کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی

اختصاصی از کوشا فایل پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی دانلود با لینک مستقیم و پر سرعت .

پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی


پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی

 

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:145

فهرست مطالب:

چکیده: 5
فصل اوّل: 1
مقدمه 1
مقدمه: 2
فصل دوم: 5
مقدمه‌ای بر مقایسه‌ی شبکه‌های عصبی بیولوژیکی و مصنوعی و شیوه‌های یادگیری در آنها 5
1-2 انسان و کامپیوتر: 6
2-2 ساختار مغز: 8
شکل 1-2 مشخصات اصلی یک نرون بیولوژیک 9
شکل 2-2 ورودی‌های نرون باید از آستانه معینی تجاوز کند تا نرون بتواند کنش کند. 11
1-2-2 یادگیری در سیستم‌های بیولوژیک: 11
2-2-2 سازمان مغز: 12
3-2 یادگیری در ماشین‌ها: 13
4-2 تفاوت‌ها: 14
چکیده نکات مهم فصل دوم: 16
فصل سوم: 17
بازشناسی الگوها 17
بازشناسی الگوها: 18
1-3 مقدمه: 18
2-3 چشم‌انداز طرح شناسی: 18
3-3 تعریف بازشناسی الگوها: 19
4-3 بردارهای مشخصات و فضای مشخصات: 20
شکل 1-3 یک فضای مشخصات دوبعدی اقلیدسی 21
5-3 توابع تشخیص‌دهنده یا ممیز 21
شکل 2-3 محدوده‌ی تصمیم یک طبقه‌بندی خطی. 23
6-3 فنون طبقه‌بندی: 23
1-6-3 روش طبقه‌بندی «نزدیک‌ترین همسایه»: 23
شکل 3-3 طبقه‌بندی به وسیله مقایسه با «نزدیکترین همسایه» 24
شکل 4-3 اندازه‌گیری تا نزدیک‌ترین همسایه گاه باعث خطا می‌شود. 25
2-6-3 میزان‌های اندازه‌گیری فاصله 25
فاصله‌ی همینگ 25
شکل 5-3  فاصله اقلیدسی 27
8-3 بازشناسی الگوها – خلاصه : 32
چکیده نکات مهم فصل سوم: 32
فصل چهارم: 33
نرون پایه 33
2-4 مدل‌سازی نرون تنها: 34
شکل 2-4 نمای مدل اصلی نرون. 36
3-4 تابع آستانه 37
شکل 8-4 آیا می‌توانیم Aها را از Bها تمیز دهیم؟ 42
1-3-4 الگوریتم فراگیری پرسپترون: 45
1-4-4 یادگیری و تعدیل وزنها در آدالاین: 48
جدول 3-4) جدول ارزش گزاره مربوط به تابع   52
2-4-4 قاعده دلتا برای ورودی‌ها و خروجی‌های دوقطبی: 54
جدول 8-4) الگوی مرحله دوم استفاده از مجموعه آموزش، برای تابع   56
جدول 9-4) 57
شکل 9-4 دو مجموعه‌ی مجزا از الگوها در فضای دوبعدی. 58
شکل 10-4 رفتار بردار ضرایب وزنی در فضای الگوها. 59
شکل 11. 60
تعاریف: 61
7-4 محدودیت‌های پرسپترون: 65
8-4 آیا این به معنای پایان راه است؟ 67
1-8-4 نتیجه‌گیری: 68
فصل پنجم: 69
پرسپترون چندلایه‌ای 69
1-2-5 رفع مشکل: 70
شکل 2-5 دو راه ممکن برای توابع آستانه‌ای. 72
شکل 3-5 پروسپترون چند لایه‌ای. 73
شکل 5-5) نمایش مدل پرسپترون چند لایه به صورت اختصاری 74
1-4-5 ریاضیات: 76
5-5 الگوریتم پرسپترون چند لایه‌ای: 80
شکل 6-5 یک راه برای مسئله XOR. 82
7-5 تجسم رفتار شبکه : 85
8-5 پروسپترون چند لایه‌ای به عنوان دستگاه طبقه بندی:‌ 89
شکل 18-5 95
آموزش تدریجی: 98
آموزش یکباره: 98
12-5 تعمیم‌دهی: 100
13-5 تحمل نقص: 102
14-5 مشکلات آموزش 103
کاهش ضریب بهره: 104
افزایش تعداد گره‌های داخلی 104
1-14-5 سایر مشکلات آموزش: 105
1-15-5 شبکه‌ی گویا: 105
2-15-5 فیلتر کردن اغتشاش ای – سی – جی (ECG) 106
3-15-5 کاربردهای مالی: 107
4-15-5 بازشناسی الگوها: 108
فصل ششم: 111
بررسی ویژگی‌ها و مدل‌سازی رآکتور شیمیایی مورد بحث در این پروژه: 111
1-1-6) پرسپترون‌های چندلایه: 112
شکل 2-6) یک پرسپترون سه‌لایه 113
3-6- آزمون صحت عملکرد مدل: 118
4-6- کنترل غیر خطی پیش‌بین: 120
5-6- ویژگی‌های رآکتور مورد مطالعه: 122
شکل 5-6) شکل شماتیک از رآکتور مورد مطالعه 122
شکل 7-6) مدل دینامیکی 124
7-6) نتایج شبیه‌سازی: 127
جدول 1-6) دقت تخمین، برای مدل‌های مختلف آموزش 128
فصل هفتم: 130
نتیجه‌گیری 130
پیوست‌ها: 133
بخش دوم: 136
2-ب- برنامه‌ی آموزش به شبکه: 137
3-ب- برنامه بررسی صحت عملکرد پاسخ‌های پیش‌بینی شده‌: 138
مراجع: 139
 

 

 

چکیده:
در این پروژه، ورودی‌ها و خروجی‌های یک سیستم چند ورودی و چند خروجی غیر خطی، برای ایجاد یک مدل دینامیکیِ هوشمند، استفاده شده است. بنابراین انتخاب شبکه‌های عصبی مصنوعی  از نوع پرسپترون‌های چندلایه  برای این منظور مناسب است. در کنار این نوع از مدل‌سازی، استفاده از یک شیوه‌ی مناسب برای کنترل پیشگویانه (پیش بینانه)ی مدل یاد شده، ضروری است.
مدل‌های برگشتی تصحیح شونده که از قوانین تعدیل ماتریس‌های وزنی مسیرهای ارتباطی بین نرون‌های مدل استفاده می‌کنند، در این پروژه به کار گرفته شده‌اند.
این قوانین برای آموزش سیستم، جهت کنترل و دستیابی به خروجی مطلوب در زمان‌های بعدی به کار می‌روند.
فراگیری در این سیستم نیز از نوع فراگیری با سرپرست  می‌باشد؛ به این صورت که معادله‌ی دیفرانسیل دینامیکیِ سیستم در دسترس است و بنابراین مقادیر مطلوب برای متغیر هدف، که سیستم باید به آن برسد، برای زمان‌های آینده مشخص می‌باشد و خروجی سیستم با استفاده از یک کنترل‌کننده‌ی پیش‌بین، همواره باید به این اهداف دست یابد. سیستم مورد مطالعه در این پروژه، یک رآکتور شیمیایی است که برای اختلاط پیوسته‌ی مواد شیمیایی واکنش دهنده با غلظت‌ها و مقادیر تعریف شده و تولید یک ماده‌ی محصول با یک غلظت متغیر با زمان  به کار می‌رود؛ که میزان مطلوب این غلظت در یک زمان خاص، به‌عنوان هدف مطلوبی است که سیستم باید به آن دست یابد.
همچنین به‌جای یک سیستم واقعی، از یک مدل نرم‌افزاری برای جمع‌آوری داده‌های ورودی و خروجی استفاده می شود و در نهایت، نتایج این مدل سازی موفقیت‌آمیز، توانایی روش‌های مدل سازی هوشمند را همان‌گونه که در این تحقیق آمده است، اثبات می‌کند.
کلمات کلیدی: هوش مصنوعی، شبکه های عصبی مصنوعی، رآکتور شیمیایی، کنترل پیش‌بین، نرون، پتانسیل فعالیت، پرسپترون چندلایه غیر خطی، تورش، سیستم‌های غیر خطی، بازشناسی الگو، دستگاه‌های طبقه‌بندی خطی و غیر خطی، قاعده‌ی پس انتشار خطا، تعدیل ضرایب وزنی، شبیه‌سازی، مدل دینامیکی کامل / ناکامل شبکه‌‌ی عصبی مصنوعی


دانلود با لینک مستقیم


پایان نامه مهندسی شیمی – شبیه سازی رآکتور سنتز متانول

اختصاصی از کوشا فایل پایان نامه مهندسی شیمی – شبیه سازی رآکتور سنتز متانول دانلود با لینک مستقیم و پرسرعت .

پایان نامه مهندسی شیمی – شبیه سازی رآکتور سنتز متانول


پایان نامه مهندسی شیمی – شبیه سازی رآکتور سنتز متانول

 

 

 

 

 

 

 

 


فرمت:word(قابل ویرایش)

تعداد صفحات:70

فهرست مطالب:

فصل اول :متانول ،خواص و روشهای تولید. ۱

۱-۱-تاریخچه [۱] ۱

۱- ۲- خصوصیات فیزیکی Physical properties [1] 3

1-3-  واکنشهای شیمیایی [۱] ۴

۱-۴- تولید صنعتی و فرآیند آن [۱] ۴

۱-۵-ماده خام [۱] ۹

۱-۵-۱-گاز طبیعی [۱] ۹

۱-۵-۲-باقیمانده های نفتی [۱] ۱۲

۱-۵-۳-نفتا [۱] ۱۴

۱-۵-۴-ذغال سنگ [۱] ۱۵

۱-۶-کاتالیست [۱] ۱۵

۱-۷-تولید در مقیاس تجاری [۱] ۱۵

۱-۸-واکنشهای جانبی [۱] ۱۶

۱-۹-خالص سازی [۱] ۱۷

۱-۱۰-کاربردهای متانول: [۴] ۱۸

۱-۱۰-۱-۱- تولید اسید استیک: ۱۹

۱-۱۰-۱-۲-کاربرد اسید استیک در صنایع: ۲۰

۱-۱۰-۲-تولید وینیل استات: ۲۰

۱-۱۰-۳-فرمالدئید: ۲۱

۱-۱۰-۴-اتیلن گلیکول: ۲۱

۱-۱۰-۵-متیل آمین: ۲۱

۱-۱۰-۶-دی متیل اتر: ۲۲

۱-۱۰-۷- ترکیبات کلرومتان : ۲۲

۱-۱۰-۸-متیل ترشری بوتیل الکل(MTBE). 23

1-10-9-کاربرد متانول در مخلوط با بنزین: ۲۵

فصل دوم: سینتیک و مکانیسم واستوکیومتری[۲] ۲۷

۲-۱-اصول واکنشهای کاتالیستی.. ۲۷

۲-۱-۱-مراحل مستقل در واکنشهای کاتالیستی.. ۲۷

۲-۱-۲-سینیتیک ومکانیسم واکنشهای کاتالیستی.. ۳۰

۲-۱-۳-اهمیت جذب سطحی در واکنشهای کاتالیستی هتروژن.. ۳۱

۲-۱-۴-بررسی سینتیکی.. ۳۷

۲-۱-۵-مکانیسم واکنشهای کاتالیستی هتروژن فاز گاز. ۳۹

۲-۱-۵-۱-مکانیسم Langmuir- Hinshelwood (1421 ). 39

2-1-5-2-مکانیسم Eley –Rideal 42

2-2-ترمودینامیک و سینتیک سنتز فشار پائین متانول[۳] ۴۳

۲-۲-۱-مقدمه. ۴۴

۲-۲-۲-استوکیومتری و ترمودینامیک… ۴۴

۲-۲-۳-سینتیک و مکانیسم. ۴۸

۲-۲-۴-مکانیسم. ۵۳

فصل سوم: شبیه سازی واکنش کاتالیستی هتروژنی توسط Hysys 56

3-1- مدل سینتیکی[۵] ۵۶

۳-۲-مراحل شبیه سازی رآکتور در Hysys [5] 58

3-تعریف واکنش… ۵۹

۴-مراحل نصب رآکتور. ۶۳

۳-۳-نتایج حاصله از شبیه سازی.. ۶۴

منابع : ۶۸

 

چکیده:

فصل اول :متانول ،خواص و روشهای تولید
۱-۱-تاریخچه

     مصریان باستان جهت مومیایی کردن ازمخلوطی استفاده می کردند که شامل متانول نیزبود،که آنرا از پیرولیز چوب به دست آورده بودند با این وجود متانول خالص برای اولین بار توسط رابرت بویل در ۱۶۶۱ جدا سازی شد، که او آنرا Spirit of box  نامید. زیرا در تهیه آن از چوب صندوق استفاده کرده بود که بعداً به Piroxilic Spirit  معروف شد. در سال ۱۸۳۴ ، شیمیدانان فرانسوی آقایانJean -Baptiste وEugene Peligot  عناصر تشکیل دهندة آنرا شناسایی کردند ،آنها همچنین لغت methylene را به شیمی آلی وارد کردند که واژه methu به معنای شراب واژه hyle به معنای چوب بود. سپس در سال ۱۸۴۰ واژه methyl  از آن مشتق شد و جهت توصیف Methyl Alcohol  استفاده شد. سپس این نام در سال ۱۸۹۲ به وسیله کنفرانس بین المللی نامگذاری مواد شیمیایی بهMethanol کوتاه شد.

   در۱۹۲۳،دانشمند آلمانیMattias Pier که برای شرکتBASFکارمی کرد،  طرحی را جهت تولید متانول از گاز سنتز (مخلوطی از اکسیدهای کربن و هیدروژن که از زغال به دست می آمد و در سنتز آمونیاک نیز کاربرد دارد ) ارائه کرد. که در آن از کاتالیست روی- کرم استفاده می شد و شرایط سختی از نظر فشاری (۱۰۰۰ الی۳۰۰  اتمسفر) و دما (بالای ) داشت. تولید مدرن متانول هم اکنون توسط کاتالیست هایی که امکان استفاده از شرایط دمایی کمتر را دارند، ممکن است.

 متانول ( متیل الکل ) به فرمول  یک مایع شفاف سفید رنگ شبیه آب است که در دمای معمولی بوی ملایم دارد . از زمان کشف آن در اواخر قرن هفدهم تاکنون مصرف آن رشد رو به فزونی داشته به طوری که اکنون با تولید سالانة‌ تن متریک رتبه ۲۱ را در بین محصولات شیمیایی صنعتی داراست متانول گاها با عنوان الکل چوب یا ( برخی مواقع Wood Spirite ) نیز خوانده می شود که دلیل آن به تقریبا یک قرن تولید تجاری آن از خرده چوب بر می گردد به هر حال متانولی که از چوب تهیه شده باشد مواد آلوده کنندة‌ بیشتری ( مانند استیلن ،‌ اسید استیک ، الکل الیل ) دارد تا الکلهای صنعتی امروزی .

      برای سالهای متوالی مصرف کننده اصلی متانول تولیدی ، فرمالدئید با مصرف تقریبا نیمی از متانول تولید شده بود ولی در آینده از اهمیت آن کاسته می شود زیرا مصارف جدیدی از جمله تولید اسید استیک و MTBE (که جهت بهبود عدد اکتان بنزین به کار می رود ) در حال افزایش است . از طرفی استفاده از متانول به عنوان سوخت در شرایط ویژه قابل توجه خواهد بود .

۱-۳-  واکنشهای شیمیایی [۱]

    متانول معمولا در واکنشهایی شرکت می کند که از نظر شیمیایی در دسته واکنشهای الکلی قرار می گیرند از مواردی که از نظر صنعتی اهمیت ویژه أی دارد هیدروژن زدایی و هیدروژن زدایی اکسایشی متانول و تبدیل به فرم آلدئید برروی کاتالیست نقره یا مولیبدن – آهن و همچنین تبدیل متانول به اسید استیک بر روی کاتالیست کبالت یا روبیدیوم است .

     از طرفی دی متیل اتر (DME) از حذف آب متانول توسط کاتالیست اسیدی قابل تولید است. واکنش ایزوبوتیلن با متانول که توسط کاتالیزور اسیدی انجام می شود و منجر به تولید متیل توشیو بوتیل اتر می شود ( که یک افزایندة‌ مهم عدد اکتان بنزین است ) کاربرد فزاینده أی دارد .

    تولید متیل استرها با کاتالیزور اسیدی از اسیدهای کربوکسیلیک و متانول انجام می شود که در آن جهت کامل کردن واکنش از استخراجی آزئوتروپی آب استفاده می شود .

   متیل هیدروژن سولفات ،‌ متیل نیترات و متیل هالیدها از واکنش متانول با اسیدهای غیر آلی مربوطه تولید می شوند .

   مونو- ،‌ دی– و تری- متیل آمین از واکنش مستقیم آمونیاک با متانول به دست می آیند .
۱-۴- تولید صنعتی و فرآیند آن [۱]

    اولین و قدیمی ترین روش تولید عمده متانول تقطیر تخریبی چوب بود که از اواسط قرن نوزدهم تا اوایل قرن بیستم به صورت عملی انجام می شد و هم اکنون در ایالات متحده دیگر انجام نمی شود. این روش تولید با توسعه فرآیند سنتز متانول از هیدروژن و اکسیدهای کربن،‌ در دهه ۱۹۲۰ کنار گذاشته شد .

   متانول همچنین به عنوان یکی از محصولات اکسیداسیون غیر کاتالیستی هیدروکربنها تولید می شد. تجربه أی که از سال ۱۹۷۳ کنار گذاشته شد .

     متانول را همچنین می توان به عنوان یک محصول فرعی فرآیند           Fisher-Tropsch به دست آورد تولید مدرن متانول در مقیاس صنعتی منحصراً بر پایه سنتز آن از مخلوط پر فشار هیدروژن ،‌ دی اکسید کربن و منوکسید کربن در حضور کاتالیست فلزی هتروژنی است .

تولید مدرن در مقیاس صنعتی متانول امروزه منحصرا از مخلوط پر فشار گازهای هیدروژن و اکسیدهای کربن بر روی کاتالیت فلزی است.فشار گاز سنتز به اکتیویته کاتالیست مورد استفاده ،‌ بستگی دارد .

   طبق توافق حاصل شده،‌ تکنولوژیهایی تولید متانول به صورت زیر دسته بندی شده اند :فرآیندهای فشار پائین (۵-۱۰ Mpa) ،‌ فرآیندهای با فشار میانی (۱۰-۲۵ Mpa) و فرآیندهای فشار بالا (۲۵-۳۵ Mpa).

    در ۱۹۲۳ شرکت BASF درآلمان اولین سنتزتجاری متانول را آغازکرد. در این فرآیند از سیستم کاتالیستی اکسید روی–اکسید کرم بهره گرفته شده بود . که این واقعه را آغاز تکنولوژی تولید فشار بالا می توان برشمرد .

   در سال۱۹۲۷ در یک تلاش جداگانه تولید فشار بالای متانول در واحدهای متعلق به شرکت های Dupont و Commercial Sovents ‎آغاز شد .

   در سال ۱۹۶۵ یک واحد مدرن تولید متانول با ظرفیتی در حدود ۲۲۵-۴۵۰ t/d ،‌ در فشار ۳۵ Mpa به طور خالصی گاز طبیعی به ازاء‌ تولید یک تن متانول مصرف می کرد که برای فشارهای بالاتر از ۲۱ Mpa از کمپرسورهای پیستونی استفاده می شد .

   در اواخر دهه ۱۹۶۰ تکنولوژی تولید فشار میانی و فشار پائین متانول با استفاده از کاتالیست با دوام و اکتیو مس – اکسید روی به صورت عملی مورد بهره برداری قرار گرفت .

شرکت ICI    Ltd. در انگلستان ،‌ سنتز فشار پائین متانول را در اواخر سال ۱۹۶۶ آغاز کرد که در آن سال یک واحد تولیدی با ظرفیت ۴۰۰ t/d در فشار ۵Mpa فقط از کمپرسورهای سانتریفوژ استفاده می کرد .

در سال ۱۹۷۱ شرکت Lurgi به صورت آزمایشی یک واحد تولیدی فشار پائین با ظرفیت ۱۱ t/d که از کاتالیست مس استفاده می کرد ،‌ احداث نمود .

    مزیتهای تکنولوژی های فشار پائین در کاهش توان مصرفی جهت افزایش فشار،‌ عمر طولانی تر کاتالیست ها و ظرفیت تولید بیشتر بود که در کنار آن می توان به ظرفیت single–train بیشتر و اطمینان از عملکرد اشاره کرد ،‌ که با فشار بالا در تناقض هستند.

  از سال ۱۹۷۰ به بعد علی رغم برخی استثناء‌ها هرگونه توسعه واحدهای تولید متانول با استفاده تکنولوژی فشار پائین یا میانی بوده است. درسال ۱۹۸۰ ،‌ ۵۵% تولید متانول در ایالات متحده با استفاده از سنتز فشار پائین بوده و ازآن به بعدواحدهای فشار بالا با تکنولوژی فشار پائین اصطلاحاً “revamp” شده اند، یا اینکه به کل تعطیل شدند .

   یک واحد معمول تولید فشار پائین – میانی در سال ۱۹۸۰ با ظرفیت        ۱۰۰۰-۲۰۰۰t/d در فشاری در حدود ۸-۱۰ Mpa عمل می کند و در یک فرآیند single – train فقط از کمپرسورهای سانتریفیوژ بهره می برد و جهت تولید ۱ تن متانول  گاز طبیعی مصرف می کند .

     تنها نوآوری جدیدی که در افق دیده می شود ، فرآیند سه فازی شرکت  Chem System است . یک مایع بی اثر جهت سیال سازی کاتالیست و خارج کردن حرارت از سیستم به کار گرفته شده است . ادعا شده است که درصد تبدیل بدون “recycle” این فرآیند ازدرصد تبدیل فرآیند دو فازی معمولی بالاتر است .

   [۶]امروزه سه نوع فرآیند به طور عمده در جهان جهت کید متانول مورد استفاده قرار می گیرند که عبارتند از :ICI ، Lurgi ،  Mitsubishi

رآکتور طراحی ICI از تعدادی بسترهای کاتالیست ثابت آدیاباتیک تشکیل شده واز گاز سرد خوراک جهت خنک کردن واکنشگرهای بین بسترها استفاده می شود .این باعث ایجاد جهشهایی در پروفیل دمای رآکتور می شود که در شکل دیده می شود .رآکتورهای طراحی شرکت های Lurgi و Mitsubishi پروفیل دمای افقی تری دارند که تقریبا رآکتور را Isothermal می توان فرض کرد که این در اثر تولید مقدار قابل توجهی بخار فشار بالا خواهد بود .غیرفعال شدن کاتالیست در رآکتورهای همدما کندتر خواهد بود.

۱-۵-ماده خام

    خوراک معمول جهت تولید گاز سنتز مورد نیاز برای تولید متانول گاز طبیعی و باقیمانده های نفتی است . از دیگر خوراک های مناسب می توان به نفتا و ذغال سنگ اشاره کرد .

   گاز طبیعی ،‌ باقیمانده های نفتی و نفتا در مجموع ۹۰% ظرفیت جهانی تولید متانول را تأمین می کنند باقیمانده مربوط به گازهای زائد از فرآیندهای متفرقه است ( off-gas ) .
1-5-1-گاز طبیعی

       درفرآیند مدرن تولید متانول ازگاز طبیعی ،‌ گازطبیعی که قسمت اصلی آن را متان تشکیل می دهد سولفورزدایی می شود (حداکثر مقدار سولفور کمتر از ۰٫۲۵ ppm ) و با بخار مخلوط می شود و تا دمای پیشگرم می شود . مخلوط به reformer فرستاده می شود و در آنجا در لوله های حاوی کاتالیست غنی شده از نیکل که از بیرون با شعله Burner ها در تماسند، جریان می یابد .

  که شرایط تعادل باید در دمای  و فشار ۰٫۷-۱٫۷ Mpa در نظر گرفته شود.واکنش کلی بسیار گرماگیر است و به مقادیر زیادی سوخت جهت مشعل ها نیاز است .

     گرمایی  که ازreformer توسط گاز سوخت شده و گاز سنتز تولید شده خارج می شود ،‌ جهت تولید بخار با فشار ۴-۱۰ Mpa (بخار HHPS) استفاده می شود که به نوبه خود در تأمین نیروی محرکه (توربینها) و بار حرارتی برجها ،‌ کاربرد دارد . که در کاهش مصرف انرژی کلی فرآیند نقش قابل توجهی دارد .

  گاز سنتزی که در Steam reformer از گاز طبیعی به دست می آید نسبت به استوکیومتری واکنش تولید متانول ،‌ مقدار بیشتری هیدروژن دارد . استوکیومتری واکنش سنتزمتانول خوراکی با نسبت  در حدود ۱٫۰۵ دارد در حالی که در مخلوط تولیدی از Steam reformer ،‌ این نسبت (اگر  به مخلوط اضافه شود ) در حدود ۱٫۴ است. در کاتالیست فرآیند فشار پائین ،‌ این مقدار اضافی هیدروژن ، موجود بهبود عملکرد کاتالیست می شود .

   به این جهت هزینه های converter پائین می آید در حالی که در فرآیندهای فشار بالا باید هیدروژن از مخلوط جدا شود که خود مستلزم هزینه و عملیات خاص است .  هیدروژن اضافی پس از مرحله سنتز به عنوان سوخت در reformer مورد استفاده قرار می گیرد . بنابراین راندمان کلی انرژی در سطح بالایی نگه داشته می شود که موجب اقتصادی بودن فرآیند خواهد شد .

    در طراحی واحد تولید متانول از گاز طبیعی در فشار پائین می توان اضافه کردن  را به مخلوط حاصل از reforming ،‌ را در نظر گرفت . که مزیت آن در استفاده از هیدروژن اضافی جهت کاهش مصرف گاز طبیعی به ازاء‌ تولید هر تن متانول متانول است . با توجه به اینکه  ماده گرانقیمتی نیست .

اضافه کردن مقدار کافی از  باعث بهبود سنتز از نظر استوکیومتری   می شود مانند آنچه در مورد خوراک نفتا وجود دارد .بازیافت  از گاز سوخته شده در reformer اقتصادی گزارش نشده است .


دانلود با لینک مستقیم

شبیه سازی رآکتور سنتز متانول

اختصاصی از کوشا فایل شبیه سازی رآکتور سنتز متانول دانلود با لینک مستقیم و پرسرعت .

شبیه سازی رآکتور سنتز متانول


شبیه سازی رآکتور سنتز متانول

 

 

 

 

 

 

 

جکیده :

متانول ( متیل الکل ) به فرمول یک مایع شفاف سفید رنگ شبیه آب است که در دمای معمولی بوی ملایم دارد . از زمان کشف آن در اواخر قرن هفدهم تاکنون مصرف آن رشد رو به فزونی داشته به طوری که اکنون با تولید سالانه تن متریک رتبه ۲۱ را در بین محصولات شیمیایی صنعتی دارا است متانول گاها با عنوان الکل چوب یا ( برخی مواقع Wood Spirite ) نیز خوانده می شود که دلیل آن به تقریبا یک قرن تولید تجاری آن از خرده چوب بر می گردد به هر حال متانول که از چوب تهیه شده باشد مواد آلوده کننده بیشتری ( مانند استیلن ،‌ اسید استیک ، الکل الیل ) دارد تا الکل های صنعتی امروزی برای سال های متوالی مصرف کننده اصلی متانول تولیدی ، فرمالدئید با مصرف تقریبا نیمی از متانول تولید شده بود ولی در آینده از اهمیت آن کاسته می شود زیرا مصارف جدیدی از جمله تولید اسید استیک و MTBE (که جهت بهبود عدد اکتان بنزین به کار می رود ) در حال افزایش است . از طرفی استفاده از متانول به عنوان سوخت در شرایط ویژه قابل توجه خواهد بود .

شما عزیزان برای دانلود پایان نامه رشته شیمی شبیه سازی راکتور سنتز متانول و مشاهده توضیحات تکمیلی به ادامه مطلب مراجعه نمایید… .

فهرست :

  1. فصل اول : متانول ،خواص و روش های تولید
  2. تاریخچه
  3. خصوصیات فیزیکی Physical properties
  4. واکنش های شیمیایی
  5. تولید صنعتی و فرآیند آن
  6. ماده خام
  7. گاز طبیعی
  8. باقیمانده های نفتی
  9. نفتا
  10. ذغال سنگ
  11. کاتالیست
  12. تولید در مقیاس تجاری
  13. واکنش های جانبی
  14. خالص سازی
  15. کاربرد های متانول
  16. فصل دوم :  سینتیک و مکانیسم واستوکیومتری
  17. اصول واکنش های کاتالیستی
  18. ترمودینامیک و سینتیک سنتز فشار پائین متانول
  19. فصل سوم : شبیه سازی واکنش کاتالیستی هیتروژنی توسط Hysys
  20. مدل سینتیکی
  21. مراحل شبیه سازی راکتور در Hysys
  22. نتایج حاصله از شبیه سازی
  23. منابع

دانلود با لینک مستقیم

پایان نامه مهندسی شیمی - شبیه سازی رآکتور سنتز متانول 70 ص

اختصاصی از کوشا فایل پایان نامه مهندسی شیمی - شبیه سازی رآکتور سنتز متانول 70 ص دانلود با لینک مستقیم و پرسرعت .

پایان نامه مهندسی شیمی - شبیه سازی رآکتور سنتز متانول 70 ص


پایان نامه مهندسی شیمی - شبیه سازی رآکتور سنتز متانول 70 ص

پایان نامه مهندسی شیمی - شبیه سازی رآکتور سنتز متانول 70 ص فایل بصورت word میباشد


دانلود با لینک مستقیم

پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی

اختصاصی از کوشا فایل پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی دانلود با لینک مستقیم و پرسرعت .

پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی


پروژه مدل سازی رآکتور شیمیایی با شبکه‌های عصبی مصنوعی

 

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:145

فهرست مطالب:

چکیده: 5
فصل اوّل: 1
مقدمه 1
مقدمه: 2
فصل دوم: 5
مقدمه‌ای بر مقایسه‌ی شبکه‌های عصبی بیولوژیکی و مصنوعی و شیوه‌های یادگیری در آنها 5
1-2 انسان و کامپیوتر: 6
2-2 ساختار مغز: 8
شکل 1-2 مشخصات اصلی یک نرون بیولوژیک 9
شکل 2-2 ورودی‌های نرون باید از آستانه معینی تجاوز کند تا نرون بتواند کنش کند. 11
1-2-2 یادگیری در سیستم‌های بیولوژیک: 11
2-2-2 سازمان مغز: 12
3-2 یادگیری در ماشین‌ها: 13
4-2 تفاوت‌ها: 14
چکیده نکات مهم فصل دوم: 16
فصل سوم: 17
بازشناسی الگوها 17
بازشناسی الگوها: 18
1-3 مقدمه: 18
2-3 چشم‌انداز طرح شناسی: 18
3-3 تعریف بازشناسی الگوها: 19
4-3 بردارهای مشخصات و فضای مشخصات: 20
شکل 1-3 یک فضای مشخصات دوبعدی اقلیدسی 21
5-3 توابع تشخیص‌دهنده یا ممیز 21
شکل 2-3 محدوده‌ی تصمیم یک طبقه‌بندی خطی. 23
6-3 فنون طبقه‌بندی: 23
1-6-3 روش طبقه‌بندی «نزدیک‌ترین همسایه»: 23
شکل 3-3 طبقه‌بندی به وسیله مقایسه با «نزدیکترین همسایه» 24
شکل 4-3 اندازه‌گیری تا نزدیک‌ترین همسایه گاه باعث خطا می‌شود. 25
2-6-3 میزان‌های اندازه‌گیری فاصله 25
فاصله‌ی همینگ 25
شکل 5-3  فاصله اقلیدسی 27
8-3 بازشناسی الگوها – خلاصه : 32
چکیده نکات مهم فصل سوم: 32
فصل چهارم: 33
نرون پایه 33
2-4 مدل‌سازی نرون تنها: 34
شکل 2-4 نمای مدل اصلی نرون. 36
3-4 تابع آستانه 37
شکل 8-4 آیا می‌توانیم Aها را از Bها تمیز دهیم؟ 42
1-3-4 الگوریتم فراگیری پرسپترون: 45
1-4-4 یادگیری و تعدیل وزنها در آدالاین: 48
جدول 3-4) جدول ارزش گزاره مربوط به تابع   52
2-4-4 قاعده دلتا برای ورودی‌ها و خروجی‌های دوقطبی: 54
جدول 8-4) الگوی مرحله دوم استفاده از مجموعه آموزش، برای تابع   56
جدول 9-4) 57
شکل 9-4 دو مجموعه‌ی مجزا از الگوها در فضای دوبعدی. 58
شکل 10-4 رفتار بردار ضرایب وزنی در فضای الگوها. 59
شکل 11. 60
تعاریف: 61
7-4 محدودیت‌های پرسپترون: 65
8-4 آیا این به معنای پایان راه است؟ 67
1-8-4 نتیجه‌گیری: 68
فصل پنجم: 69
پرسپترون چندلایه‌ای 69
1-2-5 رفع مشکل: 70
شکل 2-5 دو راه ممکن برای توابع آستانه‌ای. 72
شکل 3-5 پروسپترون چند لایه‌ای. 73
شکل 5-5) نمایش مدل پرسپترون چند لایه به صورت اختصاری 74
1-4-5 ریاضیات: 76
5-5 الگوریتم پرسپترون چند لایه‌ای: 80
شکل 6-5 یک راه برای مسئله XOR. 82
7-5 تجسم رفتار شبکه : 85
8-5 پروسپترون چند لایه‌ای به عنوان دستگاه طبقه بندی:‌ 89
شکل 18-5 95
آموزش تدریجی: 98
آموزش یکباره: 98
12-5 تعمیم‌دهی: 100
13-5 تحمل نقص: 102
14-5 مشکلات آموزش 103
کاهش ضریب بهره: 104
افزایش تعداد گره‌های داخلی 104
1-14-5 سایر مشکلات آموزش: 105
1-15-5 شبکه‌ی گویا: 105
2-15-5 فیلتر کردن اغتشاش ای – سی – جی (ECG) 106
3-15-5 کاربردهای مالی: 107
4-15-5 بازشناسی الگوها: 108
فصل ششم: 111
بررسی ویژگی‌ها و مدل‌سازی رآکتور شیمیایی مورد بحث در این پروژه: 111
1-1-6) پرسپترون‌های چندلایه: 112
شکل 2-6) یک پرسپترون سه‌لایه 113
3-6- آزمون صحت عملکرد مدل: 118
4-6- کنترل غیر خطی پیش‌بین: 120
5-6- ویژگی‌های رآکتور مورد مطالعه: 122
شکل 5-6) شکل شماتیک از رآکتور مورد مطالعه 122
شکل 7-6) مدل دینامیکی 124
7-6) نتایج شبیه‌سازی: 127
جدول 1-6) دقت تخمین، برای مدل‌های مختلف آموزش 128
فصل هفتم: 130
نتیجه‌گیری 130
پیوست‌ها: 133
بخش دوم: 136
2-ب- برنامه‌ی آموزش به شبکه: 137
3-ب- برنامه بررسی صحت عملکرد پاسخ‌های پیش‌بینی شده‌: 138
مراجع: 139
 

 

 

چکیده:
در این پروژه، ورودی‌ها و خروجی‌های یک سیستم چند ورودی و چند خروجی غیر خطی، برای ایجاد یک مدل دینامیکیِ هوشمند، استفاده شده است. بنابراین انتخاب شبکه‌های عصبی مصنوعی  از نوع پرسپترون‌های چندلایه  برای این منظور مناسب است. در کنار این نوع از مدل‌سازی، استفاده از یک شیوه‌ی مناسب برای کنترل پیشگویانه (پیش بینانه)ی مدل یاد شده، ضروری است.
مدل‌های برگشتی تصحیح شونده که از قوانین تعدیل ماتریس‌های وزنی مسیرهای ارتباطی بین نرون‌های مدل استفاده می‌کنند، در این پروژه به کار گرفته شده‌اند.
این قوانین برای آموزش سیستم، جهت کنترل و دستیابی به خروجی مطلوب در زمان‌های بعدی به کار می‌روند.
فراگیری در این سیستم نیز از نوع فراگیری با سرپرست  می‌باشد؛ به این صورت که معادله‌ی دیفرانسیل دینامیکیِ سیستم در دسترس است و بنابراین مقادیر مطلوب برای متغیر هدف، که سیستم باید به آن برسد، برای زمان‌های آینده مشخص می‌باشد و خروجی سیستم با استفاده از یک کنترل‌کننده‌ی پیش‌بین، همواره باید به این اهداف دست یابد. سیستم مورد مطالعه در این پروژه، یک رآکتور شیمیایی است که برای اختلاط پیوسته‌ی مواد شیمیایی واکنش دهنده با غلظت‌ها و مقادیر تعریف شده و تولید یک ماده‌ی محصول با یک غلظت متغیر با زمان  به کار می‌رود؛ که میزان مطلوب این غلظت در یک زمان خاص، به‌عنوان هدف مطلوبی است که سیستم باید به آن دست یابد.
همچنین به‌جای یک سیستم واقعی، از یک مدل نرم‌افزاری برای جمع‌آوری داده‌های ورودی و خروجی استفاده می شود و در نهایت، نتایج این مدل سازی موفقیت‌آمیز، توانایی روش‌های مدل سازی هوشمند را همان‌گونه که در این تحقیق آمده است، اثبات می‌کند.
کلمات کلیدی: هوش مصنوعی، شبکه های عصبی مصنوعی، رآکتور شیمیایی، کنترل پیش‌بین، نرون، پتانسیل فعالیت، پرسپترون چندلایه غیر خطی، تورش، سیستم‌های غیر خطی، بازشناسی الگو، دستگاه‌های طبقه‌بندی خطی و غیر خطی، قاعده‌ی پس انتشار خطا، تعدیل ضرایب وزنی، شبیه‌سازی، مدل دینامیکی کامل / ناکامل شبکه‌‌ی عصبی مصنوعی


دانلود با لینک مستقیم