الگوریتمPSO یک الگوریتم جستجوی اجتماعی است که از روی رفتار اجتماعی دستههای پرندگان مدل شده است. PSO روش محبوبی است که برای حل مشکلات مناسب سازی در شبکه های حسگر بی سیم به دلیل آسان بودنش، کیفیت بالای راه حل هایش، همگرایی سریع و ظرفیت، محاسبه ای نامشخص خود مورد استفاده قرار گرفته است. PSO مستلزم مقادیر زیادی حافظه است که ممکن است اجرای آن را برای ایستگاههای اصلی سرشار از منبع کاهش دهد. این متن کاربردهای شبکه حسگر بی سیم موفق فراوانی دارد که فواید PSO را مورد استفاده قرار می دهد. گردآوری اطلاعات نیازمند مناسب سازی توزیع شده مکرر و راه حل های سریع می باشد. بنابراین، PSOبه طور متوسط آن را مناسب می سازد. صف بندی ثابت، موقعیت یابی و خوشه بندی مشکلاتی هستند که فقط یکبار در ایستگاه مرکزی حل شده اند. PSO آنها را بسیار مناسب ساخته است .
فصل اول
معرفی شبکه های بی سیم حسگر
نگاهی به شبکه های بی سیم حسگر
توضیحات اولیه
ساختمان گره
ویژگی های عمومی یک شبکه حسگر
ساختار ارتباطی شبکه های حسگر
ساختار خودکار
ساختار نیمه خودکار
فاکتورهای طراحی
تحمل خرابی
قابلیت گسترش
هزینه تولید
محدودیتهای سخت افزاری یک گره حسگر
توپولوژی شبکه
محیط کار
مصرف توان
کاربردهای شبکههای بیسیم حسگر
کاربردهای رهایی از سانحه
کنترل محیطی و نگاشت تنوع زیستی
سازههای هوشمند
مدیریت تاسیسات
نظارت ماشین آلات و نگهداری پیشگیرانه
کشاورزی دقیق
پزشکی و بهداشت
حمل و نقل
پردازش راه دور
پشته پروتکلی
انواع منبعها و چاهکها
شبکههای تک پرشی در مقابل شبکههای چند پرشی
انواع تحرک
پروتکلهای مسیریابی برای شبکههای حسگر بیسیم
1- پروتکلهایی بر مبنای داده
مسیریابی به روش سیلآسا و خبردهی
پروتکلهای حسگر برای اطلاعات از طریق مذاکره
انتشار جهتدار
مسیریابی پخشی
2- پروتکلهای سلسله مراتبی
LEACH
PEGASIS
TEEN and APTEEN
3- پروتکلهای بر مبنای مکان
MECN
GAF
عیب های شبکه حسگر
روش های امنیتی در شبکههای بی سیم
WEPSSIDMACفصل دومبهینه سازی
تئوری بهینهسازی
انواع مسائل بهینه سازی و تقسیم بندی آنها از دیدگاه های مختلف
بهینه سازی با سعی خطا، بهینه سازی با تابع
بهینه سازی تک بعدی و بهینه سازی چند بعدی
بهینه سازی پویا و بهینه سازی ایستا
بهینه سازی مقید و نا مقید
بهینه سازی پیوسته و یا گسسته
بهینه سازی تک معیاره و چند معیاره
برخی دیگر از روش های بهینه سازی
روش مبتنی بر گرادیان
روند کلی بهینه سازی گرادیانی
روش سیمپلکس
الگوریتم ژنتیک
ویژگیهای الگوریتم ژنتیک
Ant colony
الگوریتم کلونی مورچه ها چیست؟
مزیتهای ACO
کاربردهای ACO
5- الگوریتم رقابت استعماری
شکل دهی امپراطوریهای اولیه
سیاست جذب: حرکت مستعمرهها به سمت امپریالیست
انقلاب؛ تغییرات ناگهانی در موقعیت یک کشور
جابجایی موقعیت مستعمره و امپریالیست
رقابت استعماری
سقوط امپراطوریهای ضعیف
شبه کد
کاربردها
فصل سوم
Particle Swarm Optimitation(PSO)
مقدمه
(Particle Swarm Optimitation(PSO
توپولوژی های همسایگی PSO
تاریخچه خوشه بندی
تعریف خوشه بندی
تحلیل خوشه بندی
فرضیه موقعیت تصادفی
فرضیه برچسب تصادفی
فرضیه نمودارتصادفی
مراحل خوشه بندی
فرایندهای خوشه بندی
مطالعه تکنیک های خوشه بندی
کاربرد های ویژه PSO
تعریف کلاسیک خوشه بندی
معیار نزدیک بودن
کاربرد های خوشه بندی
تعداد خوشه ها
داده ها
تعداد ویژگی ها و مشخصات آنها
مقدار دهی اولیه برای Kmeans
Kmeans
Pso و کاربرد آن در خوشه بندی
رمز گذاری فضای سه بعدی در ذرات
کمی کردن کیفیت خوشه بندی
Pso و خوشه بندی(الگوریتم 1)
Pso و خوشه بندی در ناحیه بندی تصویر
Pso و خوشه بندی(الگوریتم 2)
ترکیب pso و kmeans برای خوشه بندی (الگوریتم هیبرید)
ترکیب Pso و GA
فصل چهارم
بهینه سازی wsn با استفاده از الگوریتم بهینه سازی pso
نصب گره ها WSN بهینه
موقعیت یابی گره ثابت
موقعیت یابی گره متحرک
VFCPSO
موقعیت یابی ایستگاه اصلی
تعیین محل گره در WSNها (شبکه های حسگر بی سیم)
تعیین موقعیت های گره های هدف
1) PSO تکراری
2) PSO بدون علامت
3) PSO با چهار علامت
خوشه بندی هشدار انرژی (EAC) در WSNها
خوشه بندی PSO
MST-PSO
جمع آوری اطلاعات در WSNها
تخصیص نیروی انتقال مناسب
تعیین آستانه های مکانی- مناسب
تشکیل حسگر مناسب
نتیجه گیری
مراجع فارسی
مراجع انگلیسی
چکیده
فرض کنید شما و گروهی از دوستان تان به دنبال گنج می گردید هر یک از اعضای گروه یک فلزیاب و یک بی سیم دارند که می تواند مکان و وضعیت کار خود را به همسایگان نزدیک خود اطلاع بدهد بنابراین شما می دانید آیا همسایگان¬ تان از شما به گنج نزدیکترند یا نه ؟ پس اگر همسایه ای به گنج نزدیکتر بود شما می توانید به طرف او حرکت کنید. با چنین کاری تماس شما برای رسیدن به گنج بیشتر می شود و همچنین گنج زودتر از زمانی که شما تنها باشید پیدا می شود.
این یک مثال ساده از رفتار جمعی یا swarm behavior است که افراد برای رسیدن به یک هدف نهایی همکاری می کنند . این روش موثرتر از زمانی است که افراد جداگانه عمل کنند. Swarm را می توان به صورت مجموعه ای سازمان یافته از موجوداتی تعریف کرد که با یکدیگر همکاری می کنند. در کاربردهای محاسباتی swarm intelligence از موجوداتی مانند دسته ی پرندگان و مورچه ها ، زنبورها ، موریانه ها ، دسته ماهیان الگو برداری می شود . در این نوع اجتماعات هر یک از موجودات ساختار نسبتاً ساده ای دارند ولی رفتار جمعی آنها بی نهایت پیچیده است . برای مثال در کولونی مورچه ها هریک از مورچه ها یک کار ساده ی مخصوص را انجام می دهد ولی به طور جمعی عمل و رفتار مورچه ها ، ساختن بهینه لایه ، محافظت از ملکه و نوزادان ، تمیز کردن لانه ، یافتن بهترین منابع غذایی و بهینه سازی استراتژی حمله را تضمین می کند. رفتار کلی یک swarm به صورت غیر خطی از آمیزش رفتارهای تک تک اجتماع بدست می آید. یا به عبارتی یک رابطه ی بسیار پیچیده بین رفتار جمعی و رفتار فردی یک اجتماع وجود دارد. رفتار جمعی فقط وابسته به رفتار فردی افراد اجتماع نیست بلکه به چگونگی تعامل میان افراد نیز وابسته است . تعامل بین افراد ، تجربه ی افراد درباره ی محیط را افزایش می دهد و موجب پیشرفت اجتماع می شود . ساختار اجتماعی swarm بین افراد مجموعه کانال های ارتباطی ایجاد می کند که طی آن افراد می توانند به تبادل تجربه های شخصی بپردازند مدل سازی محاسباتی swarm، کاربردهای موفق و بسیار را در پی داشته است. به طور کلی موضوع پروژه رسم تابع تخمینی در بحث ریاضیات برای رسم یک سری داده با استفاده از نرم افزار متلب می باشد. جمعیتی که در این پروژه مورد مطالعه و بررسی قرار می گیرند با توجه به ماهیت پروژه یکسری داده مربوط به یک تابع مشخص می باشند که ما در هر مرحله نتایج را با مقادیر دادهها مقایسه کرده تا بتوانیم ذراتی تولید کرده که بهینه شده باشند و کمترین اختلاف را با جمعیت اولیه داشته باشند. برای این منظور پروژه تا حد ممکن طوری تنظیم شده که همه جنبه های اساسی موضوع چه از نظر کاربردی و چه از نظر تئوری را در بر گیرد. در بحث آشنایی با الگوریتم و تعاریف مربوط به آن سعی شده تا هرچه بیشتر موضوع باز شده و مثال هایی به همراه داشته باشد تا موضوع ساده و روان بوده و به راحتی قابل درک باشد.
کلمات کلیدی
بهینه سازی(Optimization)، تابع برا زنگی(fitness)، بهترین سراسری(g_best)،
بهترین شخصی(p_best)، الگوریتم بهینه سازی،کلونی
فصل اول: “آشنایی با برخی ازانواع الگوریتم های بهینه سازی ”
مقدمه ای بر بهینه سازی
۱- ۱ الگوریتم اجتماع پرندگان(particle swarm optimization Algorithm – pso)
۱-۲ الگوریتم ژنتیک(Genetic Algorithm – GA
۱-۳ الگوریتم کلونی مورچه ها(Aco- Ant colony optimization Algorithm
۱-۴ الگوریتم کلونی زنبور عسل(Abc-Artificial bee colony algorithm
۱-۵ الگوریتم چکه های آب هوشمند یا چکاه(Intelligent water Drops Algorithm -Iw
فصل دوم : ” الگوریتم(particle swarm optimization – pso) و
” Cooperative Particle swarm optimization – cpso) (
مقدمه
۲-۱ ماهیت الگوریتم
۲-۲ مفاهیم اولیه
۲-۳ فلو چارت
۲-۴ اطلاعات فنی
۲-۵ ساختار کلی
۲-۶ قاعده کلی توپولوژی همسایگی
۲-۷ نکات کلیدی
۲-۷-۱ خاصیت هوش جمعی
۲-۷-۲ هوش ذرات
۲-۷-۳ کنترل الگو ریتم
۲-۷-۴ تعداد ذرات
۲-۷-۵ محدوده ی ذرات
۲-۷-۶ شرایط توقف
۲- ۸ مزایا و کاربردهای الگو ریتم
۲-۹ ذرات swarm در تعدادی فضای واقعی
۲-۱۰مثال هایی از حرکت ذرات
۲-۱۰ مثالی از پرواز پرندگان برای یافتن غذا
۲-۱۱ الگوریتم Cooperative Particle swarm optimization
۲-۱۲ معرفی نرم افزار بکار رفته در شبیه سازی پروسه
فصل سوم: به ” بکار گیری cpsoو pso در پروسه ی Curve Fitting”
مقدمه
۳-۱ ماهیت کار
۳-۲ مراحل انجام کار به کمک الگوریتمpso
۳-۲-۱ بدست آوردن تابع برازندگی
۳-۲-۲ مشخص کردن اندازه جمعیت اولیه و ابعاد آن
۳-۲-۳ بررسی خروجی های بدست آمده از تابع Fitnessدر تکرار اول
۳-۲-۴ ایجاد لیست اول جهت نگهداری خروجی های بدست آمده
۳-۲-۵ پیدا کردن بهترین خروجی تابع Fitness و یافتن مکان آن در لیست اول
۳-۲-۶ آبدیت کردن سرعت و مکان ذرات با توجه به اینکه سرعت اولیه ذرات قبلا تعریف
۳-۲-۷ ایجاد لیست دوم جهت نگهداری خروجی های تابع Fitness در تکرار دوم
۳-۲-۸ پیدا کردن مکان بهترین ذره در جمعیت دوم
۳-۲-۹ مقایسه خروجی های تابع Fitness در دو تکرار اول
۳-۲-۱۰ پیدا کردن بهترین ذرات در دو جمعیت اول و دوم و تولید جمعیت سوم
۳-۲-۱۱ محاسبه تابع Fitness برای جمعیت سوم
۳-۲-۱۲ تکرار از مرحله پنجم الی یازدهم تا رسیدن به نقاط بهینه
۳-۳ مراحل انجام کار برای الگوریتمcpso
فصل چهارم : نتایج
۴-۱ انجام پروسه توسط الگوریتم pso
۴-۲ انجام پروسه توسط الگوریتم cpso
۴-۳ بررسی تفاوت بین psoوcpso
فصل پنجم: نتیجه گیری و پیشنهاد
۵-۱ نتیجه گیری
۵-۲ پیشنهاد
مراجع
پیوست
• مقاله با عنوان: تأثیر پارامترهای الگوریتم PSO در طراحی بهینه سیستم های توزیع آب
• نویسندگان: علیرضا مقدم ، امین علیزاده ، علی نقی ضیایی ، علیرضا فرید حسینی ، دانیال فلاح هروی
• محل انتشار: هشتمین کنگره ملی مهندسی عمران - دانشگاه صنعتی نوشیروانی بابل - 17 و 18 اردیبهشت 93
• محور: سازه های هیدرولیکی
• فرمت فایل: PDF و شامل 8 صفحه میباشد.
چکیــــده:
طراحی بهینه سیستمهای توزیع آب یکی از مسائل پیچیده بهینه سازی میباشد که محققان در دهههای اخیر الگوریتمهای متفاوتی برای حل آن ارائه دادهاند. یکی از بحثهای مهم در استفاده از این الگوریتمها تعیین پارامترها و عملگرهای آنها برای رسیدن به بهینه جهانی است و در اکثر این روشها تعداد زیاد پارامترها باعث کاربردی نشدن آنها میشود. در این مقاله ضمن معرفی و کاربرد الگوریتم PSO در بهینه سازی شبکههای توزیع آب، تأثیر رفتار پارامترها و عملگرهای این الگوریتم در حل مسأله بهینه سازی شبکه شناخته شده هانوی مورد بحث و تحلیل گرفت. نتایج حاصله نشان میدهد که الگوریتم PSO با تعداد پارامترهای اندکی که دارد از سرعت همگرایی بسیار بالایی نیز برخوردار است و قادر است راه حل بهینهتر در طراحی شبکههای توزیع آب را در مدت زمان کمتری نسبت به سایر الگوریتمها را ارائه دهد.
________________________________
** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **
** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **
** درخواست مقالات کنفرانسها و همایشها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **