کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

گزارش کارآموزی واحدهای تقطیر 80– 85 وکت کراکر پالایشگاه آبادان

اختصاصی از کوشا فایل گزارش کارآموزی واحدهای تقطیر 80– 85 وکت کراکر پالایشگاه آبادان دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی واحدهای تقطیر 80– 85 وکت کراکر پالایشگاه آبادان


گزارش کارآموزی واحدهای تقطیر 80– 85 وکت کراکر  پالایشگاه آبادان

دانلود گزارش کارآموزی واحدهای تقطیر 80 85 وکت کراکر  پالایشگاه آبادان

فرمت فایل: ورد قابل ویرایش

تعداد صفحات:81

 

 

 

 

 

  • فهرست مطالب

فصل اول

  • معرفی واحدهای موجود در پالایشگاه آبادان11
  • هدف 6
  • تاریخچه و معرفی پالایشگاه آبادان8
  • تاریخچه شهر آبادان7
  • ( واحد تقطیر نفت خام 80 ) .................... 14
  • فصل .... دوم
  • دستور العمل راه اندازی واحد تقطیر 85 .......... 35
  • (واحد تقطیر نفت خام 85)....................... 21
  • فصل .... سوم
  • روش بستن عادی کت کراکر.................. 79
  • شرح کلی واحد FCCU ........................... 41
  • واحد کت کراکر (FCCU) ........................ 38
  • منابع و ماخذ ....................81

 

هـدف:

هدف از کارآموزی و ارائه گزارش مربوط به آن ، آشنایی دانشجویان از نزدیک با کارهای عملی و مسائل اجرائی می باشد به طوریکه به آن ها فرصت داده شود آموخته های خود را با عمل تطبیق و کمبودها و نواقص احتمالی را درک و در رفع آن بکوشند. برگزاری مطلوب دوره های کار آموزی علاوه بر آشنایی کار آموز با شرایط، مشکلات و نیازهای محیط کار می تواند در معرفی قابلیتهای عملی، درجه اعتبار و توانمندیهای دانشجویان دانشگاه نقش تعیین کننده داشته باشد به علت تنوع مراکز صنعتی و خدماتی در کشور و برخورد متفاوت و ناهمگون آنها با امور کارآموزی در زمینه های مختلف مورد نیاز است و بدین طریق است که به کسب اعتبار بیشتر در بخشهای تولیدی و خدماتی ، جذب بیشتر فارغ التحصیلان در محیط های کاری، افزایش قراردادها و همکاری پژوهشی نائل خواهیم آمد.

تـاریخچه و معرفـی پـالایشگـاه آبـادان:

 پالایشگاه آبادان نخستین واحد تصفیه نفت خام در خاورمیانه است که در سال 1291هجری شمسی جهت تصفیه نفت خام میادین نفتی مسجد سلیمان در جنوب شرقی شهر آبادان در حاشیه رود مرزی اروند ساخته شده و شروع به کار کرد. این پالایشگاه در ابتدا با سه واحد تقطیر اولیه نفت خام 5و10و15 کار خود را آغاز نمود. ظرفیت اولیه پالایشگاه در آن زمان 2500 بشکه در روز بود ولی به تدریج این پالایشگاه توسعه یافت تا جایی که ظرفیت آن در سال 1330 هجری شمسی ( آغاز ملی شدن صنعت نفت) به حدود 5000 بشکه در روز رسید. پس از آن به واسطه عقد قرارداد شرکت ملی نفت با شرکت های آمریکائی و انگلیسی مجرب در این صنعت و احداث واحد کت کراکر که در نوع خود یک واحد صنعتی پیشرفته نادر در خاورمیانه بود و همچنین احداث واحدهای تقطیر در اتمسفر و خلأ با ظرفیتی بالاتر از 100 هزار بشکه در روز ظرفیت تصفیه نفت خام پالایشگاه تا حدود 600 هزار بشکه در روز افزایش یافت.

پالایشگاه آبادان با مساحتی بالغ بر 14 کیلومتر مربع و داشتن هشت واحد تقطیر در منطقه جنوب و مجتمع کت کراکر و تبدیل کاتالیستی و واحدهای روغن سازی در منطقه شمال پالایشگاه و ظرفیت تصفیه نفت خام بالغ بر 670 هزار بشکه در روز تا قبل از مهر ماه 1359 به عنوان بزرگترین پالایشگاه جهان محسوب می شد. تا اینکه در صبحگاه سی و یکم شهریور ماه 1359 کارکنان برای فعالیتهای روزمره خویش عازم پالایشگاه بودند تا مثل همیشه با مونس و یار دیرینه خود همنشین شوند که یکباره ناله شوم استکبار از لوله های خمپاره و توپ و تانک صدامیان برخاست و این هویت عظیم آماج تیرهای حقد و کین قرار گرفت و با زبانه کشیدن آتشی مهیب ، دود سراسر آسمان شهر را پوشاند.

 در طول جنگ کارکنان فداکار این پالایشگاه با تشکیل ستادهای اضطراری و  تقدیم بیش از 500 شهید و اسیر و با اتکال به خداوند بزرگ همچنان سپر بلای این پالایشگاه بودند. سرانجام در سال 1368 پس از 9 سال شعله های همیشه سوزان این پالایشگاه در رگهای آسمان شهرآبادان خونی تازه جاری کردند.

 

پـالایشگاه آبـادان و تولیـد 600 هزار بشکـه در روز:

 در حال حاضر پالایشگاه آبادان با بازسازی و مرمت کلیه واحدهای تقطیر و احداث واحدهای تقطیر در خلأ جدید و افزایش ظرفیت واحد85 که همگی در سال 1383 انجام و افتتاح گردیدند، روزانه 450 هزار بشکه نفت خام ترش و شیرین را تصفیه می نماید. که با این مقدار این پالایشگاه بین پالایشگاه های کشور در تراز اول قرار می گیرد.

 در راستای این طرح ها مسوولین محترم شرکت ملی نفت ایران به همراه مسوولین پالایشگاه در سال جاری 1390 با احداث واحد تقطیر جدید با ظرفیت 180 هزار بشکه در روزو همچنین ایجاد مجتمع کت کراکر جدید توسط ریاست محترم جمهورجناب آقای دکتر محموداحمدی نﺰاد ظرفیت این پالایشگاه را به ظرفیتی بیش از ظرفیت سالهای قبل از انقلاب رساندند.

 لازم به ذکر است که پالایشگاه آبادان دارای یک بندر صادرات فرآورده های نفتی به نام بندر ماهشهر است. این بندر با در اختیار داشتن 18 اسکله عظیم، مخزنگاه مواد نفتی، دستگاههای بارگیری، مخلوط کن های نفتی، وسایل بارگیری دریایی و ... قرار است نفتکشهایی با حداکثر ظرفیت حدود 50 هزار تن را در خود جای دهد.


دانلود با لینک مستقیم


گزارش کارآموزی واحدهای تقطیر 80– 85 وکت کراکر پالایشگاه آبادان

دانلود پاورپوینت تقطیر در خلاء

اختصاصی از کوشا فایل دانلود پاورپوینت تقطیر در خلاء دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت تقطیر در خلاء


دانلود پاورپوینت تقطیر در خلاء

پالایشگاه نفت یک واحد صنعتی است که در آن نفت خام به مواد مفیدتری مانند سوخت جت و هواپیما، سوخت دیزل، بنزین، آسفالت و قیر، گاز مایع شده و بسیاری دیگر از فرآورده‌های نفتی تبدیل می‌گردد. پالایشگاه‌های نفت به طور معمول واحدهای صنعتی بزرگ و پیچیده‌ای می‌باشند که در آنها واحدهای مختلف توسط مسیرهای لوله کشی متعددی به هم پیوند داده شده‌اند.

واحد تقطیر به عنوان اصلی ترین بخش پالایشگاه وظیفه ی تفکیک نفت خام به محصولات را داراست.

 واحد تقطیر در یک پالایشگاه شامل دو قسمت زیر  می باشد: 

1- تقطیر اتمسفری (ADT)

2- تقطیر خلا (VDT)

اساس کار تقطیر تفاوت در نقطه ی جوش مواد است.واحد تقطیر خلا را می توان کامل کننده ی تقطیر اتمسفری در نظر گرفت.

نفت خام ورودی به پالایشگاه بعد از آن که ترکیبات سبک آن در ستون تقطیر اتمسفری جدا شد، وارد ستون تقطیر خلا می شود.

چرا تقطیر خلا؟!

آن چه در پایین ستون تقطیر اتمسفری باقی مانده، سازنده های سنگین است که در صورت اعمال حرارت بیشتر پدیده ی شکست مولکولی بوجود می آید.راه حل استفاده ار تقطیر در فشاری پایین تر است که تقطیر در خلا نامیده می شود.

تحقیقات نشان می دهند بیشتر ذخایر نفتی دنیا از نفت‌های فوق‌سنگین و شن‌های نفتی تشکیل شده‌است.

نحوه ی عملکرد واحد

فشار عملکردی ستون تقطیر خلا بین 15 تا 40 میلیمتر جیوه است.فشار کمتر از فشار اتمسفری در فرایند تقطیر سبب می شود که خوراک در دمایی کمتر به جوش آید و شکست مولکولی رخ ندهد.

جریان خروجی از پایین ستون تقطیر اتمسفری ابتدا وارد یک کوره می شود و دمای جریان خروجی مقداری بین 380 تا 450 است.

بخار آب تزریق شده به کوره باعث افزایش سرعت جریان، کاهش کک و کاهش فشار جزیی هیدروکربن ها می شود.

جریان پس از گذشت از کوره وارد ستون تقطیر خلا می شود.

در ستون تقطیر خلا، خلا سازی  بوسیله ی اجکتور ها انجام می گیرد.

شامل 18 اسلاید powerpoint

 


دانلود با لینک مستقیم


دانلود پاورپوینت تقطیر در خلاء

شناسایی فازی online برج تقطیر MIMO با استفاده از مدل TS

اختصاصی از کوشا فایل شناسایی فازی online برج تقطیر MIMO با استفاده از مدل TS دانلود با لینک مستقیم و پر سرعت .

شناسایی فازی online برج تقطیر MIMO با استفاده از مدل TS


پایان نامه ارشد برق شناسایی فازی online برج تقطیر MIMO با استفاده از مدل TS

چکیده

در این پایان نامه، شناسایی فازی سیستم غیرخطی MIMO برج تقطیر بر اساس مدل فازی (Takagi-Sugeno(TS، بررسی خواهد شد و بر روی مدل عمومی distillation column شبیه سازی شده در دو حالت LV-configuration و uncontrolled column مورد آزمایش قرار خواهد گرفت. لازم به تذکر است که در این پایان نامه شناسایی و کاربرد آن در سیستم های online مورد توجه اساسی میباشد.

در حالت offline یعنی هنگامیکه کل داده ها در ابتدای پروسه آموزش در دسترس است، ساختن مدل فازی TS در دو مرحله انجام می گیرد. در مرحله اول مجموعه های فازی (توابع عضویت) در قسمت مقدم rule تعیین میشوند. میتوان این مرحله را با استفاده از اطلاعات اولیه از پروسه و یا بوسیله تکنیک های data-driven انجام داد. در مرحله دوم پارامترهای مقدم هریک از زیر مدلهای خطی با استفاده از الگوریتم RLS محاسبه میشود. مشکل اصلی بدست آوردن مدل، شناسایی توابع عضویت مقدم است که در حقیقت مسئله بهینه سازی غیر خطی است. چونکه مدل فازی TS بدست آمده وابسته به توابع عضویت است، انتخاب مجموعه های فازی بر دقت مدل اثر خواهد گذاشت. بنابراین یکی از نکات اساسی برای بهبود دقت مدل، تنظیم دقیق مجموعه های فازی , بگونه ای است که خطای متوسط مربعی (mean-square) بین مدل تخمین زده شده و سیستم واقعی مینیمم شود.

در حالت online تمام داده ها را در ابتدای پروسه آموزش در اختیار نداریم، بنابراین آموزش مدل فازی TS باید با اولین نمونه داده شروع شود. در این شرایط، ساختار مدل در ابتدا در دست نیست و به صورت تدریجی در خلال پروسه شناسایی تکامل می یابد. آموزش پیوسته online مدل TS، بر پایه متد clustering بازگشتی و غیر تکرارشونده بنا شده است که قسمت مقدم را تخمین می زند و الگوریتم RLS که پارامترهای زیر مدلهای خطی تالی را محاسبه می کند. در این روش، ساختار مدل در ابتدا شناخته شده نیست و در طی پروسه شناسایی تکامل می یابد. (قابل ذکر است که این تکامل بسیار آهسته تر از تکامل پارامترهای مدل صورت می گیرد.) در مدل eTS، پتانسیل داده جدید برای update کردن پایگاه قوانین استفاده میشود. در این الگوریتم داده های پرت هیچگونه شانسی برای اینکه به عنوان مرکز rule انتخاب شوند، ندارند. دلیل این مسئله روش خاص تعریف مراکز rule است. این مسئله بسیار مهم است که آموزش بدون هیچ گونه دانش اولیه از سیستم و فقط با استفاده از اولین داده آغاز میشود. این ویژگی جالب توجه کاربرد این شیوه را در بسیاری از سیستم های adaptive سودمند می سازد.

مشکل اصلی در این شیوه، تولید نامحدود rule در طی پروسه شناسایی مخصوصا در شرایط اولیه است. در این پایان نامه، دو شیوه برای مقابله با این مسئله ارایه شده است. در روش اول، شرایط ایجاد rule در الگوریتم اصلی به گونه ای اصلاح شده است که بتواند نرخ تولید rule را مخصوصا در آغاز پروسه آموزش کنترل کند که باعث کاهش تعداد rule می شود. این اصلاح باعث می شود که الگوریتم در شرایط اولیه با احتیاط بیشتری اضافه کردن rule را انجام دهد. سپس هنگامیکه اطلاعات بیشتری بدست آمد و پروسه شناسایی پیشرفت کرد، شرایط تولید rule به حالت اولیه اش برمیگردد وهمانند الگوریتم اصلی عمل میکند. روش دوم، یک مکانیزم جدید نظارت برای شناسایی و از بین بردن rule های غیر ضروری با استفاده از forgetting factor ارایه شده است.

همچنین در این پایان نامه، متد آنالیز برهم کنش برای سیستم های چندمتغیره ارایه شده است. در بسیاری از کاربردهای عملی، مدل کمی دقیق سیستم در دست نیست و یا بدست آوردن آن بسیار مشکل است. در این متد، سیستم غیرخطی MIMO ابتدا با استفاده از الگوریتم eTS مدلسازی میشود، سپس برهم کنش سیستم چندمتغیره حول یک نقطه کار خاص بر اساس RGA بررسی می شود.

مقدمه

بسیاری از پروسه های صنعتی دارای سیستم های غیرخطی چند متغیره با چندین ورودی و چندین خروجی می باشند که کوپلینگ متقابل پیچیده ای دارند. مدلسازی چنین پروسه پیچیده ای کار بسیار سختی می باشد. بکار بستن تکنیک های متداول مدلسازی سخت و یا حتی غیر قابل استفاده در چنین مسایل عملی می باشد . یک راه حل مفید دیگر استفاده از شیوه های شناسایی data-driven است که از داده های تجربی به دست آمده و از ورودی و خروجی پروسه استفاده می کند.

روش های مدلسازی فازی rule base به دلیل انعطاف پذیری ذاتی شان در ساختن مدلها ازداده های ورودی و خروجی توجه بسیاری را به خود جلب کرده اند. از میان متدهای مختلف فازی، تکنیک مدلسازی TS به دلیل قابلیت بالای محاسباتی بیشتر مورد توجه قرار گرفته است. مدل فازی TS شامل قانون های اگر – آنگاه در مقدم و توابع ریاضی در بخش تالی خود می باشد. بنابراین وظیفه شناسایی مدل فازی TS تعیین پارامترهای غیرخطی توابع عضویت مقدم و پارامترهای خطی قانون های تالی می باشد.

تحقیقات اخیر بر روی تکنیک های data-driven که در آن مدل های فازی دینامیکی با استفاده از داده های ورودی – خروجی اندازه گیری شده قابل آموزش هستند، متمرکز شده است.

آموزش Online مدل فازی TS نیازمند شناسایی بازگشتی برای تخمین ساختار مدل و همچنین تخمین پارامترهای تالی می باشد. از آن رو که تمام داده های ورودی – خروجی در آغاز پروسه آموزش در دسترس نیست، ارائه روش شناسایی Online که در آن ساختار مدل و پارامترها به صورت تدریجی تکامل می یابند ضروری است که این روش بدون در اختیار داشتن دانش اولیه از پروسه، با اولین داده ورودی شناسایی را آغاز می کند. این ویژگی جالب، این شیوه را تبدیل به یک مکانیزم کارآمد در سیستم های adaptive و self-tuning ساخته است. تاکنون توجه اندکی به شناسایی فازی پروسه های صنعتی چند متغیره (MIMO) شده است. در این پایان نامه شناسایی فازی Online برای پروسه های چند متغیره ارائه شده در [3] و اصلاحات و نکات لازم جهت بهبود کارایی آن ارائه شده است.

مشکل اصلی در این شیوه، تولید نامحدود rule در طی پروسه شناسایی مخصوصا در شرایط اولیه است. در این پایان نامه، دو شیوه برای مقابله با این مسئله ارایه شده است. در روش اول، شرایط ایجاد rule در الگوریتم اصلی به گونه ای اصلاح شده است که بتواند نرخ تولید rule را مخصوصا در آغاز پروسه آموزش کنترل کند که باعث کاهش تعداد rule می شود. این اصلاح باعث می شود که الگوریتم در شرایط اولیه با احتیاط بیشتری اضافه کردن rule را انجام دهد. سپس هنگامی که اطلاعات بیشتری بدست آمد و پروسه شناسایی پیشرفت کرد، شرایط تولید rule به حالت اولیه اش برمیگردد وهمانند الگوریتم اصلی عمل میکند. روش دوم، یک مکانیزم جدید نظارت برای شناسایی و از بین بردن rule های غیر ضروری با استفاده از forgetting factor ارایه شده است.

برهم کنش در بسیاری از سیستم های صنعتی وجوددارد و این بدین معنی است که تغییر یک متغیر کنترل بر بیش از یک خروجی سیستم اثر خواهد داشت. در این پایان نامه، با متمرکز شدن بر آنالیز برهم کنش خروجی, یک شیوه جدید برای بدست آوردن RGA ارایه شده است که درجه برهم کنش متغیرها را حول یک نقطه کار خاص ارایه می دهد.

تعداد صفحه : 92


دانلود با لینک مستقیم


طراحی ساختار کنترل برای برجهای تقطیر سری

اختصاصی از کوشا فایل طراحی ساختار کنترل برای برجهای تقطیر سری دانلود با لینک مستقیم و پر سرعت .

طراحی ساختار کنترل برای برجهای تقطیر سری


طراحی ساختار کنترل برای برجهای تقطیر سری

چکیده:

طراحی ساختار سیستم کنترل، تعیین ساختاری سیستم کنترل است که توسط آن موارد زیر بررسی و مشخص می گردند.

چه چیزی را باید کنترل کرد و حلقه های کنترل از چه متغییرهای تشکیل می شوند. اگرچه این موضوع بسیار مهمی است اما در بسیاری از موارد بدون مطالعات علمی و فقط مبنی بر تجربیات و دیدگاه عملی و بدون در نظر گرفتن جزئیات انجام شده است.

طراحی ساختار سیستم کنترل برای همه پلانت های شیمیایی همچنین با نام کنترل فرآیندهای گسترده نیز شناخته می شود. در عمل این مسئله معمولا بدون استفاده از ابزارهای تئوری موجود حل شده است. در واقع روش کار در صنعت به منظور کنترل فرآیندهای گسترده هنوز هم خیلی زیاد برگرفته از ایده هایی است که توسط Buckley در سال 1964 و Shinskey در سال 1984 در بخش کنترل فرآیند عمومی مشخص شد.

موضوع اصلی که باید توسط تئوری های جدید حل شود، تعیین کردن ساختار سیستم کنترل است. کدام متغییرها باید اندازه گیری شوند و کدام ورودی ها باید تنظیم شوند و کدام ارتباطات باید بین این دو مجموعه برقرار گردد. در این رساله طراحی ساختار کنترل برج های تقطیر سری براساس ابزارهای تئوری کنترل چند متغییره انجام خواهد گردید.

در این رساله یک رویه سیستماتیک برای طراحی ساختار کنترل برای یکی از انواع برج های تقطیر سری (MEDC)ارائه و براساس آن کار طراحی ساختار کنترل انجام خواهد شد. این رویه با تعیین دقیق اهداف عملیاتی و اقتصادی و درجات آزادی قابل دسترس به منظور برآورده کردن آنها شروع می شود.

ما برای طراحی ساختار کنترل به مرحله اول و دوم رویه ارایه شده در فصل دوم، به صورت اجمالی خواهیم پرداخت و به طور کامل مرحله سوم آن را مورد بررسی قرار می دهیم.

 

دانلود با لینک مستقیم


طراحی واحد ترموسیفون برج تقطیر در خلاء واحد تولید فورفوران

اختصاصی از کوشا فایل طراحی واحد ترموسیفون برج تقطیر در خلاء واحد تولید فورفوران دانلود با لینک مستقیم و پر سرعت .

طراحی واحد ترموسیفون برج تقطیر در خلاء واحد تولید فورفوران


طراحی واحد ترموسیفون برج تقطیر در خلاء واحد تولید فورفوران

 

 

 

 

 

 

مقدمه :

الف) واحد تولید ازت :

ازت گازی است خنثی که میل ترکیبی بسیار کمی داشته و در شرایط عادی ترکیب پذیری ندارد . لذا در واحدهای مختلف بهره برداری از این گاز برای موارد مختلفی از قبیل گاز پوششی مخازن هیدروکربوری، برای جلوگیری از نفوذ هوا یا اکسیژن به آنها، در واحدهای کاتالیستی در هنگام احیاء بعنوان گازگردشی، در هنگام راه اندازی واحدهای هیدروژن و هیدروکراکر بعنوان گاز چرخشی و بخصوص در عملیات احیاء مداوم کاتالیست پلاتفرمر واحد تبدیل کاتالیستی بصورت مداوم مصرف می گردد . با توجه به آنکه 79 درصد هوا ازت می باشد بهترین منبع تهیه می باشد . بهمین منظور واحد ازت طراحی و نصب گردیده است . ظرفیت واحد فشرده و مایع کردن هوا و تفکیک اکسیژن و ازت مایع می باشد . محصول واحد ازت گازی و ازت مایع با درجه خلوص 999/99 درصد می باشد .

ب) واحد تبدیل کاتالیستی :

واحد C.C.R شرکت به منظور تبدیل برشهای بنزین با درجه آرام سوزی پائین به بنزین با درجه آرام سوزی 100 طراحی و نصب گردیده است . ظرفیت واحد 21600 بشکه در روز می باشد . طراحی واحد بر دو مبنای تأمین کامل خوراک H.S.R.G از واحد تقطیر در جو با نقطه جوش ابتدائی و نقطه جوش نهائی و یا مخلوطی از 17159 بشکه در روز خوراک از واحد تقطیر و 4441 بشکه در روز نفتای سنگین (H.N )هیدروکراکر با نقطه جوش ابتدائی ونقطه جوش نهائی می باشد .

این واحد مشتمل بر سه قسمت می باشد :

1- تصفیه نفتا (NAPHTHA HYDROTREATING -NHT) :

به منظور حذف ترکیبات الی نیتروژن دار، گوگرددار، اکسیژن دار، اشباع هیدروکربورهای غیر اشباع (اولفینی) و حذف سموم اضافی مانند ارسینک و سرب که برای قسمت پلاتفرمر مضر می باشند تعبیه شده است . حذف این ناخالصیها در حضور کاتالیست (با نام تجاری S-12 محصول مشترک UOP با فلزات فعال کبالت، مولیبدن بر روی پایه آلومینا) و گاز هیدروژن انجام می گیرد .

2- پلاتفرمر (PLATEFORMER) :

نفتای تصفیه شده در این واحد در حضور کاتالیست (با فلز فعال پلاتین بر روی پایه آلومینا) تبدیل به بنزین با درجه خلوص آرام سوزی بالا، گاز مایع و مخلوط گازی غنی از هیدروژن می شود که به عنوان خوراک گازی به واحد هیدروژن ارسال می گردد .

3- قسمت احیاء مداوم کاتالیست (به منظور احیاء مداوم کاتالیست قسمت پلاتفرمر) :

در مجاورت واحد فوق نصب گردیده است که همواره قسمتی از کاتالیست از انتهای بستر راکتورپلت فرمر وارد قسمت احیاء شده و بعد از سوزاندن کک و آماده سازی مجدد از بالا وارد راکتورهای پلاتفرمر می گردد و بدین ترتیب همواره پلاتفرمر از شرایط یکنواخت عملیاتی در طول بهره برداری برخوردار خواهد بود . 

فهرست مطالب :

فصل اول :

  • خلاصه و مقدمه
  • آشنایی و مقدمه
  • انواع مدل ها و کاربرد آنها
  • نحوه کار یک ریبویلر پدیده ترموسیفون
  • استانداردها و کد های مبدل های حرارتی
  • چهار نوع ربویلر مورد بررسی
  • بافلها
  • فاکتورهای انتخاب نوع ریبویلر
  • خلاصه ای از فرایند تولید فورفوران

فصل دوم

  • 2-1 رویع طراحی
  • 2-2 زوشهای طراحی ارائه شده ،معایب ،مزایا و شرایط هر کدام
  • 2-3 روشهای دیگر طراحی
  • 2-4 ملاحظات عمومی طراحی

فصل سوم :

  • 3-1 راهنمایی یکی برای طراحی ریبویلر ها ترموسیفون
  • 3-2 ارائه روش های طراحی ریبویلر ترمو سیفون
  • 3-2-1 روش بهبود یافته گیلموهر
  • 3-2-2 روش مرحله ای کرن
  • 3-2-3 روش فایر
  • 3-3 چند نمونه طراحی اجرائی
  • 3-3-1 ریبویلر اسپلیتر C3
  • 3-3-2 ریبویلر برج سیلکو هگزان
  • 3-3-3 ریبویلر ترموسیفون قائم
  • 3-4 روشها و نرم افزارهای دیگر طراحی موجود

منابع و ماخذ


دانلود با لینک مستقیم