پیاده سازی گیت and و or با شبکه عصبی آدلاین (adaline) در نرم افزار متلب
تشخیص میوه با شبکه عصبی adeline
دانلود مقاله رشته پزشکی مدلهای محاسباتی عصبی از تأثیرات جانبی ناحیة آسیب دیده مغز روی نواحی دورتر از منطقه آسیب دیده با فرمت ورد و قابل ویرایش تعدادصفحات22
مقدمه
اختلال ناگهانی در منطقه ای از مغز، مثلاً در اثر سکته های مغزی، باعث نقصهای عصبی مستقیماً مطابق با منطقة آسیب دیده می شود و آسیب درست از این منطقه شروع میشود. به علاوه دیگر نقصهای بالینی که به عنوان نقصها یا تأثیرات دوم یا Secondarg remote نامیده می شوند. وی قسمتهای بی عیب باقیمانده از مغز تأثیر خود را می گذراند. (برای مثال به علت قطع شدن ارتباط آنها با ناحیه آسیب دیده) این پدیده به عنوان diashisis نامیده شده است. diashisis (نقص الکتریکی و functional که بعلت آسیب در قشر مغز آغاز می شود و در منطقه ای دورتر از منطقه آسیب دیده نیز این آسیب را می توان فهمید منطقه ای که خود آسیب می بیند وی از لحاظ عصبی (ارتباط عصبی ) به آن اتصال دارد.
این پدیده باعث شده ، خصوصاً در مورد ارتباط بین نیمکره چپ و راست مغز، مسأله ویژه ای که در ارتباط با هر یک از نیمکره ها وجود دارد باعث مشکل در فهم و درک پدیده شود. این مقاله بعضی از مدلهای Neurocouputetional اخیر را مورد مطالعه قرار داده (اثر و کیفیت diashisis) مدل ارائه شده تنها یک مدلی است که همه خصوصیت دیگر بین نیمکره ها و همه اثر diashisis را شرح می دهد. در انتها، نتایج تأثیرات زیرقشری نیمکره چپ و راست روی خصوصیت نیمکره ها مورد بررسی قرار می گیرد.
1- مقدمه: Stoke : یا (سکته مغزی) ، اختلال ناگهانی است که در جریان supply کردن خون برای مغز بوجود می آید. زمانیکه یک سد ناگهانی در برابر جریان خون در سرخرگهای مغزی ایجاد می شود متعاقب آن باعث کمبود خون رسانی به آن ناحیه شده و ایسکمیک مغزی را به دنبال دارد. سکته مغزی یکی از بیماریهای شایع در نورولوژی است. برای مثال سومین عامل مرگ در کشور آمریکاست و اغلب موارد باعث نقص در بستر کرونیک (نقص در سیستم عصبی ، عضلانی قلبی ) اختلاف در زبان و صحبت کردن و مشکلات حافظه ای را به دنبال دارد. این باعث شده که توجه بسیار زیادی روی تحقیقات در مورد این مطلب در طی چند دهة اخیر صورت گیرد. اکثر این تحقیقات به دنبال اصلاح کردن یافته ها و دانسته ها درباره مکانیسم و پاتوفیزیولوژی این بمیاری (strake) هستند. یافته ها این تحقیقات در اکثر موارد بسیار پیچیده و حتی بسیار مورد بحث و جدل بوده اند.
شبکههای عصبی مصنوعی Artificial Neural Network – ANN) ) یا به زبان سادهتر شبکههای عصبی سیستمها و روشهای محاسباتی نوینی هستند برای یادگیری ماشینی، نمایش دانش، و در انتها اعمال دانش به دست آمده در جهت بیشبینی پاسخهای خروجی از سامانههای پیچیده. ایده اصلی این گونه شبکهها (تا حدودی) الهامگرفته از شیوه کارکرد سیستم عصبی زیستی، برای پردازش دادهها، و اطلاعات به منظور یادگیری و ایجاد دانش قرار دارد. عنصر کلیدی این ایده، ایجاد ساختارهایی جدید برای سامانه پردازش اطلاعات است. این سیستم از شمار زیادی عناصر پردازشی فوق العاده بهمپیوسته با نام نورون تشکیل شده که برای حل یک مسأله با هم هماهنگ عمل میکنند و توسط سیناپسها(ارتباطات الکترومغناطیسی) اطلاعات را منتقل میکنند. در این شبکهها اگر یک سلول آسیب ببیند بقیه سلولها میتوانند نبود آنرا جبران کرده، و نیز در بازسازی آن سهیم باشند. این شبکهها قادر به یادگیریاند. مثلا با اعمال سوزش به سلولهای عصبی لامسه، سلولها یاد میگیرند که به طرف جسم داغ نروند و با این الگوریتم سیستم میآموزد که خطای خود را اصلاح کند. یادگیری در این سیستمها به صورت تطبیقی صورت میگیرد، یعنی با استفاده ازمثالها وزن سیناپسها به گونهای تغییر میکند که در صورت دادن ورودیهای جدید، سیستم پاسخ درستی تولید کند. توافق دقیقی بر تعریف شبکه عصبی در میان محققان وجود ندارد؛ اما اغلب آنها موافقند که شبکه عصبی شامل شبکهای از عناصر پردازش ساده (نورونها) است، که میتواند رفتار پیچیده کلی تعیین شدهای از ارتباط بین عناصر پردازش و پارامترهای عنصر را نمایش دهد. منبع اصلی و الهام بخش برای این تکنیک، از آزمایش سیستم مرکزی عصبی و نورونها (آکسونها، شاخههای متعدد سلولهای عصبی و محلهای تماس دو عصب)نشأت گرفتهاست، که یکی از قابل توجهترین عناصر پردازش اطلاعات سیستم عصبی را تشکیل میدهد. در یک مدل شبکه عصبی، گرههای ساده (بطور گسترده نورون، نئورونها، “PE” ها (عناصر پردازش) یا واحدها) برای تشکیل شبکهای از گرهها، به هم متصل شده اند،به همین دلیل به آن، اصطلاح”شبکههای عصبی” اطلاق میشود. در حالی که یک شبکه عصبی نباید به خودی خود سازگارپذیر باشد، استفاده عملی از آن بواسطه الگوریتمهایی امکان پذیر است، که جهت تغییر وزن ارتباطات در شبکه (به منظور تولید سیگنال موردنظر) طراحی شده باشد. با استفاده از دانش برنامهنویسی رایانه میتوان ساختار دادهای طراحی کرد که همانند یک نرون عمل نماید. سپس با ایجاد شبکهای از این نورونهای مصنوعی به هم پیوسته، ایجاد یک الگوریتم آموزشی برای شبکه و اعمال این الگوریتم به شبکه آن را آموزش داد. این شبکهها برای تخمین (Estimation) و تقریب (Approximation)کارایی بسیار بالایی از خود نشان دادهاند. گستره کاربرد این مدلهای ریاضی بر گرفته از عملکرد مغز انسان، بسیار وسیع میباشد که به عنوان چند نمونه کوچک میتوان استفاده از این ابزار ریاضی در پردازش سیگنالهای بیولوییکی، مخابراتی و الکترونیکی تا کمک در نجوم و فضا نوردی را نام برد.
فهرست :
مقدمه ای بر شبکههای عصبی مصنوعی
تاریخچه شبکههای عصبی مصنوعی
شبکه عصبی چیست؟
شبکه عصبی چه قابلیتهائی دارد؟
الهام از طبیعت
شبکه های عصبی در مقایسه با کامپیوترهای سنتی
مسائل مناسب برای یادگیری شبکه های عصبی
پرسپترون
الگوریتم یادگیری پرسپترون
الگوریتم gradient descent
مشکلات روش gradient descent
تقریب افزایشی gradient descent
الگوریتم Back propagation
قدرت نمایش توابع
انواع آموزش شبکه
برخی زمینه های شبکه های عصبی
سبکهای معماری شبکههای عصبی
قواعد یادگیری در شبکههای عصبی
آموزش شبکههای عصبی
آموزش unsupervised یا تطبیقی (Adaptive)
تفاوتهای شبکههای عصبی با روشهای محاسباتی متداول و سیستمهای خبره
انواع یادگیری برای شبکه های عصبی
یادگیری با ناظر
یادگیری تشدیدی
یادگیری بدون ناظر
معایب شبکه های عصبی
مزیتهای شبکه های عصبی
سیستم خبره
سیستم خبره چیست؟
ساختار یک سیستم خبره
استفاده از منطق فازی
مزایا و محدودیتهای سیستمهای خبره
کاربرد سیستمهای خبره
چند سیستم خبره مشهور
مروری بر کاربردهای تجاری
بازاریابی
بانکداری و حوزه های مالی
پیش بینی
سایر حوزه های تجاری
کاربرد مدلهای شبکه عصبی در پیشبینی ورشکستگی اقتصادی شرکتهای بازار بورس
کاربرد مدل شبکه عصبی در پیشبینی ورشکستگی شرکتهای بازار بورس
تبیین مفهوم ورشکستگی
متغیرهای مدل تحقیق
اطلاعات شرکتهای نمونه تحقیق
تعیین مدل شبکه عصبی سه لایه برای پیشبینی ورشکستگی شرکتها
تعیین مدل بهینه شبکه عصبی چهار لایه برای پیشبینی ورشکستگی شرکتها
مقایسه مدلهای شبکه عصبی سه و چهار لایه برای پیشبینی ورشکستگی اقتصادی
پیشبینی ورشکستگی اقتصادی شرکتها در سالهای و
روند ورشکستگی اقتصادی شرکتهای بازار بورس در دوره ـ
جمعبندی و نتیجهگیری
منابع
در این پایان نامه ابتدا به مقدمه ای از شبکه های عصبی از جمله تاریخچۀ شبکه های عصبی و مشخصات اصلی یک نرون بیولوژیک پرداخته شده است. سپس ساختار شبکه های عصبی مصنوعی مورد بحث قرار گرفته است که از این بحث می توان به تعریف شبکه های عصبی مصنوعی، انواع توابع فعال ساز، انواع یادگیری شبکه های عصبی، شبکه های پرسپترون، MPL و هاپفیلد اشاره داشت. سرانجام نیز یک کاربرد شبکه های عصبی در پردازش تصویر، که عبارت است از « آشکارسازی چهره با شبکه های عصبی در تصاویر رنگی » مورد بررسی قرار گرفته شده است.
فهرست :
مقدمه
فصل اول : مقدمه ای بر شبکه های عصبی
تاریخچۀ شبکه های عصبی
نرون طبیعی
یادگیری در سیستم های بیولوژیک
شباهت شبکۀ عصبی زنده و مصنوعی
کاربرد شبکه های عصبی
فصل دوم : ساختار شبکه های عصبی مصنوعی
تعریف شبکه های عصبی مصنوعی
نرون های مصنوعی
اجزای یک شبکه عصبی
الگو برداری از مغز انسان
افزایش سرعت
حساسیت بالا به رخداد اشتباه
رایانه ها قادر نیستند از تجربیات گذشته استفاده نمایند
عدم ارائۀ پاسخ مناسب در شرایط جدید
ویژگی های شبکه های عصبی مصنوعی
قابلیت یادگیری
قابلیت تعمیم
پردازش موازی
مقاوم بودن
قابلیت کاربری
تشخیص داده های اشتباه
تحمل خطا
غیر خطی بودن
تصویر کردن ورودی – خروجی
معایب شبکه های عصبی
انواع توابع انتقال
یادگیری شبکه های عصبی
یادگیری نظارت شده
یادگیری نظارت نشده
یادگیری تقویت یافته
الگوریتم پس انتشار خطا
آموزش دلتا
آموزش ترکیبی
آموزش رقابتی
آموزش هب
ساختارهای مختلف شبکه های عصبی مصنوعی
شبکه های پسخور
شبکه های پیش خور
شبکه های پیش خور تک لایه
شبکه های پیش خور چند لایه
پرسپترون
یادگیری پرسپترون
یادگیری پرسپترون مبتنی به روش برداری
محدودیت های پرسپترون
شبکه های عصبی پرسپترون چندلایه
رفع مشکل
حل مشکل
مدل جدید
قاعدۀ جدید فراگیری
بررسی مجدد مساله یای حذفی (XOR)
شبکۀ هاپفیلد
فصل سوم : چند نمونه از کاربردهای شبکه های عصبی
آشکارسازی چهره با شبکه های عصبی در تصاویر رنگی
مقدمه
مشخصات رنگ پوست انسان
استخراج رنگ پوست
تولید رنگ پوست در فضایرنگی cbcr
شبکه های عصبی پیشنهادی
نتایج آزمایشات
نتایج آزمایش اترویفریمهای ویدئویی
آشکارسازی چهره
منابع