دانلود مقاله ی مهندسی برق با موضوع ترکیب روشهای مبتنی بر مدل و پردازش چندباندی گفتار برای مقاوم سازی بازشناسی گفتار نسبت به نویز که شامل 16 صفحه و بشرح زیر میباشد:
نوع فایل : Word
چکیده: سیستمهای بازشناسی چندباندی گفتار که بر اساس مکانیزم شنوایی انسان عمل می کنند، نرخ بازشناسی را نسبت به سیستم تمام باند به ویژه در حضور نویز بهبود می بخشند. در بازشناسی چندباندی گفتار، سیگنال گفتار ابتدا به چند زیرباند فرکامسی تقسیم می شود و پس از استخراج بردارهای ویژگی از هر زیرباند، این بردارها یا احتمال تخمینی برای آنها با یکدیگر ترکیب می شوند. در کار حاضر سیستم چندباندی بازشناسی گفتار بر مبنای ترکیب ویژگیها مد نظر قرار گرفته است و ترکیب این شیوه با یک شیوه مبتنی بر مدل موسوم به معیار تصویردهی وزن دار پیشنهاد گردیده است. نتایج آزمایشها نشان می دهند که علاوه بر بهتر بودن کارآیی شیوه ترکیب ویژگیها نسبت به سیستم تمام باند، روش پیشنهادی نیز سبب بهبود چشمگیر کارآیی روش ترکیب ویژگیها می گردد.
کلمات کلیدی: باشناسی چندباندی گفتار، زیرباند، ترکیب ویژگیها، تبدیل موجک، معیار تصویردهی وزن دار
مقدمه
مسئله مقاوم سازی سیستمهای بازشناسی گفتار در برابر نویز را می توان به صورت کاهش میزان عدم تطبیق میان شرایط آموزش و آزمون سیستم درنظر گرفت. روشهایی را که برای کاهش این عدم تطبیق بکار یم روند، می توان به سه گروه اصلی تقسیم کرد: روشهای مبتنی بر داده، روشهای مبتنی بر مدل و شیوه های پردازش چندباندی. روشهای مبتنی بر داده تلاش می کنند تا تاثیرات نویز را بر سیگنالهای گفتار یا ویژگیهای آن کاهش دهند، حال آنکه روشهای مبتنی بر مدل بحای خود سیگنال گفتار یا ویژگیهای آن مدل آلکوستیک گفتار را اصلاح می نمایند. شیوه پردازش چندباندی معمولاً در مورد نویزهایی بکار گرفته می شود که سبب تخریب بخشی از طیف فرکانسی سیگنال گفتار می شوند. در شیوه بازشناسی چندباندی، گفتار تمام باند به چندین زیرباند فرکانسی تقسیم می شود و پس از استخراج بردارهای ویژگی از هر زیرباند، بردارهای ویژگی زیرباندها یا احتمال تخمینی برای آنها توسط بازشناس متناظر با هر زیرباند، با یکدیگر ترکیب می شوند و به این ترتیب پاسخ بازشناسی بدست می آید.روشهای مبتین بر داده را می توان معمولاً به دو گروه عمده تقسیم کرد: شیوه بهبود گفتار و روشهای جبران ویژگی. شیوه های بهبود گفتار مستقیماً با سیگنال نویزی گفتار سر و کار دارند و با تخمین سیگنال تمیز از سیگنال نویزی در جهت کاهش میزان عدم تطبیق تلاش می کنند. روش تفاضل طیف و آستانه گذاری ضرایب تبدیل موجک سیگنال گفتار نمونه هایی از این دسته هستند. روشهای جبران ویژگی معمولاً عدم تطبیق را به دو طریق کاهش می دهند. در طریق اول، یک تبدیل به ویژگیها اعمال یم شود تا اثر نویز از آنها حذف گردد. تفاضل میانگین ضرایب کپسترال (CMS) و RASTA PLP از جمله چنین روشهایی هتسند. در طریق دیگر، ویژگیهای جدیدی استخراج می شوند که نسبت به تاثیرات نویز مقاوم باشند، همانند ویژگیهای خود همبستگی فاز.
روشهای مبتنی بر مدل، مدل آماری محیط را به نحوی اصلاح می کنند که با شرایط جدید محیطی همانند شرایط نویزی تطبیق یابد. در این تطبیق هیچ نوع فرض یا دانش خاصی در باره خود سیگنال گفتار لازم نیست. این روشها معمولاً نیازمند آموزش برون خط برروی دادگان گفتار نویزی هستند. به عنوان نمونه ای از این روشها می توان به ترکیب موازی مدلها (PMC) و بازگشت خطی با بیشترین شباهت (MLLR) اشاره کرد.
در بازشناسی چند باندی گفتار، ابتدا سیگنال به چند باند فرکانسی تقسیم می شود. به این ترتیب می توان بخشهای تخریب شده طیق گفتار را از دیگر بخشهای طیف جدا کرد. سپس یک بردار ویژگی از هر زیرباند استخراج می شود که زیربردار ویژگی نامیده می شود. دو روش برای برخورد با این زیربردارها وجود دارد. در روش اول می توان آنها را در کنار یکدیگر قرار داد و به عنوان جایگزینی برای ویژگیهای اصلی استفاده نمود که این شیوه ترکیب ویژگیها نامیده می شود. در روش دیگر زیربردارهای ویژگی بوسیله بازشناس مجزای متناظر یا هر زیرباند، مورد پردازش قرار می گیرند و احتمالی برای آنها تخمین شده می شود و این احتمالات به شیوه خطی یا غیرخطی با یکدیگر ترکیب می شوند. این شیوه ترکیب احتمالات یا ترکیب مدلها نامیده می شود..............
چکیده و مقدمه : در پردازش تصاویر رقمی معمولا“از شیوه های که به شکل الگوریتم بیان می شود استفاده می گرددبنابراین غیر از تصویربرداری و نمایش تصویر می توان اغلب عملیات پردازش تصویر را با نرم افزار اجرا کرد تنها علت استفاده از سخت افزار ویژه پردازش تصویر نیاز به سرعت بالا دربعضی کاربردها و یا غلبه بر بعضی محدودیت های اساسی رایانه است.مثلا“یک کاربرد مهم از تصویربرداری رقمی ؛ریزبینی درنورکم است برای کاهش نویز تصویر باید چند متوسط گیری روی تصاویر متوالی با نرخ قالب(غالبا“30قاب در ثانیه)انجام شود.شاختار بزرگراه در غالب رایانه ها جز چند رایانه بسیار کارآمد نمی تواند به سرعت داده مورد نیازبرای اجرای این عمل دست یابد بنابراین سامانه های پردازش تصویر امروزی ترکیبی از رایانه های متداول و سخت افزارهای ویژه پردازش تصویر است که کارهمه آنها به وسیله نرم افزار در حال اجرا روی رایانه اصلی هدایت می شود.
فهرست محتوا
کد استفاده از کتابخانه های ابزارهای پردازش متن فارسی
در این کد که به زبان سی شارپ نوشته شده است چگونگی استفاده از کتابخانه های ابزارهای پردازش متن فارسی زیر آورده شده است:
– نرمالسازی متون فارسی – Normalizer
– تشخیص جملات – Sentence Spliter
– تشخیص کلمات – Tokenizer
– ریشه یابی کلمات – Stemmer
– برچسب زنی نحوی کلمات – POS Tagger
– تشخیص گروه های تشکیل دهنده جملات – Parser
– تبدیل عبارات عامیانه و محاوره ای به عبارات رسمی – Formal
کد استفاده از کتابخانه های ابزارهای پردازش متن فارسی
در این کد که به زبان سی شارپ نوشته شده است چگونگی استفاده از کتابخانه های ابزارهای پردازش متن فارسی زیر آورده شده است:
– نرمالسازی متون فارسی – Normalizer
– تشخیص جملات – Sentence Spliter
– تشخیص کلمات – Tokenizer
– ریشه یابی کلمات – Stemmer
– برچسب زنی نحوی کلمات – POS Tagger
– تشخیص گروه های تشکیل دهنده جملات – Parser
– تبدیل عبارات عامیانه و محاوره ای به عبارات رسمی – Formal
ابزارهای لازم برای پردازش متن در زبان فارسی
تشخیص دهنده ی جمله: این ابزار باید با توجه به کاراکترهای جداکننده ی جمله در زبان فارسی، توانایی تشخیص جملات را در متن ورودی داشته باشد. برای ایجاد این ابزار باید ابتدا تمامی کاراکترها، نماد ها و احیاناً قواعد دستوری که باعث شکسته شدن جملات می شوند، شناسایی گردند. با توجه به پایه بودن جمله در بسیاری از پردازش های زبانی، خروجی دقیق این ابزار از درجه ی اهمیت بالایی برخوردار است. از نمونه های انگلیسی آن می توان به OpenNLP، Stanford NLP، NLTK و Freeling اشاره کرد.
Tokenizer: ابزاری برای شکستن یک متن بر اساس واحدهای با معنی مانند کلمه، پاراگراف، نمادهای معنادار مانند space و tab و … . لازمه ی ایجاد این ابزار جمع آوری واحد هایی است که در زبان فارسی به عنوان واحد های مستقل معنایی شناخته می شوند. سپس بر اساس انتخاب هر کدام از این واحدها متن بر اساس آن شکسته خواهد شد. از نمونه های انگلیسی آن می توان به Flex، JLex، JFLex، ANTLR، Ragel و Quex اشاره کرد.
Named entity recognition: ابزاری برای تشخیص اسامی و نوع آنها اعم از اسامی افراد، اماکن، مقادیر عددی و … . برای تشخیص اینکه یک کلمه اسم است، راه های مختلفی وجود دارد که از جمله ی آنها مراجعه به لغتنامه، مراجعه به word-net، در نظر گرفتن ریشه ی کلمه، استفاده از قواعد نحوی ساخت واژه و … می باشد. در این ابزار پس از تشخیص اسم ها با استفاده یک لغتنامه از اسامی افراد، مکان ها، مقادیر عددی و … نوع اسم تشخیص داده می شود. به نظر می رسد که این لغتنامه در فارسی موجود نمی باشد.
از جمله نمونه های انگلیسی این ابزار می توان به Stanford NER و Illinois NER اشاره کرد.
Word-net: مجموعه ای از لغات و ارتباط میان آنها به لحاظ معنایی. ارتباطات معنایی در داخل این مجموعه شامل ۱۶ رابطه می باشد. این مجموعه به عنوان یک مرجع در بسیاری از پردازش های زبانی مورد استفاده قرار می گیرد. ار نمونه های انگلیسی آن می توان به Princeton Wordnet و EuroWordnet اشاره کرد. آزمایشگاه فناوری وب دانشگاه فردوسی مشهد نیز یک نمونه از این مجموعه با نام فردوس نت را تولید کرده است.
Stemmer: ابزاری برای ریشه یابی لغات و تشخیص نوع کلمه ساخته شده از آن ریشه (اسم مکان، اسم زمان، حالت فاعلی، مفعولی و …). معمولاً ریشه یابی لغات بر اساس قواعد ساخت واژه ای و سپس حذف پسوندها می باشد. تاکنون روش مؤثری برای حذف پیشوندها ارائه نشده است. در تلاشی که در آزمایشگاه فناوری وب انجام شده است، سعی شده تا بر اساس آنالیزهای آماری و داده کاوی پسوندها حذف گردند، که این روش هم می تواند راهی برای تشخیص ریشه باشد.
معروفترین الگوریتم ریشه یابی در انگلیسی porter می باشد.
Similarity recognition: ابزاری برای تشخیص میزان شباهت میان دو عبارت بر اساس پارامترهای مختلف مانند نوع اسامی مشابه به کار رفته، استفاده از word-net و… . در این ابزار پس از تشخیص نوع کلمات به کار رفته در یک جمله و سپس بر اساس جایگاه آن کلمات در جمله، کلماتی که در جایگاه های یکسان قرار دارند، مورد مقایسه قرار می گیرند. از نمونه های انگلیسی آن می توان به Illinois NESim و Illinois WNSim اشاره نمود.
Chunker: ابزاری برای تشخیص گروه های اسمی، فعلی و …. در یک جمله. جهت تقویت الگوریتم های وابسته به SRL لازم است نه تنها نقش های کلمات مشخص گردند، بلکه باید وابستگی های کلمات به لحاظ نقشی در جمله مشخص گردند. از جمله نمونه های انگلیسی آن می توان به Illinois Chunker اشاره کرد.
Semantic role labeler: ابزاری برای تشخیص نقش گرامری کلمه در جمله. این ابزار یکی از مهمترین نقش ها را در پردازش های زبانی بر عهده دارد. دقت در این ابزار بسیار حائز اهمیت است. این ابزار باید نقش های گرامری کلمات در جمله ها مانند فعل، فاعل، مفعول مستقیم، مفعول غیر مستقیم و …. را تشخیص دهد. از جمله نمونه های انگلیسی آن می توان به OpenNlP، Illinois SRL، Swirl و LTHSRL اشاره کرد. این ابزارها از الگوریتم پارسینگ charniak استفاده می کنند.
Annotator: ابزاری برای ایجاد یک نمونه از یک آنتولوژی در یک سند داده شده. از ابزارهای موجود در انگلیسی می توان به Illinois Curator و Stanford Annotator اشاره کرد.
Coreference resolution: ابزاری برای تعیین مرجع اسمی یک اسم یا یک ضمیر در جملات. این ابزار در زبان انگلیسی معادل ابزاری است که مرجع ضمیر را که به صورت اسم در جمله های قبلی آمده است، مشخص می کند. استفاده از ضمایر به جای اسامی در زبان انگلیسی بسیر رایج می باشد. اما در زبان فارسی این امر چندان رایج نیست. اما در زبان فارسی عنوان یک مفهوم اسمی با اصطلاحات مختلف بسیار رایج می باشد. عملاً ما به دنبال ابزاری هستیم که مرجع خاص یک سری از عنوان ها ی مختلف اسمی را مشخص کند. از نمونه های انگلیسی این ابزار می توان به Illinois Coreference package اشاره کرد.
Pos tagger: ابزاری برای مشخص کردن نوع کلمات از قبیل اسم، صفت، قید، فعل و … . یکی از روش های کاری برای ایجاد این ابزار، ایجاد یک rule base که معمولاً به صورت دستی تشکلیل می شود، برای تشخیص نوع کلمه است. از نونه های فارسی آن می توان به ابزار آزمایشگاه آقای دکتر بیجن خان، و ابزار آزمایشگاه فناوری وب دانشگاه فردوسی مشهد اشاره کرد. از نمونه های انگلیسی آن می توان به Illinois Part Of Speech Tagger و Stanford POS Tagger اشاره کرد.
————————————————————————-
نرمالسازی متن
در ابتدا بایستی همهی نویسههای (کاراکترهای) متن با جایگزینی با معادل استاندارد آن، یکسانسازی گردند. در اولین گام باید متون برای استفاده در گامهای بعدی به شکلی استاندارد درآیند. از آنجایی که متون مختلف ممکن است بسیار به هم شبیه باشند اما به دلیل تفاوتهای ساده ظاهری از نظر ماشین متفاوت باشند؛ به همین دلیل سعی شده است این تفاوتهای سادهی ظاهری برطرف گردد. همچنین اصلاحات دیگری نیز به منظور پردازش دقیقتر متون در این مرحله صورت میگیرد.
در اولین گام باید متون برای استفاده در گامهای بعدی به شکلی استاندارد درآیند. از آنجایی که متون مختلف ممکن است بسیار به هم شبیه باشند اما به دلیل تفاوتهای ساده ظاهری از نظرماشین متفاوت باشند؛ به همین دلیل سعی شده است این تفاوتهای سادهی ظاهری برطرف گردد. برای رسیدن به این هدف، قبل از مقایسه متون، پیشپردازشهایی روی آنها آنجام میشود. طبیعتا هر چه این پیشپردازشها قویتر باشد، نتایج حاصل ازمقایسه متون قابل اطمینانتر خواهد بود. لازم به ذکر است که از آن جایی که زبان فارسی جزو زبانهای غیر ساختیافته است با مشکلات بسیار بیشتری نسبت به سایر زبانها مواجه خواهیم شد. متون غیرساختیافته، متونی هستند که پیش فرض خاصی در مورد قالب آنها نداریم و آنها را به صورت مجموعهای مرتب از جملات در نظر میگیریم.
در ابتدا بایستی همهی نویسههای (کاراکترهای) متن با جایگزینی با معادل استاندارد آن یکسانسازی گردند. در پردازش رسم الخط زبان فارسی، با توجه به قرابتی که با رسم الخط عربی دارد، همواره در تعدادی از حرفها مشکل وجود دارد که از جمله آنها میتوان به حروف “ک”، “ی”، همزه و … اشاره نمود. در اولین گام باید مشکلات مربوط به این حروف را برطرف ساخت. علاوه بر این، اصلاح و یکسان سازی نویسهی نیمفاصله و فاصله در کاربردهای مختلف آن و همچنین حذف نویسهی «ـ» که برای کشش نویسههای چسبان مورد استفاده قرار میگیرد و مواردی مشابه برای یکسانسازی متون، از اقدامات لازم قبل از شروع فازهای مختلف میباشد. در این فاز مطابق با یک سری قاعده دقیق و مشخص، فاصلهها و نیمفاصلههای موجود در متن برای علاماتی نظیر “ها” و “ی” غیرچسبان در انتهای لغات و همچنین پیشوندها و پسوندهای فعلساز نظیر “می”، “ام”، “ایم”، “اید” و موارد مشابه جهت استفاده در فازهای بعدی، اصلاح میگردند. در ادامه به چند نمونه از این اصلاحات، اشاره شده است.
با استفاده از این ویژگی نرمافزار میتوان همهی نویسههای (کاراکترهای) متن را استاندارد نمود. اگر نویسهی غیر استانداردی یافت شد، با معادل استاندارد آن جایگزین میشود. برخی از این اصلاحات در ذیل آورده شده است:
برای اعمال اصلاحات اولیه قبل از هر عملیاتی، بایستی متون مورد پردازش توسط ابزار Normalizer طراحی شده، مورد اصلاح قرار گیرند.
——————————————————————–
ریشهیابی معنایی در زبان فارسی
هدف از انجام پروژه ریشه یابی معنایی در زبان فارسی، جداسازی کلمات از متن و بازگرداندن کلمات به ریشه اصلی تشکیل دهنده آنهاست. تفاوت اصلی این پروژه با سایر پژوهشهای انجام شده در زمینه ریشهیابی، قابلیت بازگرداندن کلمات به ریشه بدون از بین رفتن معنای آنها در جمله میباشد. بدین منظور به نقش کلمات در جمله توجه ویژهای شده است. در این طرح از مجموعه افعال گرداوری شده توسط گروه دادگان و لغات پرکاربرد پیکره همشهری استفاده شده است.
——————————————————————–
برچسب گذار نقش کلمات فارسی
برچسب گذاری اجزای واژگانی کلام (Part of Speech tagging) عمل انتساب برچسب های واژگانی به کلمات و نشانه های تشکیل دهنده یک متن است؛ به صورتی که این برچسب ها نشان دهنده نقش کلمات و نشانه ها در جمله باشد. درصد بالایی از کلمات از نقطه نظر برچسب واژگانی دارای ابهام هستند، زیرا کلمات در جایگاههای مختلف برچسب های واژگنی متفاوتی دارند. بنابراین برچسب گذاری واژگانی عمل ابهام زدایی از برچسب ها با توجه به زمینه (متن) مورد نظر است. برچسب گذاری واژگانی عملی اساسی برای بسیاری از حوزه های دیگر پردازش زبان طبیعی(NLP) از قبیل ترجمه ماشینی، خطایاب و تبدیل متن به گفتار می باشد. تا کنون مدل ها و روش های زیادی برای برچسب گذاری در زبان های مختلف استفاده شده است. بعضی از این روش ها عبارتند از:
——————————————————————–
پارسر زبان فارسی
به موازات پیشرفت و تحولات نظری در زبانشناسی جدید، روشهای تحلیل متون و دستورات زبان بوسیلهی رایانه نیز تحول یافته است. منظور از گرامر هر زبان، در دست داشتن یک سری دستورات زبانی قابل فهم برای رایانه است که به کمک آنها بتوان اجزای نحوی یک جمله را به طور صحیح تفکیک نمود. تجزیه و تحلیل جمله و شکستن آن به اجزای تشکیل دهنده مانند گروه های اسمی، فعلی، قیدی و غیره توسط ابزاری به نام پارسر صورت می گیرد که نقش اساسی در طراحی و یا افزایش دقت سایر ابزارهای پردازش متن دارد.
پارسر طراحی شده برای زبان فارسی در این پروژه، از ساختار لغات، موقعیت و ترتیب لغات در جمله، حروف یا عبارات قبل و بعد از آنها و نوع لغات، درخت نحوی یا پارسینگ را برای جملات متن تشکیل می دهد. در واقع عملیات پارسینگ با توجه به ریختشناسی (مطالعه ساختار و حالتهای مختلف یک کلمه) و همچنین دستورات نحوی گرامر زبان فارسی صورت میگیرد. بدیهی است هر چقدر نگارش بکار رفته در جملات و همچنین رعایت علائم سجاوندی طبق اصول و با دقت بیشتری صورت گرفته باشد، عملیات پارسینگ با کیفیت بهتری صورت خواهد گرفت و اجزای تشکیل دهنده ی جمله با عملیات کمتر و ساده تری برچسب زده خواهند شد.
یک فایل فشرده حاوی فایل EXE (شامل ابزارهای پیش پردازش متون زبان فارسی : نرمالسازی – ریشه یابی – برچسب زنی نحوی – پارسر )
کد سی شارپ همراه با کتابخانه های مورد نیاز جهت ریشه یابی کلمات فارسی:
در این نمونه کد، که به زبان سی شارپ نوشته شده است، کتابخانه های لازم برای استفاده از کد ریشه یاب زبان فارسی که در آزمایشگاه فناوری وب دانشگاه فردوسی مشهد تولید شده است، به کد اضافه شده و چگونگی استفاده از این کتابخانه ها در کد مشخص است و در قالب ابزاری جهت دادن ورودی و مشاهده خروجی آماده شده است.
در کد موجود در فایل ضمیمه سه کتابخانه (فایل dll) اضافه شده اند که امکان شناسایی افعال و ریشه یابی کلمات را فراهم می آورند…
برای استفاده از نرم افزار در صورت اجرا نشدم برنامه در فایل EXE، ابتدا بسته نرم افزاری دات نت فریمورک ۴.۵ را نصب نمایید.