کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پایان نامه تحلیل تنش، تخمین رفتار و خواص الاستیک نانولوله های کربنی تحت بارگذاری کششی

اختصاصی از کوشا فایل پایان نامه تحلیل تنش، تخمین رفتار و خواص الاستیک نانولوله های کربنی تحت بارگذاری کششی دانلود با لینک مستقیم و پرسرعت .

پایان نامه تحلیل تنش، تخمین رفتار و خواص الاستیک نانولوله های کربنی تحت بارگذاری کششی


پایان نامه تحلیل تنش، تخمین رفتار و خواص الاستیک نانولوله های کربنی تحت بارگذاری کششی

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:90

پایان نامه کارشناسی ارشد
مهندسی مکانیک – طراحی کاربردی

فهرست مطالب:
    
فصل اول (مقدمه)          
1-1 مقدمه    2
2-1 تابع پتانسیل مورس اصلاح شده    9
3-1 توابع پتانسیل ترسوف- برنر و ترسوف    11
4-1 توابع پتانسیل نسل دوم مرتبه پیوند تجربی واکنشی و لنارد جونز 6-12      12
فصل دوم (تخمین مدول الاستیک)
1-2 فرمولاسیون مرجع    18
1-1-2 پتانسیل انرژی    20
2-1-2 تابع پتانسیل مورس اصلاح شده    20
3-1-2 تابع پتانسیل ترسوف    21
4-1-2 فرمولاسیون با استفاده از تابع پتانسیل مورس اصلاح شده    22
5-1-2 فرمولاسیون با استفاده از تابع پتانسیل ترسوف    23
2-2 تحلیل ساختاری    24
1-2-2 اثر انحنا    31
2-2-2 ساختار آرمچیر    31
3-2-2 ساختار زیگزاگ    32
3-2 نتایج و مباحث    35
فصل سوم (تخمین رفتار مکانیکی)
1-3 مقدمه    42
2-3 فرمولاسیون مرجع    42
3-3 تحلیل ساختاری    44
1-3-3 ساختار آرمچیر    48
2-3-3 ساختار زیگزاگ    49
3-3-3 اثر انحنا    50
4-3 نتایج و مباحث    53
فصل چهارم (مدل سازی نرم افزاری)
1-4 مدل سازی    59
2-4 مباحث و نتایج    61
فصل پنجم (نتیجه گیری و پیشنهادات)
نتیجه گیری و پیشنهادات    67
لیست مقالات ارائه شده    70
فهرست مراجع    71


فهرست نمودارها و اشکال
فصل اول (مقدمه)
شکل 1-1. بردار کایرال در نمای شماتیک ساختار نانولوله کربن    5
شکل 2-1. الگوهای ساختاری آرمچیر، زیگزاگ و کایرال    6
شکل 3-1. نمایش ترمهای انرژی در صفحه ی گرافیتی    8
فصل دوم (تخمین مدول الاستیک)
شکل 1-2. صفحه ی گرافیتی (گرافین) تک جداره تحت تنش کششی    24
شکل 2-2. راستای طولی نانولوله تک جداره آرمچیر    25
شکل 3-2. تحلیل نیرویی پیوند کربن – کربن در راستای طولی نانولوله کربنی تک جداره آرمچیر    26
شکل 4-2. راستای طولی نانولوله تک جداره زیگزاگ    28
شکل 5-2. تحلیل نیرویی پیوندهای کربن – کربن در راستای طولی نانولوله کربنی تک جداره زیگزاگ    29
شکل 6-2. اثر انحنا در تحلیل نیرویی نانولوله تک جداره آرمچیر    31
شکل 7-2. اثر انحنا در تحلیل نیرویی نانولوله تک جداره زیگزاگ    32
نمودار 1-2. نمودار تغییرات مدول الاستیک نانولوله تک جداره آرمچیر بر حسب تغییرات قطر    35
نمودار 2-2. نمودار تغییرات مدول الاستیک نانولوله تک جداره زیگزاگ بر حسب تغییرات قطر    36
نمودار 3-2. مقایسه تغییرات مدول بر حسب قطر دو ساختار آرمچیر و زیگزاگ    37
نمودار 4-2. نمودار تغییرات مدول الاستیک بر حسب تغییرات ضخامت نانولوله آرمچیر (10و10)    38
نمودار 5-2. نمودار تغییرات مدول الاستیک بر حسب ضخامت نانولوله زیگزاگ (0و17)    38
فصل سوم (تخمین رفتار مکانیکی)
نمودار 1-3. نمودار تنش – کرنش نانولوله تک جداره آرمچیر (10و10)    53
نمودار 2-3. نمودار تنش – کرنش نانولوله تک جداره زیگزاگ (0و17)    54
نمودار 3-3. نمودار تغییرات تنش نانولوله¬های تک جداره آرمچیر با اندیس نانولوله    56
نمودار 4-3. نمودار تغییرات تنش نانولوله¬های تک جداره زیگزاگ با اندیس نانولوله    57
فصل چهارم (مدل سازی نرم افزاری)
نمودار 1-4. نمودار تنش – کرنش نانولوله تک جداره آرمچیر (10و10) با استفاده از مدل سازی با نرم افزار لمپس    62
نمودار 2-4. نمودار تنش – کرنش نانولوله تک جداره زیگزاگ (0و17) با استفاده از مدل سازی با نرم افزار لمپس    62
شکل 1-4. شروع شکسته شدن اولین پیوند و رخ دادن تغییر شکل در ساختار نانولوله کربن تک جداره    63

فهرست جداول
جدول 1-2. مقایسه مدول الاستیک این تحقیق با مدول الاستیک سایر کارهای مشابه با ضخامتهای مختلف برای نانولوله تک جداره زیگزاگ (0و17)    40
جدول 1-4. مقایسه ی مدول الاستیک نانولوله¬های کربن تک جداره با استفاده از روش تلفیقی و مدل سازی نرم افزاری    64

 

 

چکیده
در سالهای اخیر اکثر تحقیقات بر روی بارگذاری فشاری و ترکیبی به منظور بررسی کمانش ساختارهای نانولوله¬ها متمرکز شده¬اند و بدین منظور کارهای انجام گرفته بر روی بارگذاری کششی بسیار محدود می¬باشد. از آنجا که نتایج بارگذاریهای فشاری و کششی در نانولوله¬های کربن کاملاً متفاوتند (به دلیل اثر بر هم کنشهای دافعه و جاذبه در این ساختارها که ماهیت و مقدار متفاوتی دارند)، بنابراین همچنان کارهای تحقیقاتی بر روی این ساختارها تحت بار کششی مطلوب محققین بوده و هم اکنون نیز در حال بررسی می¬باشد.
نتایج این تحقیق که در حقیقت از یک تئوری تحلیلی قوی با ترکیب روابط انرژی کرنشی با پتانسیل¬های انرژی مولکولی و نیز استفاده از تقریب¬های خطی و مرتبه بالا و نیز مدل سازی نرم افزاری با استفاده از نرم¬افزار تخصصی لمپس می¬باشد اینگونه نشان می دهد که تغییرات مدول الاستیک با تغییرات قطر و یا اندیس نانولوله¬ها نسبت عکس داشته و با افزایش قطر و کاهش اثر انحنا مدول الاستیک نانولوله¬ها نیز کاهش می یابد. همچنین نمودارهای تنش – کرنش مشابه نمودارهای مواد ترد بوده با این تفاوت که درصد افزایش طول و تنش ماکزیمم بیشتری در آنها مشاهده می¬شود. رفتار مکانیکی نانولوله¬ها در مدل سازی نرم افزاری تا مرز شکسته شدن اولین پیوند در این ساختارها شبیه سازی شده است و اختلاف موجود در مقادیر تنش و کرنش بین مدل سازی نرم افزاری و نمودارهای روش تحلیلی ناشی از تاثیرات عوامل محیطی همچون دما و فشار، ناپایداری¬های درون ساختاری در ناحیه غیر خطی و اثر پارامترهای طول، نرخ کرنش و ... بوده که مطابق با واقعیت و منطقی می¬باشد.


دانلود با لینک مستقیم

پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از کوشا فایل پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پرسرعت .

پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


پایان نامه  مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

 

 

 

 

 

 

 

تعداد  صفحات : 223
فرمت فایل: word(قابل ویرایش)  
 فهرست مطالب:
 عنوان                                                                                                             صفحه

فهرست علائم    ر
فهرست جداول    ز
فهرست اشکال    س

چکیده    1

فصل اول    
مقدمه نانو    3
1-1 مقدمه    4
   1-1-1 فناوری نانو    4
1-2 معرفی نانولوله‌های کربنی    5
   1-2-1 ساختار نانو لوله‌های کربنی    5
   1-2-2 کشف نانولوله    7
1-3 تاریخچه    10

فصل دوم    
خواص و کاربردهای نانو لوله های کربنی    14
2-1 مقدمه    15
2-2 انواع نانولوله‌های کربنی    16
   2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT)    16
   2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT)    19
2-3 مشخصات ساختاری نانو لوله های کربنی    21
   2-3-1 ساختار یک نانو لوله تک دیواره    21
   2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره    24
2-4 خواص نانو لوله های کربنی    25
   2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن    29
       2-4-1-1 مدول الاستیسیته    29
       2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک    33
       2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها    36
2-5 کاربردهای نانو فناوری    39
   2-5-1 کاربردهای نانولوله‌های کربنی    40
       2-5-1-1 کاربرد در ساختار مواد    41
       2-5-1-2 کاربردهای الکتریکی و مغناطیسی    43
       2-5-1-3 کاربردهای شیمیایی    46
       2-5-1-4 کاربردهای مکانیکی    47

فصل سوم    
روش های سنتز نانو لوله های کربنی     55
3-1 فرایندهای تولید نانولوله های کربنی    56
   3-1-1 تخلیه از قوس الکتریکی    56
   3-1-2 تبخیر/ سایش لیزری    58
   3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD)    59
   3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD )    61
   3-1-5 رشد فاز  بخار    62
   3-1-6 الکترولیز    62
   3-1-7 سنتز شعله    63
   3-1-8 خالص سازی نانولوله های کربنی    63
3-2 تجهیزات    64
   3-2-1 میکروسکوپ های الکترونی    66
   3-2-2 میکروسکوپ الکترونی عبوری (TEM)    67
   3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM)    68
   3-2-4 میکروسکوپ های پروب پیمایشگر (SPM)    70
       3-2-4-1 میکروسکوپ های نیروی اتمی (AFM)    70
       3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM)    71

فصل چهارم    
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته    73
4-1 مقدمه    74
4-2 مواد در مقیاس نانو    75
   4-2-1 مواد محاسباتی    75
   4-2-2 مواد نانوساختار    76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو    77
   4-3-1 چارچوب های تئوری در تحلیل مواد    77
       4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد    77
4-4 روش های شبیه سازی    79
   4-4-1 روش دینامیک مولکولی    79
   4-4-2 روش مونت کارلو    80
   4-4-3 روش محیط پیوسته    80
   4-4-4 مکانیک میکرو    81
   4-4-5 روش المان محدود (FEM)    81
   4-4-6 محیط پیوسته مؤثر    81
4-5 روش های مدلسازی نانو لوله های کربنی    83
   4-5-1 مدلهای مولکولی    83
       4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی)    83
       4-5-1-2 روش اب انیشو    86
       4-5-1-3 روش تایت باندینگ    86
       4-5-1-4 محدودیت های مدل های مولکولی    87
   4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها    87
       4-5-2-1 مدل یاکوبسون    88
       4-5-2-2 مدل کوشی بورن    89
       4-5-2-3 مدل خرپایی    89
       4-5-2-4 مدل  قاب فضایی    92
4-6 محدوده کاربرد مدل محیط پیوسته    95
   4-6-1 کاربرد مدل پوسته پیوسته    97
   4-6-2 اثرات سازه نانولوله بر روی تغییر شکل    97
   4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله    98
   4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله    99
   4-6-5 محدودیتهای مدل پوسته پیوسته    99
       4-6-5-1 محدودیت تعاریف در پوسته پیوسته    99
       4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته    99
   4-6-6 کاربرد مدل تیر پیوسته      100

فصل پنجم    
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی     102
5-1 مقدمه    103
5-2 نیرو در دینامیک مولکولی    104
   5-2-1 نیروهای بین اتمی    104
       5-2-1-1 پتانسیلهای جفتی    105
       5-2-1-2 پتانسیلهای چندتایی    109
   5-2-2 میدانهای خارجی نیرو    111
5-3 بررسی مدل های محیط پیوسته گذشته    111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی    113
   5-4-1 مدل انرژی- معادل    114
       5-4-1-1 خصوصیات  محوری نانولوله های کربنی تک دیواره    115
       5-4-1-2 خصوصیات  محیطی نانولوله های کربنی تک دیواره    124
   5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS    131
       5-4-2-1 تکنیک عددی بر اساس المان محدود    131
       5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS    141
   5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB    155
       5-4-3-1 مقدمه    155
       5-4-3-2 ماتریس الاستیسیته    157
       5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی    158
       5-4-3-4 تعیین و نگاشت المان    158
       5-4-3-5 ماتریس کرنش-جابجائی    161
       5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای    162
       5-4-3-7 ماتریس سختی برای یک حلقه کربن    163
       5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه    167
       5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه    168

فصل ششم    
نتایج    171
6-1 نتایج حاصل از مدل انرژی-معادل    172
   6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره    173
   6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره    176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS    181
   6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [    182
   6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره    192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB    196

فصل هفتم    
نتیجه گیری و پیشنهادات     203
7-1 نتیجه گیری    204
7-2 پیشنهادات    206

فهرست مراجع     207
چکیده
از آنجائیکه شرکت های بزرگ در رشته نانو فناوری  مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و  محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند  بیشتر توسعه یافته اند.
پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.
در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه  مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:
1.    مدل انرژی- معادل
2.    مدل اجزاء محدود بوسیله نرم افزار ANSYS
3.    مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB
مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ  در جهت های محوری و محیطی بدست آمده است.
در  مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی،  نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.
در  مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.
اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه  مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی  تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله  افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.
نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.
واژه های کلیدی: نانولوله های کربنی ، خواص مکانیکی، محیط پیوسته ، تعادل- انرژی ، اجزاء محدود ، ورق گرافیتی تک لایه،  ماتریس سختی.
 


دانلود با لینک مستقیم

دانلود پایان نامه نانولوله های کربنی زیگزاگ‬‎

اختصاصی از کوشا فایل دانلود پایان نامه نانولوله های کربنی زیگزاگ‬‎ دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه نانولوله های کربنی زیگزاگ‬‎


دانلود پایان نامه نانولوله های کربنی زیگزاگ‬‎

با گذر زمان و پیشرفت علم و تکنولوژی نیاز بشر به کسب اطلاعات و سرعت پردازش و ذخیره سازی آنها به صورت فزاینده­ای بالا رفته است. گوردن مور[1] معاون ارشد شرکت اینتل در سال 1965  نظریه­ای ارائه داد مبنی بر اینکه در هر 18 ماه تعداد ترانزیستورهایی که در هر تراشه به کار می­رود دو برابر شده و اندازه آن نیز نصف می­شود [1]. این کوچک شدگی نگرانی­هایی را به وجود آورده است. بر اساس این نظریه در سال 2010 باید ترانزیستورهایی وجود داشته باشد که ضخامت اکسید درگاه که یکی از اجزای اصلی ترانزیستور است به کمتر از یک نانومتر برسد. بنا بر این باید بررسی کرد، اکسید سیلیسیم به عنوان اکسید درگاه در ضخامت تنها کمتر از یک نانومتر انتظارات ما را در صنایع الکترونیک برآورده می­کند یا نه. در راستای همین تحقیقات گروه دیگری از دانشمندان به بررسی نیترید سیلیکون به عنوان نامزد جدیدی برای اکسید درگاه پرداختند و نشان دادند که این ماده می تواند جایگزین مناسبی برای اکسید سیلیکون باشد [2]. جهت تولید ترانزیستورهای نسل امروز احتیاج به دانشی داریم که بتوانیم در ابعاد نانو تولیدات صنعتی از تراشه­ها را داشته باشیم. بنا بر این توجه جوامع علمی و اقتصادی جهان بر این شاخه از علم که به فن آوری نانو[2] معروف است، جلب شده است. در این بین نانولوله­های کربنی به دلیل خواص منحصر به فرد الکتریکی و مکانیکی که از خود نشان داده اند توجه بسیاری از دانشمندان را به خود جلب کرده­اند [3و4].

در راستای این تحقیقات ما به بررسی خواص الکتریکی نانولوله­های کربنی پرداخته­ایم. بسیاری از دانشمندان بر این باور هستند که نانولوله­های کربنی به دلیل قابلیت رسانش ویژه یک بعدی جای مواد سیلیکونی در تراشه­های نسل آینده را خواهند گرفت [5و6].

[1] Gordon E.Moore

[2] Nanotechnology

 کربن با عدد اتمی 6 در گروه ششم جدول تناوبی قرار دارد. این عنصر ترکیب اصلی موجودات زنده را در بر گرفته است. بنا بر این بیشتر دانشمندان سعی می¬کنند ترکیبات کربنی را در شاخه¬ی شیمی آلی بررسی کنند. این عنصر از دیر باز برای انسان به صورت دوده و ذغال چوب شناخته شده بود. گونه-های متفاوت دیگری از کربن نیز وجود دارند که تفاوت این گونه¬ها صرفاً به شکل گیری اتم¬های کربن نسبت به هم یا به ساختار شبکه¬ای آن¬ها بر می¬گردد.
1-2 گونه های مختلف کربن در طبیعت
        انواع گوناگون کربن که تاکنون مشاهده شده¬اند به صورت زیر می باشد.
1-2-1 کربن بی¬شکل
از سوختن ناقص بسیاری از هیدروکربن¬ها و یا مواد آلی (مثل چوب یا پلاستیک) ماده سیاه رنگی به جا می¬ماند که کربن بی¬شکل یا آمورف نام دارد. این ماده که پس مانده¬ی سوخت ناقص مواد آلی است از دیر باز جهت تولید انرژی بشر قرار می¬گرفت.  ذغال چوب و ذغال سنگ از انواع مواد کربن بی شکل هستند که انسان با سوزاندن آن¬ها انرژی زیادی را بدست می¬آورد.
1-2-2 الماس
الماس گونه¬ی شناخته شده دیگری از کربن می¬باشد که دارای ساختار بلوری منظمی است. در این ساختار هر اتم کربن با چهار اتم کربن دیگر پیوند برقرار می¬کند. اتم¬های الماس در یک شبکه   با ثابت شبکه   قرار دارند. طول پیوند کربن – کربن در این ساختار برابر   گزارش شده است [7]. این ماده به دلیل سختی بالا تمام عناصر موجود در طبیعت را می¬خراشد و از این رو در تراش فلزات سخت، سرامیک¬ها و شیشه از آن استفاده می¬کنند. این ماده به دلیل درخشش بالایی که دارد از دیرباز در جواهر آلات نیز مورد استفاده قرار می¬گرفته است.



مقدمه    1
فصل اول    3
مقدمهای بر کربن و اشکال مختلف آن در طبیعت و کاربرهای آن    3
1-1 مقدمه    3
1-2 گونه های مختلف کربن در طبیعت    4
1-2-1 کربن بیشکل    4
1-2-2 الماس    4
1-2-3  گرافیت    5
1-2-4 فلورن و نانو لولههای کربنی    5
1-3 ترانزیستورهای اثر میدانی فلز- اکسید - نیمرسانا و ترانزیستور های اثرمیدانی نانولولهی کربنی    8
فصل 2    11
بررسی ساختار هندسی و الکتریکی گرافیت و نانولولههای کربنی    11
2-1 مقدمه    11
2-2 ساختار الکترونی کربن    12
2-2-1 اربیتال p2 کربن    12
2-2-2 روش وردشی    13
2-2-3 هیبریداسون اربیتالهای کربن    15
2-3 ساختار هندسی گرافیت و نانولولهی کربنی    19
2-3-1 ساختار هندسی گرافیت    19
2-3-2 ساختار هندسی نانولولههای کربنی    22
2-4 یاختهی واحد گرافیت و نانولولهی کربنی    26
2-4-1 یاختهی واحد صفحهی گرافیت    26
2-4-2 یاخته واحد نانولولهی کربنی    27
2-5 محاسبه ساختار نواری گرافیت و نانولولهی کربنی    29
2-5-1 مولکولهای محدود    29
2-5-2 ترازهای انرژی گرافیت    31
2-5-3 ترازهای انرژی نانولولهی کربنی    33
2-5-4 چگالی حالات در نانولولهی کربنی    37
2-6 نمودار پاشندگی فونونها در صفحهی گرافیت و نانولولههای کربنی    38
2-6-1 مدل ثابت نیرو و رابطهی پاشندگی فونونی برای صفحهی گرافیت    39
2-6-2 رابطهی پاشندگی فونونی برای نانولولههای کربنی    46
فصل 3    48
پراکندگی الکترون فونون    48
3-1 مقدمه    48
3-2 تابع توزیع الکترون    49
3-3 محاسبه نرخ پراکندگی کل    53
3-4 شبیه سازی پراکندگی الکترون – فونون    56
3-6 ضرورت تعریف روال واگرد    59
فصل 4    62
بحث و نتیجه گیری    62
4-1 مقدمه    62
4-2 نرخ پراکندگی    62
4-3 تابع توزیع در شرایط مختلف فیزیکی    64
4-4 بررسی سرعت میانگین الکترونها، جریان، مقاومت و تحرک پذیری الکترون    66
4-4-1 بررسی توزیع سرعت در نانولولههای زیگزاگ نیمرسانا    66
4-4-2 بررسی جریان الکتریکی در نانولولههای زیگزاگ نیمرسانا    68
4-4-3 بررسی مقاومت نانولولههای زیگزاگ نیمرسانا    68
4-4-3 بررسی تحرک پذیری الکترون در نانولولههای زیگزاگ نیمرسانا    69
نتیجه گیری    71
پیشنهادات    72
ضمیمهی (الف) توضیح روال واگرد.    73
منابع    75
چکیده انگلیسی    78

 

شامل 86 صفحه فایل word


دانلود با لینک مستقیم

دانلود پایان نامه بررسی تئوری و عددی نانولوله های کربنی به عنوان یک کانال در ترانزیستور های اثر میدانی

اختصاصی از کوشا فایل دانلود پایان نامه بررسی تئوری و عددی نانولوله های کربنی به عنوان یک کانال در ترانزیستور های اثر میدانی دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه بررسی تئوری و عددی نانولوله های کربنی به عنوان یک کانال در ترانزیستور های اثر میدانی


 دانلود پایان نامه بررسی تئوری و عددی نانولوله های کربنی به عنوان یک کانال در ترانزیستور های اثر میدانی

شرح مختصر : با گذر زمان و پیشرفت علم و تکنولوژی نیاز بشر به کسب اطلاعات و سرعت پردازش و ذخیره سازی آنها به صورت فزاینده¬ای بالا رفته است. گوردن مور  معاون ارشد شرکت اینتل در سال 1965  نظریه¬ای ارائه داد مبنی بر اینکه در هر 18 ماه تعداد ترانزیستورهایی که در هر تراشه به کار می¬رود دو برابر شده و اندازه آن نیز نصف می¬شود . این کوچک شدگی نگرانی¬هایی را به وجود آورده است. بر اساس این نظریه در سال 2010 باید ترانزیستورهایی وجود داشته باشد که ضخامت اکسید درگاه که یکی از اجزای اصلی ترانزیستور است به کمتر از یک نانومتر برسد. بنا بر این باید بررسی کرد، اکسید سیلیسیم به عنوان اکسید درگاه در ضخامت تنها کمتر از یک نانومتر انتظارات ما را در صنایع الکترونیک برآورده می¬کند یا نه. در راستای همین تحقیقات گروه دیگری از دانشمندان به بررسی نیترید سیلیکون به عنوان نامزد جدیدی برای اکسید درگاه پرداختند و نشان دادند که این ماده می تواند جایگزین مناسبی برای اکسید سیلیکون باشد . جهت تولید ترانزیستورهای نسل امروز احتیاج به دانشی داریم که بتوانیم در ابعاد نانو تولیدات صنعتی از تراشه¬ها را داشته باشیم. بنا بر این توجه جوامع علمی و اقتصادی جهان بر این شاخه از علم که به فن آوری نانو  معروف است، جلب شده است. در این بین نانولوله¬های کربنی به دلیل خواص منحصر به فرد الکتریکی و مکانیکی که از خود نشان داده اند توجه بسیاری از دانشمندان را به خود جلب کرده¬اند. در راستای این تحقیقات ما به بررسی خواص الکتریکی نانولوله¬های کربنی پرداخته¬ایم. بسیاری از دانشمندان بر این باور هستند که نانولوله¬های کربنی به دلیل قابلیت رسانش ویژه یک بعدی جای مواد سیلیکونی در تراشه¬های نسل آینده را خواهند گرفت

 

سرفصل :

مقدمه

مقدمهای بر کربن و اشکال مختلف آن در طبیعت و کاربرهای آن

مقدمه

گونه های مختلف کربن در طبیعت

کربن بیشکل

الماس

گرافیت

فلورن و نانو لولههای کربنی

ترانزیستورهای اثر میدانی فلز اکسید  نیمرسانا و ترانزیستور های اثرمیدانی نانولولهی کربنی

بررسی ساختار هندسی و الکتریکی گرافیت و نانولولههای کربنی

ساختار الکترونی کربن

اربیتال p کربن

روش وردشی

هیبریداسون اربیتالهای کربن

ساختار هندسی گرافیت و نانولولهی کربنی

ساختار هندسی گرافیت

ساختار هندسی نانولولههای کربنی

یاختهی واحد گرافیت و نانولولهی کربنی

یاختهی واحد صفحهی گرافیت

یاخته واحد نانولولهی کربنی

محاسبه ساختار نواری گرافیت و نانولولهی کربنی

مولکولهای محدود

ترازهای انرژی گرافیت

ترازهای انرژی نانولولهی کربنی

چگالی حالات در نانولولهی کربنی

نمودار پاشندگی فونونها در صفحهی گرافیت و نانولولههای کربنی

مدل ثابت نیرو و رابطهی پاشندگی فونونی برای صفحهی گرافیت

رابطهی پاشندگی فونونی برای نانولولههای کربنی

پراکندگی الکترون فونون

تابع توزیع الکترون

محاسبه نرخ پراکندگی کل

شبیه سازی پراکندگی الکترون – فونون

ضرورت تعریف روال واگرد

بحث و نتیجه گیری

نرخ پراکندگی

تابع توزیع در شرایط مختلف فیزیکی

بررسی سرعت میانگین الکترونها، جریان، مقاومت و تحرک پذیری الکترون

بررسی توزیع سرعت در نانولولههای زیگزاگ نیمرسانا

بررسی جریان الکتریکی در نانولولههای زیگزاگ نیمرسانا

بررسی مقاومت نانولولههای زیگزاگ نیمرسانا

بررسی تحرک پذیری الکترون در نانولولههای زیگزاگ نیمرسانا

نتیجه گیری

پیشنهادات

ضمیمه ی (الف) توضیح روال واگرد.

منابع

چکیده انگلیسی


دانلود با لینک مستقیم