لینک پرداخت و دانلود در "پایین مطلب"
فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:183
فصل اول
مقدمه
توسعه و رشد سریع سرعت کامپیوترها و روشهای اجزای محدود در طی سی سال گذشته محدوده و پیچیدگی مسائل سازه ای قابل حل را افزایش داده است. روش اجزای محدود روش تحلیلی را فراهم کرده است که امکان تحلیل هندسه، شرایط مرزی و بارگذاری دلخواه را به وجود آورده است و قابل اعمال بر سازههای یک بعدی، دو بعدی و سه بعدی میباشد. در کاربرد این روش برای دینامیک سازهها ویژگی غالب روش اجزای محدود آن است که سیستم پیوسته واقعی را که از نظر تئوری بینهایت درجة آزادی دارد، با یک سیستم تقریبی چند درجه آزادی جایگزین نماید. هنگامی که با سازههای مهندسی کار میکنیم غیر معمول نمیباشد که تعداد درجات آزادی که در آنالیز باقی میمانند بسیار بزرگ باشد. بنابراین تأکید بسیاری در دینامیک سازه برای توسعة روشهای کارآمدی صورت میگیرد که بتوان پاسخ سیستمهای بزرگ را تحت انواع گوناگون بارگذاری بدست آورد.
هر چند اساس روشهای معمولی جبر ماتریس تحت تأثیر درجات آزادی قرار نمیگیرند، شامل محاسباتی و قیمت به سرعت با افزایش تعداد درجات آزادی افزایش مییابند. بنابراین بسیار مهم است که قیمت محاسبات در حد معقول نگهداشته شوند تا امکان تحلیل مجدد سازه بوجود آید. هزینه پایین محاسبات کامپیوتری برای یک تحلیل امکان اتخاذ یک سری تصمیمات اساسی در انتخاب و تغییر مدل و بارگذاری را برای مطالعة حساسیت نتایج، بهبود طراحی اولیه و رهنمون شدن به سمت قابلیت اعتماد برآوردها فراهم میآورد. بنابراین، بهینه سازی در روشهای عددی و متدهای حل که باعث کاهش زمان انجام محاسبات برای مسائل بزرگ گردند بسیار مفید خواهند بود.
استفاده از بردارهای ویژه، برای کاهش اندازة سیستمهای سازهای یا ارائه رفتار سازه به وسیلة تعداد کمی از مختصاتهای عمومی (تعمیم یافته) – در فرمول بندی سنتی – احتیاج به حل بسیار گرانقیمت مقدار ویژه دارد.
یک روش جدید از تحلیل دینامیکی که نیاز به برآورد دقیق فرکانس ارتعاش آزاد و اشکال مدی ندارد اخیراً توسط ویلسون Wilson یوان (Yuan) و دیکنز (Dickens) (1.17) ارائه شده است.
روش کاهش، بردارهای رتیز وابسته به بار Wyo Rity racter) که O, Y, W (حروف اختصاری نویسندگان) بر مبنای برهم نهی مستقیم بردارهای رتیز حاصل از توزیع مکانی و … بارهای تشخیص دینامیکی میباشد. این بردارها در کسری از زمان لازم برای محاسبة اشکال دقیق مدی، توسط یک الگوریتم بازگشتی ساده بدست میآیند. ارزیابیهای اولیه و کاربرد الگوریتم در تحلیل تاریخچه زمانی زلزله نشان داده است که استفاده از بردارهای رتیز وابسته به بار منجر به نتایج قابل مقایسه یا حتی بهتری نسبت به حل دقیق مقدار ویژه شده است.
در اینجا هدف ما تحقیق در جنبههای عملی کاربرد کامپیوتری بردارهای رتیز وابسته به بار، خصوصیات همگرایی و بسط آن به حالتهای عمومی تر بارگذاری میباشد. به علاوه، استراتژیهای توسطعه برای تحلیل دینامیکی زیر سازههای چند طبقه و سیستمهای غیر خطی ارائه خواهد شد. نیز راهنماییهایی برای توسعه الگوریتمهای چند منظورة Fortran برای ایجاد بردارهای رتیز تهیه شده است و برای بررسی صحت به چند سازة واقعی اعمال شده اند.
فصل اول الگوریتمهای پایه را بر اساس کارهای ویلسون و همکاران و نیز مقداری از اصول اساسی کاربرد بردارهای رتیز در دینامیک سازهها را توصیف می کند. همچنین تأثیر مدلسازی ریاضی اجزای محدود که به وسیلة مشخصات معین جرم، سختی و بارگذاری تعریف میشود. بر روی ایجاد بردارهای رتیز وابسته به بار، ارائه می شود.
فصل دوم رابطه ای بین روش Lanczol و بردارهای رتیز وابسته به بار ایجاد می کند. نشان داده می شود که الگوریتم ایجاد بردارهای رتیز وابسته به بار مشابه الگوریتم ایجاد بردارهای Lanczo می باشد. هر چند هدف از بکارگیری بردارهای رتیز وابسته به بار بدست آوردن روش حال مقدار ویژة صحیح نیست بلکه به کارگیری اصول برداری به منظور کاهش اندازه و عرض باند سیستمهای سازهای برای حل معادلات می باشد. روش بردارهای رتیز وابسته بار گسسته سازی کامل معادلات تعادل را انجام نمی دهد اما ثابت شده که بسیار کارآمدتر از روش سنتی حل مقدار ویژه است و این در حالتیکه در چه صحت بسیار مناسبی هم دارد.
فصل سوم توسعه ای برای تخمین خطا به منظور به کارگیری مقدار مناسب بردارهای رتیز برای همگرایی رضایت بخش پاسخ دینامیکی و نیز ایجاد رابطه بین بردارهای رتیز وابسته به بار سیستمهای کاهش یافته و حل مقدار ویژة سیستمهای اصلی، ارائه می نماید. تأثیر روندهای مختلف جمع برداری مانند شتابهای مودی و تصحیح استاتیکی نیز با رفتار بردارهای رتیز وابسته به بار مقایسه می شوند.
فصل 4 توسعة الگوریتمی جدید – الگوریتم بردارهای رتیز وابسته به بار LWYO برای ایجاد بردارهای وابسته به بار را ارائه می نماید که نشان داده می شود کار الگوریتم بردارهای رتیز LWYO نتایج پایدارتری نسبت به بردارهای رتیز WYD ارائه می نماید. کاربرد بردارهای رتیز LWYO همچنین اجازة کنترل بهتری بر تأثیر صحیح استاتیکی نسبت به بردارهای رتیز WYD فراهم می کند.
فصل پنجم کاربرد عملی بردارهای رتیز در مهندسی زلزله را بررسی می کند. روش تحلیل طیف پاسخ برای دو مدل سازه ای با تقریبا 150 درجه آزادی دینامیکی به کار گرفته شده است. کارایی محاسباتی بردارهای رتیز و حل مقدار ویژه مقایسه شده اند.
فصل ششم روش فرمول بندی برای توسعة روش کاهش رتیز به ازای انواع الگوهای بارگذاری عمومی که بار تابعی از زمان و مکان است را ارائه می نماید.
مقاله درباره کاربرد کامپیوتری بردارهای رتیز وابسته به بار، خصوصیات همگرایی و بسط آن به حالتهای عمومی تر بارگذاری