پیدایش علوم و فنون جدید، جوامع بشری را با شکلهای مختلفی از اطلاعات روبرو نموده است. سطح توسعة یک جامعه را می توان با مقدار اطلاعات و دانش تولید شده در آن ارزیابی کرد. تولید فزایندة اطلاعات به شکلهای مختلف صورت می گیرد و با درجات متفاوتی از پیچیدگی همراه میباشد. در نتیجه نیاز به سیستمهای پردازش اطلاعات بصورت روزافزون افزایش می یابد. یکی از مسائل مهم در طراحی سیستمهای مدرن اطلاعاتی، بازشناسی خودکار الگوها است.
1-1- شناسایی الگو[1]
شناسایی الگو، شاخه ای از هوش مصنوعی[2] است که با طبقه بندی و توصیف مشاهدات سروکار دارد.شناسایی الگو به ما کمک میکند داده ها (الگوها) را با تکیه بر دانش قبلی یا اطلاعات آماری استخراج شده از الگوها، طبقه بندی نماییم. الگوهایی که می بایست طبقه بندی شوند، معمولاً گروهی از سنجش ها یامشاهدات هستند که مجموعه نقاطی را در یک فضای چند بعدی مناسب تعریف می نمایند.یک سیستم شناسایی الگوی کامل متشکل است از یک حسگر[3] ،که مشاهداتی را که می بایست توصیف یا طبقه بندی شوند جمع آوری می نماید، یک سازوکار برای استخراج ویژگی ها[4] که اطلاعات عددی یا نمادین را از مشاهدات، محاسبه می کند، (این اطلاعات عددی را با یک بردار بنام بردار ویژگیها نمایش می دهند)؛ ویک نظام طبقه بندی یا توصیف که وظیفه اصلی طبقه بندی یا توصیف الگوها را با تکیه بر ویژگی های استخراج شده عهده داراست.
[1] Pattern Recognitio
[2] Artificial intelligence
[3] Sensor
[4] Feature extraction
- شناسایی الگو
تکنیک آنالیز اجزای اصلی(
1-2- کاربردهای بازشناسی الگو
شبکه عصبی چیست؟
چرا از شبکه های عصبی استفاده می کنیم؟
شبکه عصبی
فصل اول- مقدمه
فصل چهارم- شبکه عصبی
طرح پژوهش
2-1-بخشهای مختلف سیستمهای
روشهای مختلف در حوزه بازشناسی اسناد
روشهای کاهش ابعاد
شامل 66 صفحه فایل word