیز از پارامترهای موثر بر تخمین این فاصله می‌باشد.

درز انقطاع بین دو ساختمان باید مطابق اصول موجود در آیین نامه طراحی ساختمان‌ها در برابر زلزله تعیین و در هنگام اجرا رعایت گردد. نکته اصلی این است که آیا این فاصله که توسط ضوابط آیین نامه تعیین می‌گردد مناسب است یا خیر و آیا آیین-نامه‌ها کلیه پارامترهای موثر بر درز انقطاع را در نظر می گیرند یا خیر؟

 

عمده معایب استفاده از درز انقطاع عبارتند از:

1- دشوار بودن تهیه و اجرای دیتیل‌های اجرایی مطابق نقشه های سازه ها

2- بالا بودن قیمت زمین در کلان شهرها و عدم رضایت مالکین به کاهش زمین

3- محدودیت زمین در مراکز پر جمعیت کلان شهرها

 

روش‌های موجود در محاسبه درز انقطاع شامل موارد زیر می‌باشند:

1- روش ارتعاشات تصادفی

2- روش تاریخچه زمانی

3- روش ضرایب لاگرانژ

4- روش تفاضل طیفی

5- روش طیف پاسخ

______________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF ، نام فایل را به انگلیسی Rename کنید. **

** درخواست پایان نامه:

با ارسال عنوان پایان نامه درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن پایان نامه در سایت به راحتی اقدام به خرید و دریافت پایان نامه مورد نظر خود نمایید. **


دانلود با لینک مستقیم

دانلود قاب png کودکانه

اختصاصی از کوشا فایل دانلود قاب png کودکانه دانلود با لینک مستقیم و پرسرعت .

دانلود قاب png کودکانه


دانلود قاب png  کودکانه

png

photoframe png

4 photo frame PNG / کیفیت عالی

3600*3600 pix

300 DPI

59.5 مگابایت


دانلود با لینک مستقیم

فیلم آموزشی آنالیز دینامیکی یک قاب تحت بار ناگهانی در آباکوس

اختصاصی از کوشا فایل فیلم آموزشی آنالیز دینامیکی یک قاب تحت بار ناگهانی در آباکوس دانلود با لینک مستقیم و پرسرعت .

فیلم آموزشی آنالیز دینامیکی یک قاب تحت بار ناگهانی در آباکوس


فیلم آموزشی آنالیز دینامیکی یک قاب تحت بار ناگهانی در آباکوس

در این ویدئو نحوه تحلیل المان محدود یک قاب تحت بار ناگهانی در نرم افزار آباکوس نشان داده شده است. در این مثال قاب نگه‌دارنده یک موتور بررسی و آنالیز خواهد گردید. یک بار 3000 N به‌صورت ناگهانی و در 0.15 ثانیه به عضو حامل بار وارد گردیده، سپس بار برداشته می‌شود. در این مثال هدف تعیین پاسخ سیستم به این بار ناگهانی در 0.3 s اولیه آنالیز است.


دانلود با لینک مستقیم