برای دانلود کل پاورپوینت از لینک زیر استفاده کنید.
پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.
معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.
ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند.
جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی
در جریان تغییر نظام آموزش دوره های کارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم که درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یکی از واحدهای پایه همه گرایشهای دوره کارشناسی ریاضی در نظر گرفته شده است. در کتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و ... می باشیم.
-مقدمه 1
-جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2
-محتوای کلی ریا ضیات گسسته 3
-تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال 4
-مرور تاریخی مباحث مهم ریاضیات گسسته 8
- مفهوم جاگشت 8
-اولین فن حدس زدن 8
-دیریکله 9
-تاریخچه اصل شمول و عدم شمول 9
-نظریه گراف 10
-مسئله پل کونیگسبرگ 10
-طریقه نمایش گراف 11
-گراف هامیلتونی 12
-رابطه های بازگشتی و مبادلات تفاضلی 19
-نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی 25
-منابع 28
شامل 30 صفحه فایل word
به هر گردایه یا دستهٔ مشخص از اشیاء دو به دو متمایز گفته میشود. مفهوم مجموعه با وجود سادگی آن از مفاهیم پایهای ریاضی است.
نظریه مجموعهها در اواخر سده ۱۹ مطرح شد و اکنون یکی از بخشهای اصلی ریاضیات است.
مجموعه گردایهای از اشیاء متمایز است. این اشیاء، عضوها یا عناصر مجموعه نامیده میشوند. اعضای یک مجموعه ممکن است هر چیزی باشند. مثلاً اعداد، افراد، حروف الفبا، مجموعهای از حقایق مجموعههای دیگر و جز اینها، بنابراین منظور از اشیاء در تعریف مجموعه لزوماً اشیاء مادی نیست بلکه هر نهادی را هرچند انتزاعی و کاملاً ذهنی (همچون اعداد) میتوان در ریاضیات یک شیء دانست و گردایهٔ آن اشیاء را مجموعهای دانست.
معمولاً مجموعهها را با حروف بزرگ لاتین مانند A، B،C نشان میدهیم. دو مجموعهٔ Aو B برابر هستند اگر اعضای آن یکسان باشند.
مباحث :
شامل 167 اسلاید به صورت عکس نوشته powerpoint
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.
سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو میکرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی میباشد. قدیمیترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی میباشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشتهاند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بیشکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع مینمود.
نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و میتوان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بیاساس است.
در اوایل قرن ششم ق.م. فیثاغورث 572_500) قبل از میلاد) از اهالی ساموس یونان کمکم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر همآهنگی و نظمی که دارد اساس ومبدأ همه چیز میپنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود.
سرگذشت ریاضیات
علم ریاضیات
عدد و شمارش
دستگاه شمارش رمزی یا الفبایی یونانی
ریاضیات بابلی و مصری
ریاضیات یونان باستان
ریاضیات چین وهند
ریاضیات دوره اسلامی
ریاضیات اروپایی- قرن ششم تا آخر قرن شانزدهم
ریاضیات در قرن ۱۷ میلادی
ریاضیدانان : ( به ترتیب حروف الفبا )
شرح مختصری درباره زندگی حکیم عمر خیام
شرح مختصری درباره زندگی ارسطو
شرح مختصری درباره زندگی گالیله
شرح مختصری درباره زندگی ارشمیدس
شرح مختصری درباره زندگی خوارزمی
شرح مختصری درباره زندگی نپر
شرح مختصری درباره زندگی پاسکال
شرح مختصری درباره زندگی دکارت
شرح مختصری درباره زندگی فرما
شرح مختصری درباره زندگی نیوتن
شرح مختصری درباره زندگی لایبنیتز
ریاضیات در قرن ۱۸ میلادی
جدول علائم ریاضی به ترتیب تاریخ اختراع
اعداد فیبوناچی
اصل لانه کبوتری
حدس کولاتز
ارتباط هنر و ریاضی
ریاضیات و رابطه آن با هنر
جایگاه هنر در درس ریاضی
زیبایی شناسی در درس ریاضی
شامل 100 صفحه فایل word
ریاضیات و معماری
از زمان های قدیم تا به اکنون، ریاضیات و معماری یک هنر غیرقابل تفکیک به حساب می آیند. در نزدیک ترین تمدن ها نظیر تمدن های اولیه ی مصر، یونان و رم، پیشرفت های معماری ریشه ی عمیقی در ریاضیات داشته است. ساختمان های عظیم الجثه و بزرگ از این تمدن ها در فرم و ساختاری از ریاضیات در واقعیت تفسیر می شود. ساختمان های برجسته ای که ارتباط بین معماری و ریاضیات را نشان می دهند عبارتند از :
هرم ها
معبد خدای آتنا در آتن
معبد خدایان روم
هیگاسوفیا در استانبول
اغلب این ساختمان ها بر اساس دقت اندازه گیری و حساب در ریاضیات خلق و ساخته شده است. بدون در دست داشتن قوانین اساسی ریاضیات هیچ بنای معماری عظیم و یا یادبود موفقی وجود نخواهد داشت.
در گذر زمان، طی تاریخ (معماری قرون وسطی)، در رنسانس صنعتی، در زمان اخیر ریاضیات هرگز نقش کم رنگ و بی تأثیری به خصوص زمانی که ما سعی می کنیم درباره ی طرح ها، هنر، معماری و ... فکر کنیم، نداشته است.
این رسم و سنت به تدریج توسط هنرمندان و معماران برجسته گسترش یافته است. این خالق ها تعداد اندکی از این سیر تاریخی می باشند :
Pacioli Luca 1514- 1445 کاشف منطقه ی طلایی و جغرافیادان
Leonardo Davinci 1519- 1451 کسی که ارتباط بین ریاضیات و معماری کشف و عملی کرد
Michelangelo به طور روش دار و اصولی ریاضی را در کار خویش استفاده کرد
و حالا در این باره که ریاضیات تا چه حدی می تواند در ساده ترین ساختمان ها نیز تأثیر چندانی داشته باشد، و نیز در یک طراحی معماری خیلی عظیم، و خیلی فراتر از حد تصور را برای مثال اهرام بیندیشیم !!
این مقاله میکوشد تا چالشهای دنیای ریاضیات را در مواجهه با دنیای شگفتانگیز نانو بررسی کند. به عبارت دیگر، ریاضیات در معماری پازل نانو چه نقشی خواهد داشت؟ علوم نانو و فناوری نانو بیانگر رهگذری به سوی دنیایی جدید هستند. سفر به اعماق سرزمین اتمها و مولکولها نوید دهندهٔ اثراث اجتماعی شگفتانگیزی است: در علوم بنیادین، در فناوریهای نو، در طراحی مهندسی و تولیدات، در پزشکی و سلامت و در آموزش. پیشبینیهای گسترده در حوزه کشفیات جدید، چالشها، درک مفاهیم، حتی هنوز فرم و محتوای موضوع، مهآلود و اسرارآمیز است. این مقاله میکوشد تا چالشهای دنیای ریاضیات را در مواجهه با دنیای شگفتانگیز نانو بررسی کند. به عبارت دیگر، ریاضیات در معماری پازل نانو چه نقشی خواهد داشت: همگان بر این نکته توافق دارند که پیشرفتهای بزرگ، مستلزم تعامل میان مهندسان، ژنتیستها، شیمیدانان، فیزیکدانان، داروسازان، ریاضیدانان و علوم رایانه ای ها است. شکاف میان علوم و فناوری، میان آموزش و پژوهش، میان دانشگاه و صنعت، میان صنعت و بازار بر مجموعه تأثیرگذار خواهد بود. دلایل کافی مبتنی بر فصل مشترک میان نظامهای کلاسیک و فرهنگ ها موجود است.این انقلاب علمی و فناورانه، منحصر به فرد است. این بدین معنی است که میبایستی نه تنها در بعد علمی، که در سایر ابعاد، نیز زیرساختهای بنیادین با حداکثر انعطاف پذیری در برابر تغییرات را پیشگویی و پیشبینی کنیم. دانش ریاضیات به عنوان خط مقدم جبههٔ علم مطرح است. ویژگی بدیهی ریاضیات در علوم نانو «محاسبات علمی» است.محاسبات علمی در فناوریی که به عنوان فناوری انقلابی مطرح شده است. محاسبات علمی در طول، تفسیر آزمایشات، تهیهٔ پیشبینی در مقیاس اتمی و مولکولی بر پایهٔ تئوری کوانتومی و تئوریهای اتمی است
همانگونه که ریاضیات زبان علم است، محاسبات، ابزاری عمومی علم و کاتالیزوری برای تعاملات عمیقتر میان ریاضیات و علوم است. یک تیم محاسبات، دربارهٔ مدلشان و اثر محاسباتشان و تطبیقپذیری آن با واقعیت، به بحث میپردازند. «محاسبات» رابطی میان آزمایش و تئوری است. یک تئوری و یک مدل ریاضی، پیش نیاز محاسبات است و یک آزمایش تنها اعتبار بخش هر نوع تئوری، مدل و محاسبات است. مدلهای ریاضی، ستونهای راهگشا به سوی بنیاد علم و تئوریهای پیش بین هستند. مدلها، رابطهایی بنیادین در پروسههای علمی هستند و اغلب اوقات در سیستمهای آموزشی به فاز مدلسازی و محاسبات، تأکید کافی نمیشود. یک مدل ریاضی بر پایهٔ فرمولاسیون معادلات و نامعادلات اصول بنیادین استوار است و مدل درگیر با درک کامل پیچیدگیهای مسأله نظیر، جرم، اندازهٔ حرکت و توازن انرژی است. در هر سیستم فیزیکی واقعی تقریب اجازه داده میشود، تا مدل را در یک قالب قابل حل عرضه کنند. اکنون میتوان مدل را یا به صورت «تحلیلی» و یا بصورت «عددی» حل کرد. در این حالت مدلسازی ریاضی یک پروسه پیچیده است،زیرا میبایستی دقت و کارآیی را همزمان نشان دهد.
تعداد صفحات: 21