کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

گزارش کارآموزی رشته برق ترانسفورماتورهای توزیع

اختصاصی از کوشا فایل گزارش کارآموزی رشته برق ترانسفورماتورهای توزیع دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی رشته برق ترانسفورماتورهای توزیع


گزارش   کارآموزی  رشته برق ترانسفورماتورهای توزیع

دانلود گزارش   کارآموزی  رشته برق ترانسفورماتورهای توزیع بافرمت ورد وقابل ویرایش تعدادصفحات 45

گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی


این پروژه کارآموزی بسیار دقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی میباشد

مقدمه :

در حالی که توجه زیادی به واحدهای تولید توان الکتریکی و خطوط انتقال انرژی می‌شود سیستم توزیع انرژی الکتریکی مورد توجه کمی قرار گرفته است .این بی توجهی شاید بدین خاطر باشد که خطوط توزیع انرژی روی تیرها و در خیابان ها و کوچه ها و در پشت ساختمان ها بدون جلب توجه عبور کرده حتی در بعضی از قسمت ها در زیر زمین،  خارج از دید عموم نصب شده اند.      دلیل دیگر عبور مقدار زیاد توان از یک خط انتقال انرژی در مقایسه بایک خط توزیع انرژی است. قطع یک خط انتقال منطقه ی وسیعی را دچار خاموشی می کند و بدین جهت مورد توجه قرار می گیرد. در صورتی که قطع یک خط توزیع انرژی بخش کوچک را تحت تأثیر قرار دهد قابل توجه نیست. در مقایسه با نیروگاه ها، هزینه برای سیستم توزیع معمولاً به صورت مقادیر کم انجام می‌شود .اگر چه ممکن است هزینه ی کل سیستم توزیع بیشتر باشد با توجه به این که جامعه بیش از پیش برای پیشرفت به یک منبع انرژی خوب نیاز دارد ارتباط بین منبع انرژی و مصرف کننده یعنی سیستم توزیع انرژی نقش بحرانی تری پیدا می کند. در نتیجه نه تنها نیاز به توان تحویلی بیشتری است بلکه احتیاج به کیفیت بالاتری از انرژی نیز می باشد.     در روزگار اولیه ی صنعت قدرت الکتریکی تولید و توزیع انرژی با هم آمیخته بود و سیستم توزیع وسعت کمی داشت تاخیری مورد سرویس دهی کوچک و تعداد مشترکین نسبتاً کم بود همچنین مقدار مصرف هر مشترک زیاد نبود.      سیستم های توزیع اولیه جریان مستقیم بودند و در ولتاژ کم توزیع می کردند. پیدایش ترانسفورماتور و افزایش بار مورد انتقال روی مسافت بیشتر و با فاصله بیشتر از منبع، به زودی سیستم جریان متناوب جایگزین جریان مستقیم شد. هم اکنون با افزایش سطح ولتاژ امکان تغذیه ی بارهای  بیشتر و در فواصل دورتر وجود دارد که این ولتاژ در محل مصرف برای تغذیه ی مصرف کنندگان کاهش داده می شود. نیاز به سرویس دهی برق به انواع مختلف مصرف کنندگان توسعه یافته است مصرف کنندگان به مصرف کنندگان مناطق شهری، حاشیه ای، محلی و مصرف کنندگان تجاری شامل مغازه ها، مراکز خرید، ساختمان دفاتر و مصرف کنندگان صنعتی شامل تولید کنندگان با میزان مصرف متفاوت و واحد های خدماتی در اندازه های مختلف تقسیم می‌شوند. به موازات توسعه ی مدارهای توزیع انرژی، مواد، تجهیزات و ابزار مناسبتر هم توسعه یافتند که امکان ساخت، تعمیر و بهره برداری با بازده ی بالاتر را فراهم می ساخت روندی که تا به امروز ادامه داشته است تیرهای چوبی از جنس چوب خام کم کم جای خود را به تیرهای با جنس سخت تر و ظاهر بهتر دادند. سپس تیرهای سیمانی تقویت شده و تیرهای فلزی مورد استفاده قرار گرفتند. هم اکنون مطالعات برای استفاده از تیرهای پلاستیکی انجام می شود.     هادی ها ابتدا از مس ساخته می شدند. امروز آلمنیوم و آلیاژ های مس و فولاد نیز به کار می روند مطالعات بر روی استفاده از هادی های ساخته شده از آلیاژ های مختلف در جریان است. مقره های پرسلین قبلاً به صورت تک حلقه ای ساخته می شدند. امروزه این عایق ها به صورت قطعه قطعه ساخته می شوند و قابل اتصال به هم هستند و تشکیل رشته ای از مقره ها را می دهند که برای هر سطح ولتاژی قابل استفاده می باشند. مقره های شیشه ای و پیرکس نیز به طور وسیعی به کار می روند و اکنون تحقیقات برای استفاده از مقره ها با ترکیبات پلاستیکی انجام می شود. عایق های لاستیکی برای کابل ها که قبلاً برای اکثر کابل ها مورد استفاده قرار می گرفت و قابلیت تحمل ولتاژ آن ها کم بود، جای خود را به عایق های دیگر نظیر عایق های کاغذ آغشته و عایق های پلاستیکی دادند مطالعات برای استفاده از عایق های با ترکیبات پلاستیک برای ولتاژ های بالاتر ادامه دارد. ترانسفورماتورها هم کوچکتر و هم با بازده ی بیشتر و ارزان تر شده اند. شکل های جدید هسته های فولادی ترانسفورماتورها با ترکیبات جدید باعث کاهش تلفات مغناطیسی می شود و عمر ترانسفورماتور را نیز افزایش می دهد همچنین باعث افزایش ظرفیت ترانسفورماتور به ازای یک اندازه ی ثابت می گردد. به علاوه تجهیزات حفاظتی مربوط داخل همان محفظه ی ترانسفورماتور قرار می گیرند و شکل ظاهری آن را بهتر و حمل آن را ساده تر می کند. تحقیقات روی جنس هسته ی مورد استفاده و عایق ترانسفورماتورها ادامه دارد. خازن های موازی به منظور تنظیم ولتاژ و کاهش تلفات به کار می روند. که با این کار به تنظیم کننده های ولتاژ در شبکه کمک می کنند و در ضمن بازده ی بهره برداری از سیستم را نیز بالا می برند. هم اکنون به جای غلاف سربی از روکش ترکیبات پلاستیک برای مقاوم کردن کابل های زیر زمینی در برابر آب استفاده می شود.  مسأله ی تلفات در سیستم توزیع انرژی با توجه به هزینه ی سوخت، اهمیت بیشتری پیدا می کند و دیگر یک فاکتور جانبی در تغذیه ی انرژی الکتریکی نیست. اندازه گیری تلفات انرژی حقیقی در چنین سیستمی مشکل است زیرا فاکتورهای دیگری در محاسبه تفاوت بین انرژی مصرف شده توسط مشترکین و انرژی تولید شده دخالت دارند. با این حال این تلفات 10 تا 20 درصد انرژی تولید شده توسط نیروگاه ها است. از آن جایی که تلفات متناسب با مربع جریان عبوری از هادی است چه در خط و چه در تجهیزات الکتریکی پایین نگه داشتن جریان باعث کاهش تلفات می شود. سیاست های مختلفی برای انجام این کار اتخاذ می گردد. اصول اولیه ی این سیاست، بالابردن ولتاژ مدارها و کاهش جریان آن ها به ازای یک بار مشخص می  باشد.     افزایش سطح مقطع هادی ها و کاهش طول فیدرها به منظور کاهش مقاومت مدار نیز برای کاهش تلفات به کار می رود. در سیستم های جریان متناوب نصب خازن ها در نقاط مهم باعث بهبود ضریب توان و در نتیجه کاهش جریان عبوری به ازای یک بار ثابت می شود. نظر به این که جریان عبوری، معیاری از مصرف انرژی الکتریکی توسط مصرف کننده می باشد، سعی در جهت کاهش تقاضای مصرف و یکنواخت کردن مقدار مصرف انرژی در ساعات مختلف طول روز است به این کار مدیریت انرژی گفته می شود. بدین منظور تجهیزات با کنترل الکترونیکی، عمل قطع و وصل قسمتی از بار مشترکین را به نحوی انجام می دهند که ضمن جلب رضایت مشترکین و عدم وقفه در سرویس دهی مقادیر حداکثر و حداقل مصرف روزانه تغییر کند و منحنی بار به سمت یک مصرف پیوسته و یکنواخت میل نماید. از طریق رله های الکترونیکی می توان کلید ها را از راه دور باز و بسته و تجهیزات اضافی از قبیل خازن ها را وارد و خارج کرد. بار فیدرها را با تغییرات مصرف کنترل و در حالت های اضطراری قسمتی ازمدار را بی برق و قسمت های سالم را به طور اتوماتیک ( بدون نیاز به اپراتور) برقدار نمود.       خواندن کنتور مشترکین و تهیه ی صورت حساب آن ها، در بسیاری از کشورها از راه دور انجام می شود و هزینه ی قابل توجهی را برای اداره ی برق صرفه جویی می کند.     عامل های دیگری هستند که روی طراحی، نصب و بهره برداری سیستم های توزیع اثر می گذارند.اقتصاد مهم ترین آن ها است. اما با توجه به ملاحظات فوق، عامل های دیگر مانند بودجه، نرخ تورم، نرخ بهره، ارزش هزینه های کنونی در آینده، همچنین ارزش کنونی هزینه های آینده، مالیات ها، الگوی رشد مصرف، روابط مصرف کنندگان، وضعیت استخدام، در دسترس بودن پرسنل ماهر و برنامه ریزی آموزشی و موارد دیگر حتی وضعیت آب و هوا نیز تأثیر دارند.     در این جا لازم به یادآوری است که گاهی اوقات ممکن است لازم باشد بعضی فاکتورهای غیر فنی در نظر گرفته شوند. در این بحث جزئیات مداری تجهیزات، نظیر ساختمان ترانسفورماتورها یا خازن های مورد مطالعه قرار نمی گیرد و بیشتر بهره برداری از آنها مورد توجه است در مواقعی که توضیح بیشتر در مورد تجهیزات خاصی ضرورت داشته باشد قدری به آن پرداخته می شود یا به طور کلی فرض می شود که خواننده با تئوری های مربوط آشنا است و ریاضیات به کار رفته  در سطح دانشگاهی است .    لازم به یادآوری است که طراحی سیستم توزیع گاهی از فاکتورهای دیگری متأثر می شود که از نظر فنی یا اقتصادی توجیه ندارد. برای مثال، مدرن کردن شبکه و یا گاهی اوقات تعریض جاده ها باعث تغییر مسیر خطوط می گردد که هزینه های زیادی برای صنعت برق دارد اگر چه از نظر اقتصادی قابل توجیه نیست. نظر به این که مهندس توزیع باسیستمی سروکار دارد که وضعیت آن در حال تغییر است باید وضعیت کنونی و تغییرات سیستم در گذشته را مد نظر قرار دهد. همچنین باید با توجه به رشد مصرف تدابیری برای توسعه شبکه در آینده اتخاذ نماید.     بحث سیستم قدرت بدون توجه به آینده کامل نیست. اقتصاد تغذیه انرژی اثر زیادی روی انواع مختلف منابع انرژی نه تنها در این کشور بلکه در جهان صنعت دارد. اثر این سیاست ها روی سیستم قدرت به خصوص سیستم توزیع قابل توجه است .از طرفی ممکن است تمایل زیادی به تأمین انرژی مصرف کنندگان از طریق یک منبع مرکزی باشد.از طرف دیگر استفاده از انرژی های دیگر قابل مطالعه است به نظر می رسد که منابع نفت و گاز طبیعی ارزان جایگزین منابع دیگر انرژی شده اند. در آینده سوخت های اتمی و در بلند مدت انواع دیگر انرژی شاید سلول های ذخیره ای شیمیایی جدید، الکل یا سوخت های دیگر حاصل از محصولات کشاورزی، انرژی خورشیدی ، انرژی باد و یا ترکیب آن ها حرف اول را بزنند.     شاید در نهایت از قدرت هسته ای با طول عمر چند دهه یا بیشتر در محل مشترکین با حذف نیروگاه و سیستم انتقال و توزیع استفاده شود.       حالت های دیگر تولید و تغذیه انرژی نیز ممکن است. به نظر می رسد کاهش دادن مصرف پیک مشترکین و ضریب همزمانی منطقی باشد در این حالت با اعمال سیاست مدیریت باربا نرخ های متغیر مشترکین را مجبور به اجرای آن می نماییم. کاهش پیک مشترکین باعث کاهش اندازه ی تجهیزات و هزینه خواهد شد. شاید وابستگی بیشتر به الکتریسته در مقایسه با دیگر انواع انرژی بدین جهت باشد که مصرف کنندگان خواستار انرژی با قابلیت اطمینان زیاد هستند. برای تحقق این خواسته، در عین حالی که باید هزینه پایین نگه داشته شود نیاز به مهندس توزیع ورزیده و با تجربه است. همان طور که ملاحظه شد مهندسی ترکیبی از علم و هنر است. دانشمندان و محققین اصول و قوانین برای کشف یا خلق مواد جدید و روش های مدرن را تدوین می کنند که دارای تعبیر و توصیف مشخص است در طرف دیگر هنرمندان هستند که موقعیت ها و شرایط را خلق می کنند و به تصویر می   کشند بدون این که آگاهی از واقعیت عملی بودن و امکان پذیری آن داشته باشند. در این جا مهندسین هستند که باید هنر را به کار گیرند. در حالی که دانشمندان و هنرمندان بدون توجه به هزینه عمل می کنند مهندسین همیشه به شدت به اقتصاد وابسته هستند و در واقع اغلب ملاحظه شده است که کاری را که دیگران با ده دلار و یا بیشتر انجام می دهند یک مهندس با یک دلار انجام می دهد.


دانلود با لینک مستقیم


دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق

اختصاصی از کوشا فایل دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق


دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق

 

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:82

مقدمه:
ترانسفورماتورهای توزیع مهمترین تجهیز در شبکه توزیع می‌باشند. با توجه به فراوانی این ترانسفورماتورها و نقش آنها در شبکه، تهیة یک دستور‌العمل جهت نگهداری و سرویس این ترانسفورماتورها ضروری است. دستور‌العمل حاضر در این راستا تهیه شده است.
در نگهداری و تحلیل وضعیت ترانسفورماتور همیشه وضعیت خود ترانسفورماتور در اولویت قرار داشته و باید از دستور العمل سازنده جهت انجام عملیات لازم استفاده شود. این دستور‌العمل را می‌توان بعنوان مکمل در انجام عملیات نگهداری و بازدیدهای دوره‌ای مورد استفاده قرار داد. این دستور‌العمل روی ترانسفورماتورهای kva 500 به بالا متمرکز بوده و برای ترانسفورماتورهای با ظرفیت کمتر از این رنج می‌توان با نظر کارشناسان بهره‌برداری در انتخاب و فاصله زمانی انجام تستها تغییر داده شود. البته فصولی که مربوط به نگهداری و بهبود وضعیت عایق و نیز سیستم آب‌بندی می‌باشد می‌تواند بطور عموم مورد استفاده واقع شود.

فهرست مطالب:

فصل ۱-   بازدیدهای دوره‌ای و پیشگیرانه

فصل ۲-   شرح بازدیدهای اجزای ترانسفورماتور

۲-۱-   مقدمه

۲-۲-   بازدید کلی ترانسفورماتور

۲-۳-   بازدید از تانک ترانسفورماتور

۲-۴-   کنسرواتور (منبع انبساط)

۲-۵-   ترمومترها

۲-۵-۱-     تست ترمومتر

۲-۶-   نشانگر سطح روغن

۲-۷-   فشار شکن

۲-۸-   رله فشار ناگهانی

۲-۹-   رله بوخهلتز

۲-۱۰- بوشینگها

۲-۱۱- رطوبت‌گیر

فصل ۳-   نگهداری روغن ترانسفورماتور

۳-۱-   روغن و عوامل موثر بر خواص آن

۳-۲-   تستهای سالیانه و حدود مجاز

۳-۳-   کنترل کیفیت روغن در زمان بهره برداری

۳-۴-   نمونه‌گیری روغن

۳-۵-   تصفیه روغن

۳-۵-۱-     تصفیه فیزیکی

۳-۵-۲-     تصفیه شیمیائی

۳-۶-   خشک کردن ترانسفورماتور

۳-۷-   روغن زدن یا شارژ روغن ترانسفورماتور

۳-۸-   مخلوط کردن روغنهای مختلف

۳-۹-   اضافه کردن مواد ضد اکسیداسیون

۳-۱۰- آزمایشهای قبل و بعد از پر کردن روغن در ترانسفورماتور

۳-۱۱- پیشنهادات مهم جهت نگهداری بهتر روغن و جلوگیری از فساد آن

۳-۱۲-   تستهای روغن

فصل ۴-   عوامل موثر بر عمر عایق ترانسفورماتور

۴-۱-   وقوع شرایط غیرعادی در سیستم

۴-۲-   عوامل محیطی

۴-۳-   عوامل ناشی از نحوه بهره‌برداری ترانسفورماتور

۴-۴-   دستورات کنترل حرارت و نیز کاهش تلفات

۴-۵-   مقادیر مجاز درجه حرارت محیط و ترانسفورماتور

۴-۵-۱-     شرایط محیطی

۴-۵-۲-     شرایط ترانسفورماتور

۴-۶-   تأثیر عوامل مختلف بر عایق و کنترل آنها

۴-۶-۱-     اثر فشارهای ناشی از اتصال کوتاه

۴-۶-۲-     تأثیر انواع اضافه ولتاژ و کنترل آنها

۴-۷-   ارزیابی وضعیت عایق و عمر ترانسفورماتور «چه وقت باید ترانسفورماتور را از مدار خارج نمود

۴-۸-   دستورات و توصیه‌های کلی برای بهبود عمر ترانسفورماتور

۴-۹-   قسمتهای الکتریکی عایق

۴-۹-۱-     تستهای ضریب قدرت

۴-۹-۲-     تستهای میگر

۴-۹-۳-     دیگر تستهای مربوطه

فصل ۵-   دستور‌العمل بارگیری نیروی ترانسفورماتور توزیع

۵-۱-   بار و اضافه بار مجاز

۵-۲-   حدود بارگذاری مجاز دائمی

۵-۳-   حدود مجاز بارگذاری اضطراری کوتاه مدت

۵-۴-   حدود مجاز بارگذاری (بارگذاری اضطراری بلندمدت)

۵-۵-   حدود مجاز برای ترانسفورماتورهای توزیع

۵-۶-   حدود مجاز حرارت و جریان

فصل ۶-   درزگیرها (واشرهای آب‌بندی)

۶-۱-   واشرهای آب‌بندی

۶-۲-   نصب سیستم آب‌بندی

فصل ۷-    رطوبت، معیاری برای خشک کردن

۷-۱-   معیار خشک کردن ترانسفورماتور

۷-۲-   راههای نفوذ رطوبت

۷-۳-   راههای جلوگیری از نفوذ و جذب رطوبت و اکسیداسیون

فصل ۸-   نصب و راه‌اندازی ترانسفورماتور

۸-۱-   نگهداری و انبار کردن ترانسفورماتور

۸-۲-   مکان نصب ترانسفورماتور

۸-۲-۱-     درجه حرارت مجاز برای پستهای زمینی

۸-۲-۲-     فواصل مجاز

۸-۳-   عملیات و هشدارهای لازم قبل از راه‌اندازی ترانسفورماتور

۸-۳-۱-     بازدید مقدماتی یا اولیه

۸-۳-۲-     قبل از اعمال ولتاژ به ترانسفورماتور و برقدار کردن آن آیتم های زیر را حتماً چک کنید

۸-۴-   راه‌اندازی ترانسفورماتور (برقدار کردن)

۸-۵-   تستهای راه‌اندازی

۸-۶-   بارگیری و ارتفاع نصب ترانسفورماتور

۸-۷-   نگهداری‌های دوره‌ای برای ترانسفورماتور توزیع

۸-۷-۱-     نمونه‌گیری و تست استقامت عایقی روغن

۸-۸-   عملیات نگهداری در دوره‌های خاموشی ترانسفورماتور

۸-۹-   تزریق روغن در تانک

۸-۱۰- حفاظت ترانسفورماتور توزیع

۸-۱۱- نکات مهم در انتخاب کات اوت فیوز

۸-۱۲- نکات مهم در انتخاب و نصب برقگیر

۸-۱۳- روشهای بهره‌برداری مناسب و دستور‌العمل پیشگیری حوادث

۸-۱۴- پیاده سازی اجزای ترانسفورماتور

۸-۱۵- جوشکاری تانک ترانسفورماتور

۸-۱۶- تعمیر هسته و سیم‌پیچی


دانلود با لینک مستقیم

دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS

اختصاصی از کوشا فایل دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS


دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS

 

 

 

 

 

 

 




فرمت فایل : word(قابل ویرایش)

تعداد صفحات:

تقاضای روز افزون در بخش انرژی، نیاز به توسعه شبکه الکتریکی را امری ضروری و اجتناب ناپذیر ساخته و کشورها را با چالشی بزرگ روبرو کرده است. استفاده از تکنولوژی­های جدید از یک سو و کاهش آلودگی­های زیست محیطی از سوی دیگر موجب تشویق کشورها برای انتقال فناوری­هایی با کارایی بالا و حداقل آلودگی شده است.
در این میان، استفاده از فناوری‌ ابررسانایی، به عنوان یک تکنولوژی جدید، در سطوح تولید، انتقال و توزیع انرژی الکتریکی، در کشورهای پیشرفته بسیار قابل توجه بوده و سالانه بودجه­­های هنگفتی برای تجهیز شبکه الکتریکی به این تکنولوژی اختصاص داده می­شود.
در کشور ما نیز لازم است اقدامی مناسب جهت شناسایی کاربردها، مزایا و مشکلات، روش­های انتقال فناوری ابررسانایی و نحوه­ی انطباق آن با دانش علمی و فنی کشور صورت گیرد. گزارش حاضر، برای رسیدن به اهداف فوق تهیه شده است. امید است که تهیه­ی این گزارش گامی نه چندان بزرگ در نیل به این اهداف برداشته باشد.
چکیده:

در این گزارش ، ابتدا برای آشنایی با ابررسانایی، به اختصار مطالبی راجع به ابررسانایی، خواص آن و انواع سیم­های ابررسانا آورده شده و سپس نکات فنی ترانسفورماتورهای قدرت و وضعیت فناوری ترانسفورماتورهای HTS در جهان بیان می شود. در ادامه مزایا، کاربردها و مشکلات فناوری ترانسفورماتورهای HTS ذکر شده و سپس مشخصات عرضه کننده­گان این فناوری، در دو گروه تولیدکنندگان ترانسفورماتور قدرت و تولیدکنندگان تجهیزات مربوط به ابررسانا بیان می­شود. همچنین هزینه خرید، روش­های انتقال تکنولوژی HTS و منابع مورد نیاز برای انتقال و انطباق فناوری در کشور به ترتیب ارائه می­شوند. در پایان نیز، طول عمر فناوری ترانس HTS و زمان استفاده موثر از آن آورده خواهد شد.

فهرست مطالب:

چکیده
مقدمه
فصل اول- معرفی فناوری در حد شناخت کلی..
ابررسانایی..
مهمترین خواص ابررساناها
تئوری عبور جریان..
تغییر فاز در ابررسانا
ابررساناهای با دمای بحرانی بالا یا HTS..
اصطلاحات فنی سیم های HTS..
متعلقات تجهیزات HTS..
ترانسفورماتورهای HTS.. 9
ترانسفورماتورهای ابررسانا
آزمایش موفقیت آمیز ترانسفورماتورهای ابررسانای HTS..
فناوری ترانسفورماتورهای HTS در جهان..
نتیجه گیری..
فصل دوم- مزایا، کاربرد و موارد استفاده از فناوری..
مقدمه.
مزایای ترانسفورماتورهای HTS..
حجم و وزن کمتر نسبت به ترانس های معمولی..
طول عمر بیشتر.
راندمان بالاتر.
محدود کردن جریان خطا
بی ضرر بودن برای محیط اطراف ترانسفورماتور
مزایای اقتصادی..
انتقال و انطباق فناوری..
کاربردهای فناوری HTS..
کاربرد ابررسانا در ذخیره سازهای مغناطیسی..
محدود کننده جریان خطا
سوئیچ های ابررسانا
آهنربای مغناطیسی..
کابل HTS..
موتورها و ژنراتورها
ژنراتورهای هیدرودینامیک مغناطیسی..
ترانسفورماتورهای HTS..
کاربرد ابررسانا در فیلترهای رادیویی..
فصل سوم- مشکلات موجود در به کارگیری فناوری ترانسفورماتور HTS..
مقدمه.
راندمان کم سیستم تبرید.
استحکام مکانیکی سیم های ابررسانا
تلفات AC...
مواد عایقی..
هسته.
هزینه.
مشکلات اجرایی..
فصل چهارم- مشخصات عرضه کنندگان فناوری ترانسفورماتور HTS..
مقدمه.
تولیدکنندگان کنندگان تجهیزات ابررسانا
شرکت AMSC...
شرکت SuperPower.
شرکت Sumitomo Electric.
تولیدکنندگان ترانسفورماتورهای قدرت...
شرکت Waukesha Electric Systems.
شرکت ABB...
شرکت Fuji Electric.
شرکت TBEA...
فصل پنجم- هزینه خرید و انتقال فناوری ترانسفورماتور HTS..
مقدمه.
هزینه خرید و انتقال فناوری ترانسفورماتور HTS..
فصل ششم- روش های انتقال فناوری ترانسفورماتور HTS..
مقدمه.
ملاحظات مربوط به انتقال فناوری HTS..
روش های انتقال تکنولوژی..
انتقال تکنولوژی از طریق سرمایه گذاری مشترک (Joint Venture)
انتقال تکنولوژی از طریق استخدام پرسنل علمی و فنی..
انتقال تکنولوژی از طریق واردات کالاهای سرمایهای و ماشین آلات...
بیع متقابل، سرمایه گذاری خارجی..
لیسانس....
مهندسی معکوس....
روش کلید در دست (آماده بهره برداری)
مقایسه روش های انتقال فناوری ترانسفورماتور HTS..
نتیجه گیری..
فصل هفتم- منابع مورد نیاز برای انتقال و انطباق فناوری در کشور
مقدمه.
انطباق فناوری ترانسفورماتور HTS در ایران..
ایجاد واحدهای تحقیق و توسعه.
استفاده از پتانسیل های موجود در کشور
بازاریابی..
آموزش پرسنل..
انطباق فنی ترانسفورماتورهای HTS..
امکان سنجی اقتصادی ترانس های HTS..
فهرست جداول

جدول ( 1-1 ) - بازار ترانسفورماتورهای قدرت در سالهای 1995 و 199615جدول (1-2): پروژه های ترانسفورماتورHTS در جهان15جدول( 1-3 ): مشخصات نوارهای HTS و توالیهای سیم پیچی در ترانسفورماتور HTS ساخت SEC- Fuji و دانشگاه Kyushu17جدول (1-4): پارامترهای طراحی ترانسفورماتور(Fuji)18جدول (1-5): مشخصات برخی از ترانس های مورد استفاده در کشور19جدول (1-6): مشخصات برخی از ترانس های HTS که در جهان به صورت آزمایشی ساخته شده اند19جدول (4-1) : مشخصات ابررسانای 344 superconductors37جدول (4-2) : مشخصات ابررسانای HTS Hermetic Wire38جدول (4-3) : مشخصات ابررسانای HTS Cryoblock wire38جدول (4-4) : مشخصات ابررسانای HTS Compression Tolerant Wire39جدول (4-5) : مشخصات ابررسانای HTS High Current Density Wire39جدول (4-6) : مشخصات ابررسانای HTS High Strength Plus Wire40جدول (4-7) : مشخصات ابررسانای شرکت Sumitomo41جدول (4-8) : شرکت های فعال در زمینه فناوری HTS46

 

 


دانلود با لینک مستقیم

دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

اختصاصی از کوشا فایل دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری


دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

 

 

 

 

 

 




فرمت فایل : word(قابل ویرایش)

تعداد صفحات : ۲۶۸

عنوان پروژه : مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری (علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس)

توضیحات:

پروژه علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق یک استان با جداول و عکس و فهرست منبع، پیشگفتار: گزارش حاضر، گزارش نهایی پروژه « بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق یک استان » می‎باشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته…

پیشگفتار:
گزارش حاضر، گزارش نهایی پروژه « بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق یک استان » می‎باشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته می‏شود.
در روال انجام پروژه مدل‎سازیهای مربوط به حالت دائمی و گذرای ترانسفورماتور و سایر اجزای پست شامل CT، PT، برقگیر، کلید و سیستم زمین مورد بررسی دقیق قرار گرفته و بهترین مدلها ارائه شده است. در ادامه بر روی دو پست نمونه تل‎بیضاء و نورآباد شبیه‎سازی حالت گذرا انجام شده و با تغییر مقاومت زمین و مقدار انرژی صاعقه مربوط به آنها بر روی ترانسفورماتورهای مذکور مورد بررسی قرار گرفته و نتایج آن در گزارش ‘شبیه‎سازی و بررسی اجزای اصلی پست’ ارائه گردیده است.
در گزارش حاضر دلایل اصلی ایجاد خطا که منشاء آنها داخلی یا خارجی می‎تواند باشد بررسی شده است. از طرف دیگر با توجه به اطلاعات مربوط به خطاهای ترانسفورماتورهای KV66، دلایل اصلی ایجاد خطاها استخراج و روشهای پیشگیرانه توضیح داده شده است (در فصل ششم گزارش حاضر) که از این میان می‎توان به روشهای پیشگیرانه اصلی مونیتورینگ هیدروژن و آشکارسازی تخلیه جزئی اشاره نمود.

فهرست مطالب:

پیشگفتار
مقدمه
فصل اول
1- خطاهای داخلی ترانسفورماتور
1-2- اشکالات در مدارت مغناطیسی ترانسفورماتور
1-2-1-اثر جریان های گردابی ناخواسته
1-2-2-وجود ذرات کوچک هادی
1-2-3-عدم متعادل شدن نقطه خنثی ترانسفورماتور
1-2-4-اثر هارمونیک ها در افزایش تلفات ترانسفورماتور
1-3- اشکالات بوجود آمده در سیم پیچ ها شامل کویل ها، عایق کاری های سیم پیچ ها و ترمینالها
1-3-1-اتصال کوتاه در سیم پیچ ها ناشی از محکم نبودن آنها
1-3-2-عدم خشک کردن کامل ترانسفورماتور
1-3-3-اتصالات بد بین سیم پیچ ها
1-3-4-نیروهای الکترودینامیکی ناشی از اتصال کوتاه
1-4- اشکالات در عایقهای ترانسفورماتور شامل روغن، کاغذ و عایقکاری کلی
1-4-2- اشکالات ناشی از ضعف عایقی کاغذ و عایقکاری کلی ترانسفورماتور
1-5- اشکالات ساختاری
فصل دوم
2-1- مقدمه
2-2-خطاهای الکتریکی خارج ترانسفورماتور
2-2-1-صاعقه (Lightning)
2-استفاده از عایق غیرهمگن
2-2-2- اضافه ولتاژهای ناشی از قطع و وصل (کلیدزنی)
2-2-3- اضافه ولتاژهای ناشی از رزونانس
2-2-4- فرورزونانس در خطوط انتقال انرژی ولتاژ بالا
2-2-5- اضافه ولتاژهای موقت
2-2-6- جریان هجومی در ترانسفورماتورها
2-2-7- اتصال نادرست ترانسفورماتور و تپ چنجر
2-2-8- خطاهای ناشی از اضافه بار
2-3- خطاهای مکانیکی
2-3-1- اتصالات سخت لوله-شمش در پستها
2-3-2- در نظر نگرفتن اثرات زلزله، سیل و طوفان بر روی فونداسیون‎ها و تجهیزات پست
2-3-3- حمل و نقل غیر صحیح ترانسفورماتورها
2-3-4- نبود حفاظتهای جلوگیری کننده از ورود حیوانات
2-4- خطاهای شیمیایی
2-4-1- زنگ‎زدگی بدنه ترانسفورماتور
2-4-2- فرسودگی بیش از حد ترانسفورماتور به علت عدم سرویس به موقع
فصل سوم
3-1- مقدمه
3-2- مشخصات مورد انتظار روغن ترانسفورماتور
3-3- نقش کاغذ در ترانسفورماتور
3-4- تاثیر رطوبت در خواص عایقی کاغذ
3-5- اثر رطوبت در روغن ترانسفورماتور
3-6- راههای ورود رطوبت به ترانسفورماتور و جلوگیری از آن
3-7- تاثیرات مخرب تضعیف مواد عایقی ترانسفورماتور
3-8- برنامه آزمایشهای روغن ترانسفورماتور
3-8-1- آزمایش روغن قبل از پرکردن ترانسفورماتور با آن
3-8-2- آزمایش روغن بعد از پر کردن ترانسفورماتور
3-8-3- آزمایش دوره ای روغن
3-9- تصفیه روغن ترانسفورماتور
3-9-1- تصفیه فیزیکی روغن ترانسفورماتور
3-9-2- تصفیه فیزیکی – شیمیایی روغن ترانسفورماتور
3-10- شرایط نمونه برداری روغن ترانسفورماتور
فصل چهارم
4-1- مقدمه
4-2- ایجاد گاز در ترانسفورماتور
4-2-1- ایجاد قوس الکتریکی با انرژی زیاد در داخل روغن
4-2-2- ایجاد قوس الکتریکی با انرژی کم در داخل روغن
4-2-3- گرمای بیش از حد در محلهای به خصوص
4-2-4- تخلیه کرونا در داخل روغن ترانسفورماتور
4-2-5- تجزیه عایق ترانسفورماتور در اثر گرما
4-3- حلالیت گازها در روغن ترانسفورماتور
4-4- مقادیر مورد نیاز برای آنالیز گازها
4-5- مراحل آزمایش روش گاز کروماتوگرافی جهت مشخص کردن نوع خطا
4-6- حلالیت گازها در روغن ترانسفورماتور
4-7- خرابی عایق سلولزی ترانسفورماتور (کاغذ ترانسفورماتور)
4-7-1- امتحان غلظت و حل شده در روغن
4-7-2- امتحان غلظت Co2 و Co در گازهای آزاد بدست آمده از رله های جمع آوری گاز
4-8- کاربرد روش تحلیلی در گازهای آزاد درون رله های جمع آوری گاز
4-9- محاسبه غلظتهای گاز حل شده معادل در روغن ترانسفورماتور با غلظتهای گاز آزاد
4-10- روش تشخیص خطا با استفاده ازگازهای حل شده و حل نشده در روغن ترانسفورماتور
4-10-1- تعیین نرخ رشد گازها
4-10-2- ارائه فلوچارت تصمیم گیری
4-10-3- تعیین زمانهای آزمایش گاز کروماتوگرافی روغن
4-10-4- تشخیص نوع خطا با استفاده از گازهای متصاعد شده
4-10-5- تشخیص نوع خطا با استفاده از نسبت گازهای متصاعد شده
فصل پنجم
روشهای شناسایی محل خطا در ترانسفورماتور
5-1- روشهای غیر الکتریک تعیین خطا
5-1-1- طبیعت صوت
5-2-2- انواع سیستمهای آکوستیکی
5-3- روشهای الکتریکی تعیین محل خطا
5-3-1- مانیتورینگ وضعیت ترانسفورماتور در حال کار با استفاده از روش آزمون ضربه ولتاژ پایین LVI
5-3-2- عیب یابی ترانسفورماتور‏های قدرت با استفاده از روش تابع انتقال عیب یابی در محل
5-3-3- روش آشکار سازی بر اساس تخلیه جزئی
سیستم GULSKI AND KREUGER
5-3-4-آنالیز با استفاده از روش مونت کارلو یا سیستم HIKITA
فصل ششم
6- خطاهای بوجود آمده در ترانسفورماتورهای 66 کیلوولت برق استان
مقدمه: آشنایی با صنعت برق در استان تا سال 1378
6-1- آمار حوادث منجر به ایجاد خطا و یا خروج ترانسفورماتور از شبکه
ضمیمه 1
ضمیمه 2
فهرست اشکال

شکل (1-1): خطا در نگهدارنده فلزی سیم پیچ به واسطه اتصال کوتاه درونی
شکل (1-2): خرابی پایین سیم پیچ فشار ضعیف بواسطه ورود رطوبت
جدول (1-1): مقادیر ضریب
شکل (1-3): ضریب پیک جریان اتصال کوتاه
شکل (1-4): اثر نیروهای اتصال کوتاه بر سیم پیچ متقارن
شکل (1-5): تغییر شکل حلقه های درونی و تعداد جدا کننده ها
شکل (1-6): تاثیر نیروی اتصال کوتاه بر سیم پیچ غیر متقارن
شکل (1-6): تغییر شکل در اثر تنش فشاری
شکل (1-7): تغییر شکل توسعه یافته در طول سیم پیچ
شکل (1-8): کج شدن هادیهای سیم پیچی در اثر نیروی محوری
شکل (1-9): تاثیرات اتصال کوتاه خارجی روی سیم پیچ
شکل (2-1) -شکل موج استاندارد ضربه صاعقه
شکل (2-2): مدار معادل ترانسفورماتور هنگام برخورد ضربه صاعقه
شکل (2-3): توزیع ولتاژ ضربه بر حسب های مختلف
شکل (2-4): شیلد الکترواستاتیک برای یکنواخت کردن توزیع ولتاژ
شکل (2-5): توزیع ولتاژ در ترانسفورماتور بر حسب زمان پیشانی موج ضربه
شکل (2-6): شکل موج ضربه اصابت شده
شکل (2-7): شکل موج ضربه استاندارد قطع و وصل
شکل (2-8): قطع جریان توسط کلید در بارهای اندوکتیو کم
شکل (2-9): منحنی شارهای مغناطیسی در هسته
شکل (2-10) -منحنی مغناطیسی هسته
شکل (2-11): دمای نقاط ترانسفورماتور بر حسب دمای محیط
شکل (2-12): یک نمونه از اتصالات لوله‎ا‎ی ترانسفورماتور
شکل (2-13): اتصالات اصلاحی لوله
شکل (2-14): شکل مناسبی از اتصالات لوله به همراه سیم
شکل (2-15) -نصب عایق بر روی شینه‎ها در پست
شکل (3-1): رابطه درجه پلیمریزاسیون با طول عمر کاغذ فرسودگی حالت ایده آل عمر طبیعی
شکل (3-2): تاثیر عمل استخراج آب و اسید از روغن ترانسفورماتور بر طول عمر کاغذ فرسودگی حالت ایده ال عمر طبیعی
شکل (4-2): فلوچارت تعیین نوع خطا با استفاده از گازهای حل شده و حل نشده در روغن
شکل (4-3): شناسایی نوع خطا با توجه به گازهای متصاعد شده
شکل (4-4): فلوچارت روش تشخیص خطا به روش DOERNENBURG
شکل (4-5): فلوچارت روش تشخیص خطا به روش ROGER
شکل (5-1): مسیر انتشار صوت
شکل (5-2): معادل شدت صوت و مدار الکتریکی
شکل (5-3): مدار میکروفون خازنی
شکل (5-4): مکان یابی منشا پالسهای فراصوتی در هوا به وسیله یک میکروفن فراصوتی
شکل (5-5): مکان یابی نستباً دقیق تخلیه جزیی با استفاده از یک هدایتگر ساده موج
شکل (5-6): فرم شماتیکی از سیتم مکان یاب صوتی پالسهای تخلیه جزئی
شکل (5-7): نشکل شماتیک مدار أشکار ساز صوتی تخلیه جزئی در روغن ترانسفورماتور
شکل (5-8): ولتاژ و جریان نمونه ضبط شده
شکل (5-9): اندازه‎گیری ادمیتانس بر روی ترانسفورماتور سه فاز
شکل (5-10): مقایسه اندازه‎گیری ادمیتانس توسط اندازه‎گیری مستقیم ولتاژ در C-TAP
شکل (5-11): مدل دو قطبی در نظر گرفته شده برای ترانسفورماتور
شکل (5-12): عیب یابی در محل برای ترانسفورماتورهای قدرت
شکل (5-13): ارزیابی آزمون اتصال کوتاه یک ترانسفورماتور MVA125 با روش تابع تبدیل
شکل (5-14): تابع تبدیل دو ترانسفورماتور مشابه MVA125
شکل (5-15): استفاده از خواص تقارنی در ترانسفورماتور قدرت MVA125
شکل (5-16): شبیه سازی تجربی تغییر شکل شعاعی سیم پیچی تپ ترانسفورماتور MVA200
شکل (5-17): شبیه سازی تجربی انتقال محوری دو سیم پیچ استوانه‎ا‎ی
شکل (5-18): مدار اصلی آشکار سازی الکتریکی تخلیه جزیی
شکل (5-19): نحوه قرار گرفتن امپدانس آشکار ساز
شکل (5-20): اجزاء مدار آشکار ساز مستقیم تخلیه جزئی
شکل (5-21): بلوک دیاگرام قسمت آنالوگ
شکل (5-22): بلوک دیاگرام مدار دنبال کننده پالس (PTC)
شکل (5-23): تجهیزات اندازه گیریهای توزیع دامنه تخلیه جزئی
شکل (5-24): بلوک دیاگرام قسمت دیجیتال
شکل (5-25): مدار استفاده شده در سیستم GULSKI
مشخصه های و برای یک حفره دایروی
مشخصه های و برای یک حفره در تماس الکترود
مشخصه های و برای یک حفره باریک
مشخصه های و برای حفره های چند گانه
مشخصه های و برای یک حفره مسطح
شکل (5-26) – مشخصه تخلیه جزئی اندازه‎گیری شده
مشخصه های و برای تخلیه سطحی در هوا
مشخصه های و برای تریینگ روی یک هادی
مشخصه های و برای یک حفره به همراه تریینگ
شکل (5-26): مشخصه‎های تخلیه جزئی اندازه‎گیری شده (ادامه)
شکل (5-27): مدار تست برای اندازه گیریهای تخلیه جزئی در سیستم مونت کارلو
شکل (5-28): سنسور خازنی در داخل باس داکت
شکل (6-1): روند گسترش ظرفیت ایستگاه های فوق توزیع
شکل (6-2): تولید انرژی برق به تفکیک مناطق در سال 1378
شکل (6-3): تبادل انرژی شرکت های برق منطقه ای در سال 1378
شکل (6-4): تعداد و ظرفیت ترانس های کل کشور به تفکیک ولتاژ در پایان سال 1378
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس
ضمیمه 1
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس
شکل (2): فلوچارت روند عملکرد به منظور تعیین وضعیت ترانس
شکل (3): ارزیابی گازهای کلیدی
شکل (4): فلوچارت روش DOERNENBERG
شکل (7): فلوچارت روش ROGERS
شکل (6): مثلث DURVALبه منظور تعیین نوع خطا
شکل (7): آشکارساز هیدروژن موجود در روغن
شکل (8): اصول کار سنسورهیدران
شکل (9): شمایی دیگر از اصول کار سنسور هیدران
شکل (10): افزایش ناگهانی هیدروژن در ترانس MVA370 و KV230/735
شکل (11): مقدار هیدروژن در یک رآکتور شانت KV735
شکل (12): نرخ افزایش هیدروژن در ترانس KV8/13/500
شکل (13): تغییر هیدروژن در ترانس KV4/21 و MVA300
شکل (14): نمونه‌برداری از گاز با سرنگ
شکل (15): نمونه‌برداری از گازهای آزاد به روش جابجایی روغن
شکل (17): نمونه‌برداری از روغن با سرنگ
2شکل (18): اولین روش آماده‌سازی استاندارد گاز
شکل (20): نمونه‌ای از دستگاه STRIPPER
شکل (22): محل‌های نصب سنسور هیدران
شکل (23): نحوه نصب سنسور هیدران
ضمیمه 2
شکل (1): رله‎گذاری دیفرانسیلی درصدی برای حفاظت ترانسفورماتور
شکل (2): حفاظت دیفرانسیلی یک ترانسفورماتور
شکل (3): حفاظت دیفرانسیل ترانسفورماتور سه پیچه
شکل (4): ساختمان داخلی رله بوخهولتز
شکل (5): نحوه اتصال رله جریان زیاد زمین
شکل (7): رله توی‏بر
شکل (8): انواع برقگیرهای اکسید روی
فهرست جداول
جدول (3-1): آزمایشات و مشخصات مطلوب روغن قبل از پر کردن ترانسفورماتور با آن
جدول (3-2): آزمایشهای اضافی روی روغن قبل از برقدار کردن ترانسفورماتور
جدول (3-3): حد مشخصات روغن برای انجام تصفیه فیزیکی
جدول (3-4): حد مشخصات روغن برای انجام تصفیه فیزیکی- شیمیایی
جدول (4-1): گازهای تولید شده در روغن ترانسفورماتور در اثر معایب مختلف

جدول (4-2): تعیین نوع عیب حرارتی یا الکتریکی براساس نسبت گازهای حل شده در روغن ترانسفورماتور

جدول (4-3): تعیین بهتر و مشخص تر نوع عیب براساس نسبت گازهای حل شده در روغن ترانسفورماتور

جدول (4-4): حلالیت گازهای متفاوت در یک نوع روغن ترانسفورماتور
جدول (4-5): ضرایب استوالد در 20 و 50
جدول (4-6): غلظت گازهای حل شده در روغن
جدول (4-7): نوع عملکرد در رابطه با نتایج آزمایش TCG
جدول (4-8): نوع عملکرد در رابطه با نتایج آزمایش TDCG
جدول (4-9): حد نرمال گازهای حل شده در روغن
جدول (4-10): روش تشخیص نوع خطا با استفاده از نسبت گازها به روش DOERNENBURG
جدول (4-11): روش تشخیص نوع خطا با استفاده از نسبت گازها به روش ROGER
ضمیمه 1
جدول (1): تجمع گازهای حل شده درون روغن
جدول (2): دوره‌های نمونه‌برداری برحسب سطوح TCG
جدول (3): دوره‌های نمونه‌برداری بر حسب سطوح مختلف TDCG
جدول (4): مجمع گازهای حل شده درون روغن
جدول (5): نسبت گازهای کلیدی در روش DOERNENBERG
جدول (6): نسبت گازهای کلیدی در روش ROGERS
جدول (7): نسبت ROGRES با جزئیات بیشتر نقاط داغ
جدول (8): سطوح قابل قبول گازها برحسب عمرترانس
جدول (9): سطوح قابل قبول گازها برحسب نوع ترانس
جدول (10): سطوح خطرناک گازها برحسب نوع خطا
جدول (11): مقادیر خطرناک اتیلن بر حسب نسبت CO2/CO
جدول (12): ضرایب حلالیت برای روغن نمونه
جدول (13): حدود مجاز به منظور آشکارسازی
جدول (14): صحت مقادیر گازها


دانلود با لینک مستقیم

بررسی کامل ترانسفورماتورهای تک فاز و سه فاز

اختصاصی از کوشا فایل بررسی کامل ترانسفورماتورهای تک فاز و سه فاز دانلود با لینک مستقیم و پرسرعت .

بررسی کامل ترانسفورماتورهای تک فاز و سه فاز


بررسی کامل ترانسفورماتورهای تک فاز و سه فاز

 

 

 

 

 

چکیده :

امروزه ترانسفورماتورهای تک فاز و سه فاز یکی از اصلی ترین تجهیزات الکتریکی مورد استفاده شده در صنعت برق می باشد.همانطور که می دانید ، ترانسفورماتور وسیله ای الکترومغناطیسی ساکن است که می تواند انرژی جریان متناوب را از مدار (سیم پیچ) به مدار دیگر فقط با حفظ اندازه فرکانس انتقال دهد و معمولاً به عنوان مبدل ولتاژ به کار می رود. یک ترانسفورماتور از دو سیم پیچ که بر روی یک هسته مغناطیسی (مثلاً هوا یا آهن) پیچیده شده اند، تشکیل می شود.

اساس کار ترانسفورماتورهای الکتریکی :

با عبور جریان متناوب از سیم پیچ اول ( اولیه )، در اطراف آن میدان مغناطیسی متناوبی ایجاد شده و از طریق هسته مسیر خود را می بندد و سیم پیچ دوم ( ثانویه ) را قطع می کند. بنابراین بر اساس قانون فاراده ولتاژی در سیم پیچ ثانویه القاء می شود که اگر مدار این سیم پیچ از طریق مصرف کننده ای بسته شود جریانی در آن جاری می شود، یعنی انرژی الکتریکی ( به صورت کاملاً مغناطیسی ) از سیم پیچ اول به دوم منتقل می شود.

فهرست مطالب :

فصل اول : ترانس تک فاز

1-1-    مقدمه

1-2-    اساس کارترانسفورماتور

1-3-    ساختمان ترانسفورماتور تکفاز

1-3-1-   هسته :

1-3-2-  سیم پیچ ها :

1-4-    ترانسفورماتور ایده آل ( تکفاز )

1-5-    محاسبه تعداد دور سیم پیچها

1-6-    زاویه اختلاف فاز بین ولتاژ اولیه و ثانویه

1-7-    تبدیل امپدانس توسط ترانس

1-8-    ترانسفورماتور واقعی ( حقیقی ) تکفاز

1-8-1-       حالت بدون بار :

1-9-    مدار معادل ترانسفورماتور واقعی

1-9-1-       تلفات مسی ( R.I2 ) :

1-9-2-       تلفات هسته :

1-9-3-       شار نشتی :

1-9-4-       اثر جریان مغناطیس کننده :

1-10-  ترانسفورماتور ایده آل بدون بار

1-11-  ترانسفورماتور واقعی بدون بار ( با تلفات اما بدون نشت مغناطیسی )

1-12- ترانسفورماتور واقعی با بار ( با مقاومت سیم پیچ ها و بدون نشت مغناطیسی )

1-13-  ترانسفورماتور واقعی با بار ( با مقاومت سیم پیچ ها و با نشت مغناطیسی )

1-14-  مدار معادل ترانسفورماتور واقعی از دید اولیه

1-15-  تنظیم ولتاژ ( رگولاسیون ولتاژ )

1-16-  دیاگرام ساده شده و نمودار فیزوری ترانسفورماتور

1-17-  نمودار فیزوری ترانسفورماتور

1-18-  دیاگرام رگولاسیون کاپ

1-19-  ولتاژ اتصال کوتاه ترانس

1-20-  مشخصه خارجی ترانسفورماتور

1-21-  تلفات و راندمان ترانسفورماتور

1-22-  تلفات هسته ( آهنی )

1-23-  بررسی ضریب توان (قدرت ) ترانس

1-24-  آزمایش های ترانسفورماتور

1-24-1-   آزمایش بی باری یا مدار باز (OCT یا NLT)

1-24-2-     آزمایش اتصال کوتاه (SCT)

1-25-  راندمان شبانه روزی ( 24 ساعتی )

1-26-  راندمان سالیانه

1-27-  مقادیر نامی ( اسمی ) ترانسفورماتور

1-28-  جریان یورشی ( هجومی ) ترانس

1-29-  جریان اتصال کوتاه در ترانس

1-30- جریان گذرا :

1-30-1- جریان اتصال کوتاه دائم :

1-31-  موازی کردن ترانس های تکفاز

1-32-  حالت های مختلف موازی کردن دو ترانس

1-32-1-     حالت ایده آل :

1-32-2-     حالت با نسبتهای ولتاژ مساوی :

1-32-3- حالت با نسبت های ولتاژ نابرابر :

1-33-  اتوترانس ( ترانسفورماتور صرفه ای )

1-34-  فرمول صرفه‌جویی در مس

1-35-  تبدیل ترانسفورماتور دو سیمه به اتوترانس

1-35-1-   به صورت پلاریته افزایشی

1-35-2-   به صورت پلاریته کاهشی

1-36-  ترانس‌های اندازه‌گیری ( PT , CT)

1-36-1- ترانسفورماتور جریان :

1-36-2-   ترانسفورماتور ولتاژ : PT

فصل دوم : ترانسفورماتورهای سه فاز

2-1-    معرفی و ساختمان ترانس سه فاز

2-2-    ترانسفورماتورهای سه فاز یکپارچه :

2-3-    روش‌های اتصال سیم‌پیچی‌های ترانسفورماتور سه فازه عبارتند از :

2-3-1-     ستاره-ستاره(Y/Y )

2-3-2-     اتصال مثلث-مثلث یا دلتا دلتا (Δ / Δ )

2-3-3-     اتصال ستاره- مثلث ( Y/ Δیا Yd)

2-3-4-     اتصال مثلث- ستاره (Δ/Y یا Dy)

2-3-5-     اتصال ستاره- زیگزاگ (Y/Z)

2-3-6-     اتصال مثلث-زیگزاگ (Δ/Z)

2-3-7-     اتصال مثلث باز (V/V)

2-3-8-     اتصال ستاره باز – مثلث باز

2-3-9-       اتصال اسکات (T/T)

2-3-10-   اتصال سه فاز T

2-4-    تنظیم ولتاژ در ترانسهای سه فاز

2-5-    گروه‌های اتصال (برداری) در ترانس سه فاز

2-6-    موازی کردن ترانس‌های سه فاز

2-6-1-     سهم بار دو ترانس سه فاز موازی

2-7-    هارمونیک‌ها در ترانسفورماتور

2-7-1-     هارمونیکها در ترانسفورماتور تکفاز:

2-7-2-   هارمونیک‌ها در ترانسفورتور سه فاز:

2-8-    معایب هارمونیک‌ها

2-8-1-     هارمونیک‌های جریان:

2-8-2-     هارمونیک‌های ولتاژ:

2-9-    روش‌های حذف هارمونیک‌ها

2-10-  تهویه (خنک کردن ) ترانسفورماتورها


دانلود با لینک مستقیم