کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

تحقیق درباره Transformer

اختصاصی از کوشا فایل تحقیق درباره Transformer دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

Transformer

.

 

Three-phase pole-mounted step-down transformer.

A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled electrical conductors. A changing current in the first circuit (the primary) creates a changing magnetic field. This changing magnetic field induces a changing voltage in the second circuit (the secondary). This effect is called mutual induction.

If a load is connected to the secondary circuit, electric charge will flow in the secondary winding of the transformer and transfer energy from the primary circuit to the load connected in the secondary circuit.

The secondary induced voltage (VS), of an ideal transformer, is scaled from the primary voltage (VP) by a factor equal to the ratio of the number of turns of wire in their respective windings:

 

By appropriate selection of the numbers of turns, a transformer thus allows an alternating voltage to be stepped up — by making NS more than NP — or stepped down, by making it less.

Transformers are some of the most efficient electrical 'machines',[1] with some large units able to transfer 99.75% of their input power to their output.[2] Transformers come in a range of sizes from a thumbnail-sized coupling transformer hidden inside a stage microphone to huge units weighing hundreds of tons used to interconnect portions of national power grids. All operate with the same basic principles, although the range of designs is wide.

History

The transformer principle was demonstrated in 1831 by Michael Faraday, although he used it only to demonstrate the principle of electromagnetic induction and did not foresee its practical uses. The first widely used transformer was the induction coil, invented by Irish clergyman Nicholas Callan in 1836.[3] He was one of the first to understand the principle that the more turns a transformer winding has, the larger EMF it produces. Induction coils evolved from scientists' efforts to get higher voltages from batteries. They were powered not by AC, but DC from batteries which was interrupted by a vibrating 'breaker' mechanism. Between the 1830s and the 1870s efforts to build better induction coils, mostly by trial and error, slowly revealed the basic principles of transformer operation. Efficient designs would not appear until the 1880s,[4] but within less than a decade, the transformer was instrumental during the "War of Currents" in seeing alternating current systems triumph over their direct current counterparts, a position in which they have remained dominant.[4]

Russian engineer Pavel Yablochkov in 1876 invented a lighting system based on a set of induction coils, where primary windings were connected to a source of alternating current and secondary windings could be connected to several "electric candles". The patent claimed the system could "provide separate supply to several lighting fixtures with different luminous intensities from a single source of electric power". Evidently, the induction coil in this system operated as a transformer.

 

 

A historical Stanley transformer.

Lucien Gaulard and John Dixon Gibbs, who first exhibited a device with an open iron core called a 'secondary generator' in London in 1882 and then sold the idea to American company Westinghouse.[5] They also exhibited the invention in Turin in 1884, where it was adopted for an electric lighting system.

Hungarian engineers Zipernowsky, Bláthy and Déri from the Ganz company in Budapest created the efficient "ZBD" closed-core model in 1885 based on the design by Gaulard and Gibbs.[6]

William Stanley, an engineer for Westinghouse, built the first commercial device in 1885 after George Westinghouse had bought Gaulard and Gibbs' patents. The core was made from interlocking E-shaped iron plates. This design was first used commercially in 1886.[4] Their patent application made the first use of the word "transformer".[5] Russian engineer Mikhail Dolivo-Dobrovolsky developed the first three-phase transformer in 1889. In 1891 Nikola Tesla invented the Tesla coil, an air-cored, dual-tuned resonant transformer for generating very high voltages at high frequency. Audio frequency transformers (at the time called repeating coils) were used by the earliest experimenters in the development of the telephone.

While new technologies have made transformers in some electronics applications obsolete, transformers are still found in many electronic devices. Transformers are essential for high voltage power transmission, which makes long distance transmission economically practical.

Basic principles

The transformer is based on two principles: firstly, that an electric current can produce a magnetic field (electromagnetism) and secondly that a changing magnetic field within a coil of wire induces a voltage across the ends of the coil (electromagnetic induction). By changing the current in the primary coil, it changes the strength of its magnetic field; since the changing magnetic field extends into the secondary coil, a voltage is induced across the secondary.

 

 

An ideal step-down transformer showing magnetic flux in the core

A simplified transformer design is shown to the left. A current passing through the primary coil creates a magnetic field. The primary and secondary coils are wrapped around a core of very high magnetic permeability, such as iron; this ensures that most of the magnetic field lines produced by the primary current are within the iron and pass through the secondary coil as well as the primary coil.

Induction law

The voltage induced across the secondary coil may be calculated from Faraday's law of induction, which states that:

 

where VS is the instantaneous voltage, NS is the number of turns in the secondary coil and Φ equals the magnetic flux through one turn of the coil. If the turns of the coil are oriented perpendicular to the magnetic field lines, the flux is the product of the magnetic field strength B and the area A through which it cuts. The area is constant, being equal to the cross-sectional area of the transformer core, whereas the magnetic field varies with time according to the excitation of the primary. Since the same magnetic flux passes through both the primary and secondary coils in an ideal transformer,[1] the instantaneous voltage across the primary winding equals

 

Taking the ratio of the two equations for VS and VP gives the basic equation[7] for stepping up or stepping down the voltage

 

Ideal power equation

 

 

The ideal transformer as a circuit element

If the secondary coil is attached to a load that allows current to flow, electrical power is transmitted from the primary circuit to the secondary circuit. Ideally, the transformer is perfectly efficient; all the incoming energy is transformed from the primary circuit to the magnetic field and into the secondary circuit. If this condition is met, the incoming electric power must equal the outgoing power.

Pincoming = IPVP = Poutgoing = ISVS

giving the ideal transformer equation

 

If the voltage is increased (stepped up) (VS > VP), then the current is decreased (stepped down) (IS < IP) by the same factor. Transformers are efficient so this formula is a reasonable approximation.

The impedance in one circuit is transformed by the square of the turns ratio.[1] For example, if an impedance ZS is attached across the terminals of the secondary coil, it appears to the


دانلود با لینک مستقیم


تحقیق درباره Transformer