فهرست زیر، چامع ترین فهرست حاصل از رصد اطلاعاتی شرکت های تولید کننده، وارد کننده و توزیع کننده ی تجهیزات و مواد ازمایشگاهی می باشد که می تواند مورد استفاده ی دانشجویان و اساتید بیوتکنولوژِ، ژنتیک، زیست شناسی، کشاورزی، پزشکی، پیراپزشکی قرار گیرد.
این لیست شامل 360 نفر از فعالین و زمینه های فعالیت ایشان بوده و شامل .
نام شرکت
نام مدیر عامل
نام محصولات شرکت
آدرس وبسایت
ایمیل شرکت
تلفن ثابت
تلفکس و فکس
این شرکت ها می باشد
این لیست می تواند برای مسئولین خرید آزمایشگاهی و همچنین
پایگاه داده ی زیر شامل نام 800 تن از فعالین در زمینه ی پنوماتیک، ابزار دقیق، و تجهیزات صنعتی کشور جمهوری اسلامی ایران می باشد که در قالب یک جدول با مشخصات زیر مرتب سازی گردیده است .
نام شرکت
آدرس وبسایت
شماره ی تلفن
شماره ی فکس
زمینه ی فعالیت
که می تواند برای شرکت های صنعتی و همچنین شرکت های بزرگ مورد استفاده قرار گیرد.
این پایگاه داده کاملا به روز بوده و فعلا می باشد.
بررسی انواع تجهیزات خانواده FACTS
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:58
پایان نامه کارشناسی رشته مهندسی برق – قدرت
فهرست مطالب :
فصل اول : پیشگفتار
1-1 مقدمه
1-2 محدودیت های انتقال توان در سیستم های قدرت
1-2-1 عبور توان در مسیرهای ناخواسته
1-2-2 ضرفیت توان خطوط انتقال
1-3 مشخصه باپذیری خطوط انتقال
1-3-1 محدودیت حرارتی
1-3-2 محدودیت افت ولتاژ
1-3-3 محدودیت پایداری
1-4 راه حلها
1-4-1 کاهش امپدانس خط با نصب خازن سری
1-4-2 بهبود پرفیل ولتاژ در وسط خط
1-4-3 کنترل توان با تغییر زاویه قدرت
1-5 راه حلهای کلاسیک
1-5-1 بانکهای خازنی سری با کلیدهای مکانیکی
1-5-2 بانکهای خازنی وراکتوری موازی قابل کنترل با کلیدهای مکانیکی
1-5-3 جابجاگر فاز
فصل دوم : آشنایی اجمالی با ادوات FACTS
2-1 مقدمه
2-2 انواع اصلی کنترل کننده های FACTS
2-2-1 کنترل کنندههای سری
2-2-1-1 جبران ساز سنکرون استاتیکی به صورت سری(SSSC)
2-2-1-2 کنترل کنندههای انتقال توان میان خط(IPFC)
2-2-1-3 خازن سری با کنترل تریستوری (TCSC)
2-2-1-4 خازن سری قابل کلیدزنی با تریستور (TSSSC)
2-2-1-5 خازن سری قابل کلید زنی با تریستور (TSSC)
2-2-1-6 راکتور سری قابل کلید زنی با تریستور (TSSR)
2-2-1-7 راکتور با کنترل تریستوری (TCSR)
2-2-2 کنترل کنندههای موازی
2-2-2-1 جبران کننده سنکرون استاتیکی(STATCOM)
2-2-2-2 مولد سنکرون استاتیکی (SSG)
2-2-2-3 جبران ساز توان راکتیو استاتیکی(SVC)
2-2-2-4 راکتور قابل کنترل با تریستور (TCR)
2-2-2-5 راکتور قابل کلیدزنی با تریستور(TSR)
2-2-2-6 خازن قابل کلیدزنی با تریستور (TSC)
2-2-2-7 مولد یا جذب کننده توان راکتیو (SVG)
2-2-2-8 سیستم توان راکتیو استاتیکی (SVS)
2-2-2-9 ترمز مقاومتی با کنترل تریستوری (TCBR)
2-2-3 کنترل کننده ترکیبی سری – موازی
2-2-3-1 کنترل کننده یکپارچه انتقال توان (UPFC)
2-2-3-2 محدود کننده ولتاژ با کنترل تریستوری(TCVL)
2-2-3-3 تنظیم کننده ولتاژ با کنترل تریتسوری (TCVR)
2-2-3-4 جبرانسازهای استاتیکی توان راکتیو SVC و STATCOM
2-3 مقایسه میان SVC و STATCOM
2-4 خازن سری کنترل شده با تریستور GTO (GCSC)
2-5 خازن سری سوئیچ شده با تریستور (TSSC)
2-6 خازن سری کنترل شده با تریستور (TCSC)
فصل سوم : بررسی انواع کاربردی ادوات FACTS
3-1 مقدمه
3-2 منبع ولتاژ سنکرون بر پایه سوئیچینگ مبدل
3-3 کنترل کننده توان عبوری بین خطی (IPFC)
3-4 جبرانگر سنکرون استاتیکی سری (SSSC)
3-5 جبرانگر سنکرون استاتیکی (STATCOM)
3-6 آشنایی با UPFC
3-6-1 تاثیر UPFC بر منحنی بارپذیری
3-6-2 معرفی UPFC
3-7 آشنایی با SMES
3-7-1 نحوه کار سیستم SMES
3-7-2 مقایسه SMES با دیگر ذخیره کننده های انرژی
3-8 آشنایی با UPQC
3-8-1 ساختار و وظایف UPQC
3-9 آشنایی با HVDCLIGHT
3-9-1 مزایای سیستم HVDCLIGHT
3-9-2 کاربرد سیستم HVDCLIGHT
3-9-3 عیب سیستم HVDCLIGHT
3-9-4 بررسی اضافه ولتاژهای داخلی در خطوط انتقال قدرت HVDC
3-10 مقایسه SCC و TCR از دیدگاه هارمونیک های تزریقی به شبکه توزیع
3-11 SVC
3-12 مبدل های منبع ولتاژ VSC
فصل چهارم : نتیجه گیری
منابع
چکیده :
این نوشتار عهده دار معرفی ادوات جدید سیستم های مدرن انتقال انرژی میباشد که تحول زیادی را در بهرهبرداری و کنترل سیستمهای قدرت ایجاد خواهد کرد.
با رشد روز افزون مصرف،سیستمهای انتقال انرژی با بحران محدودیت انتقال توان مواجه هستند.این محدودیتها عملاً بخاطر حفظ پایداری و تامین سطح مجاز ولتاژ بوجود میآیند.بنابراین ظرفیت بهرهبرداری عملی خطوط انتقال بسیار کمتر از ظرفیت واقعی خطوط که همان حد حرارتی آنهاست ، میباشد.این امر موجب عدم بهره برداری بهینه از سیستمهای انتقال انرژی خواهد شد.یکی از راههای افزایش ظرفیت انتقال توان،احداث خطوط جدید است که این امر هم چندان ساده نیست ومشکلات فراوانی را به همراه دارد.
با پیشرفت صنعت نیمه هادیها و استفاده آنها در سیستم قدرت،مفهوم سیستم های انتقال انرژی انعطافپذیر(FACTS) مطرح شد که بدون احداث خطوط جدید بتوان از ظرفیت واقعی سیستم انتقال استفاده کرد.
پیشرفت اخیر صنعت الکترونیک در طراحی کلیدهای نیمه هادی با قابلیت خاموش شدن و استفاده از آن در مبدل های منبع ولتاژ در سطح توان و ولتاژ سیستم قدرت علاوه بر معرفی ادوات جدیدتر،تحولی در مفهوم FACTS بوجود آورد و سیستمهای انتقال انرژی را بسیار کارآمدتر و موثرتر خواهد کرد .
برای درک بهتر و شناساندن مشخصات برجسته این ادوات درقدم اول لازم است مشکلات موجود سیستم های انتقال انرژی شناسائی شوند.آنگاه راه حل های کلاسیک برای رفع آنها بیان می شوند.مبدلهای منبع ولتاژ،که ساختار کلیه ادوات جدید FACTS بر آن استوار است در بخش بعدی مورد بحث قرار
می گردد و در خاتمه نسل جدید ادوات FACTS معرفی می شوند .
1-2 محدودیتهای انتقال توان در سیستمهای قدرت
یک سیستم قدرت از سه قسمت عمده تولید،انتقال و مصرف تشکیل شده است. هدف یک مهندس بهرهبردار قدرت این است که توان خواسته شده مصرفکننده را تحت ولتاژ ثابت و فرکانس معین تامین نماید.از لحاظ کنترل روی مصرف کننده نمی توان محدودیت زیادی اعمال کرد زیرا او خریدار است و خواسته هایش باید تامین شود.
در نتیجه ، کنترل اصلی در شبکه برق روی بخش تولید و انتقال است.حالت مطلوب در سیستم تولید و انتقال این است که این سیستم بایستی قابلیت تولید و انتقال توان خواسته شده را دارا باشد.معمولاً در طراحی اولیه،این خواسته در نظر گرفته می شود.ولی با گذشت زمان تغییراتی از قبیل رشد مصرف،اتصال شبکههای دیگر به شبکه قبلی و تاسیس نیروگاهها و خطوط انتقال جدید و ... این تعادل را بر هم زده و محدودیت هایی را در بهره برداری از شبکه قدرت بوجود می آورند.
گسترش سیستم های قدرت و به هم پیوستن آنها در دو ناحیه متمایز صورت گرفت. ناحیه ای با درصد جمعیت زیاد و وجود نیروگاه های نزدیک به مصرف که توسعه سیستم قدرت را تبدیل به یک شبکه به همپیوسته غربالی تبدیل کرده است ، مثل شبکه های قدرت در اروپا و شرق ایالات متحده آمریکا و ناحیهای که مقدار توان عظیمی را از نیروگاههای آبی به مراکز مصرف در فواصل دور تحویل می دهد.از قبیل سیستمهای موجود در کانادا و برزیل .
الحاق شبکهها به هم علاوه بر مزیت فراوانی که در برداشت،مشکلات عدیدهای را هم به همراه آورد. مشکلی که در انتقال توان سیستمهای به هم پیوسته غربالی وجود دارد، عبور توان در مسیرهای ناخواسته است که به عنوان مشکل توان در حلقه[1] شناخته می شود.عبور این توان در مسیرهای ناخواسته موجب افزایش بار غیر مجاز و عدم بهرهبرداری بهینه از سیستم خواهد شد.لذا بایستی به طریقی توان عبوری از یک مسیر را کنترل نموده و از طرفی برای سیستم های انتقال انرژی طولانی مسئله توان در حلقه مشکل ساز نیست بلکه مشکل عمده در این سیستم ها ، مسئله پایداری گذرا و افت ولتاژ غیر مجاز است.به این معنی که برای حفظ پایداری شبکه و تثبیت سطح ولتاژ مجاز،توان عبوری در سیستم انتقال باید محدود شود.بر این اساس،حالت ایدهآل یک سیستم انتقال انرژی موقعی است که :
در نتیجه مشکلات عمده در بهرهبرداری از سیستمهای انتقال انرژی عبارتند از عبور توان در مسیرهای ناخواسته و عدم بهرهبرداری از ظرفیت سیستمهای انتقال در حد ظرفیت حرارتی.
1-2-1 عبور توان در مسیرهای ناخواسته
برای بررسی مسئله عبور توان در مسیرهای ناخواسته ، سیستم شکل (1-1) زیر را در نظر بگیرید.
در این سیستم دو ژنراتور A وB به ترتیب با تولید MW2000 وMW 1000،توان درخواستیMW3000 را از طریق خطوط AC با قدرت انتقالیMW 2000،(MW1000)AB،(MW1250) BC به بار نقطه C تحویل می دهند.قابل ذکر است که عبور توان در یک شبکه بعلت پارامترهای خطوط انتقالی به آسانی قابل کنترل نیست و در نتیجه،همانطور که در شکل نشان داده شده است ، خط BC بیش از قدرت نامی خویش توان انتقال می دهد.در حالیکه خطوط AC و AB هنوز توانائی انتقال توان بیشتر را دارند.اگر مصرف کننده C بخواهد توان بیشتری را تقاضا کند با وجود ظرفیت خالی خطوط مذکور انتقال توان به این مصرف کننده بخاطر افزایش بار خط BC امکان پذیر نخواهد بود.
1-2-2 ظرفیت توان خطوط انتقال
برای بررسی مشکل دیگر سیستم های انتقال انرژی(عدم بهره برداری از ظرفیت کامل خطوط)لازم است مشخصه بار پذیری خطوط انتقال و مسایل وابسته به آن شناسائی شوند .
1-3 مشخصه بار پذیری خطوط انتقال
سیستم های خطوط انتقال انرژی که توان نیروگاه های دور دست را به مصرف کننده می رسانند،به خاطر مسایل پایداری و افت ولتاژ،ظرفیت بارپذیری خطوط با مقدار واقعی آن تفاوت زیادی خواهد داشت.
بارپذیری یک خط طبق تعریف برابر با حد بارگذاری خط (برحسب درصدی از بار امپدانس ضربه)در محدوده های مشخص حرارتی،افت ولتاژ و پایداری است.
برای نخستین بار آقای Clair.St درسال 1953میلادی این مفهوم را مطرح کرد و بر اساس ملاحظات علمی و تجربی،منحنیهای قابلیت انتقال توان خطوط را در محدوده ولتاژ 330 کیلووات و تا طول 400مایل را بدست آورد .این منحنیها(که به نام خودش مشهور است)ابزار ارزشمندی برای مهندسان طراحی سیستمهای انتقال برای تخمین سریع حدود حداکثر بارگذاری خطوط است بعدها کار او بصورت محاسباتی تعمیم داده شده است بر اساس این مطالعات مشخصه بارپذیری خطوط انتقال توسعه سه عامل محدود میشود: محدودیت حرارتی،محدودیت افت ولتاژ و محدودیت پایداری.
برای بررسی این محدودیت ها سیستم شکل (2-1) را در نظر می گیریم که دو انتهای سیستم انتقال(پایانه ارسالی و پایانه دریافتی)توسط مدل تونن آن نشان داده شده است.
-3-1 محدودیت حرارتی (Thermal Limits)
حرارت حاصل از عبور جریان خطوط انتقال دوتاثیر نامطلوب دارد:
معمولاً دومین عامل از عوامل فوق،حداکثر دمای کاری مجاز را تعیین می کند. در این حد،انحنانی خط به حداکثر مجاز خود نسبت به زمین می رسد. بر اساس ملاحظات مربوط به ذوب،حداکثر دمای مجاز برای خطوط با مقدار آلومینیوم بالا مساوی 127 و برای سایر هادیها 150 است.حداکثر جریان مجاز، بستگی به دمای محیط و سرعت بالا دارد . ثابت زمانی حرارتی در حدود 10 تا 20 دقیقه است از این رو بین ظرفیتنامی پیوسته و ظرفیت نامی زمان محدود می توان تفاوت قایل شد.بر این اساس در وضعیتهای اضطراری با در نظر گرفتن جریان قبل از اغتشاش،دمای محیط و سرعت باد،از ظرفیت نامی زمان محدود استفاده کرد.
1-3-2 محدودیت افت ولتاژ
با در نظر گرفتن مدل خط انتقال و پارامترهای تشکیل دهنده آن،پروفیل ولتاژ برای سیستم شکل (2-1) به ازای فاصله خط و توان انتقالی نامی و بیباری در شکل(4-1)نشان داده شده است.همانطور که ملاحظه می شود،ولتاژ خط در طول خط ثابت نبوده و شدیداً تابعی از توان انتقالی خط خواهد بود.این تغییرات ولتاژ بایستی درمحدوده مجاز باشد لذا انتقال توان در این خطوط محدود به تغییرات دامنه ولتاژ خواهد بود.به بیان دیگراگر طول خط را به عنوان یک پارامتر در نظر بگیریم مشخصه بارپذیری خط را تابعی از طول خط براساس محدودیت افت ولتاژ را می توان بصورت زیر محاسبه کرد.
مقادیر ولتاژ پایانه های ارسالی و دریافت و بر اساس محاسبه پخش بار بدست می آید و برای این سیستم محدودیت افت ولتاژ 5% در نظر گرفته شده است.آنگاه طول خط به عنوان یک پارامتر در نظر گرفته و با مقدار اولیه آن شروع می کنیم و دامنه ولتاژ را حساب می کنیم.
و...
تعداد صفحات :13
«فهرست مطالب»
عنوان صفحه
1- مقدمه 1
2- تعریف سیستم 2
3- اهداف سیستم 3
4- کاربرد سیستم 5
5- مبانی سیستم 6
- مدیریت تجهیزات 6
- مدیریت کالا 6
- مدیریت گردش کار 7
- مدیریت نگهداری پیشگیرانه 8
- مدیریت کالیبراسیون 8
- مدیریت انبار 9
- مدیریت پروژه 10
- مدیریت مالی 11
- مدیریت پیمانها 11
6- نمودار اجرائی پروژة CMMS 12
7- جدول زمانبندی طراحی، نصب و راه اندازی سیستم CMMS 13
مقدمه
در عصر حاضر صنایع، واحدهای تولیدی و خدماتی، مراکز پزشکی و بیمارستانها به در اختیار داشتن یک سیستم مدون و مجهز نگهداری و تعمیرات تجهیزات به نسبت توسعه و افزایش حجم فعالیت های آنها فزونی مییابد و وجود یک سیستم مجهز و برنامهریزی شدة مدیریت نگهداری و تعمیرات از آن جهت ضروری و الزام آور است که نه تنها کنترل مستمر و اطلاع کامل از اوضاع و احوال و نحوه عملکرد تجهیزات، ادوات، ابنیه، تاسیسات، ماشین آلات و سرویسها را ممکن می سازد بلکه از طریق سیستم های مدیریت بر پایه ریسک نیز اطلاعات را در جهت کمک به قدرت تصمیم گیری مدیریت مورد تجزیه و تحلیل قرار میدهد. لذا ارائه مطلوبترین سرویسهای نگهدرای و تعمیرات تجهیزات با اتخاذ بهترین روشها برای تداوم کار تجهیزات با حداکثر بازدهی و تحمل حداقل هزینه امکانپذیر می گردد. اما آنچه که در این مقوله حائز اهمیت است عبارتست از ایجاد فرهنگ و نگرش نگهداری و تعمیرات بهره ور در کلیه سطوح مراکز درمانی و طبقات مدیریتی بعبارت دیگر نگهداری و تعمیرات مختص یک قسمت یا اداره نبود. بلکه در این سیستم کلیه افراد یک مرکز درمانی بعنوان کارگردانان اصلی در نگهداری تجهیزات و اموال این مراکز سهیم و شریک بوده و هر کس در جایگاه خود با انجام فعالیت های شخصی سعی در حفظ، نگهداری و بهبود مستمر تجهیزات و نهایتاً رضایتمندی بیمار و ارتقاء خدمات درمانی کشور را سبب میشود.