کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پاورپوینت حل معادلات دیفرانسیل معمولی

اختصاصی از کوشا فایل پاورپوینت حل معادلات دیفرانسیل معمولی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت حل معادلات دیفرانسیل معمولی


پاورپوینت حل معادلات دیفرانسیل معمولی

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از محتوی متن پاورپوینت : 

 

تعداد اسلاید : 15 صفحه

1 حل معادلات دیفرانسیل معمولی مسایل مقدار مرزی 2 حل مسائل مقدار مرزی از طریق دستگاه معادلات در این روش میدان حل را به تعدادی قطعه تقسیم می کنیم که طول هر قطعه به اندازه گام حل h می باشد. به عنوان مثال معادله مرتبه 2 زیر را در نظر میگیریم: 3 حل مسائل مقدار مرزی از طریق دستگاه معادلات برای مشتقات موجود در رابطه از روابط بدست آمده در فصل مشتق گیری عددی استفاده می کنیم.
از بسط مرکزی استفاده می کنیم.
4 حل مسائل مقدار مرزی از طریق دستگاه معادلات پس از جاگذاری در معادله، فرم ساده شده این معادله بدین صورت خواهد بود.
5 حل مسائل مقدار مرزی از طریق دستگاه معادلات طبیعت مسائل convection, dliffusion چنین است که اگر معادله را به این فرم بنویسیم : ضرایب باید مثبت باشند.
6 حل مسائل مقدار مرزی از طریق دستگاه معادلات نتیجه مساله فوق یک دستگاه سه قطری است که با روش (TDMA)حل می شود . اکنون اگر از یک تقریب 5 نقطه ای استفاده کنیم (O(h4)) دقت خیلی بالا می رود ولی ماتریس بدست آمده نهایی 5 قطری می شود که نمی توان آنرا به روش TDMA حل کرد. باید از روش های تکرار استفاده کرد که وقت بسیار زیادی نسبت به (TDMA) می برد .
7 حل مسائل مقدار مرزی از طریق دستگاه معادلات در این جا به صرفه تر است که h را کوچک کنیم، هر چند تعداد معادلات افزایش خواهند یافت ولی باز هم نسبت به ماتریس 5 قطری وقت کمتری صرف می کند.
به خصوص آنجا که تعداد معادلات حدود 10000و 20000 است . مگر به دلایل خاص مجبور به استفاده از تقریب مثلا 4 نقطه ای شویم . هر چه تعداد نقاط بیشتر شود ناپایداری حل بیشتر می شود.
8 مثال همان معادله اول را در نظر می گیریم با مقادیر ذیل: 9 مثال شکل ساده شده معادله منفصل شده: 10 مثال و در نهایت به دستگاه ذیل می رسیم: 11 حل معادلات غیر خطی چناچه معادله غیر خطی باشد دستگاه حاصله غیر خطی خواهد بود .: 12 حل معادلات غیر خطی همانطور که دیده می شود ضریب در ماتریس ضرایب بر حسب مقادیر Ti خواهد بود (معادله غیر خطی ). برای خطی نمودن از روش های مختلف به خصوص روش نیوتن می توان استفاده کرد . این مورد خاص در مسائل CFD می باشد .
13 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن چناچه شرایط مرزی از نوع شرایط فون-نیومن باشد یعنی مشتقات مرزی داده شده باشد.
شرایط مرزی را نیز منفصل می کنیم.
14 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن چناچه شرایط مرزی از نوع شرایط فون-نیومن باشد یعنی مشتقات مرزی داده شده باشد.
15 حل مسائل مقدار مرزی با شرایط مرزی فون نیومن اکنون هفت معادله هفت مجهول را حل کرد .
اکنون این مقادیر بدست آمده از شرایط مرزی را جایگذاری می کنیم (اعمال شرایط مرزی )که به ترم اول TL اضافه شده و TR به ترم پنجم اضافه می شود .
.

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.



دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


پاورپوینت حل معادلات دیفرانسیل معمولی
نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.