ابزارهای لازم برای پردازش متن در زبان فارسی
تشخیص دهنده ی جمله: این ابزار باید با توجه به کاراکترهای جداکننده ی جمله در زبان فارسی، توانایی تشخیص جملات را در متن ورودی داشته باشد. برای ایجاد این ابزار باید ابتدا تمامی کاراکترها، نماد ها و احیاناً قواعد دستوری که باعث شکسته شدن جملات می شوند، شناسایی گردند. با توجه به پایه بودن جمله در بسیاری از پردازش های زبانی، خروجی دقیق این ابزار از درجه ی اهمیت بالایی برخوردار است. از نمونه های انگلیسی آن می توان به OpenNLP، Stanford NLP، NLTK و Freeling اشاره کرد.
Tokenizer: ابزاری برای شکستن یک متن بر اساس واحدهای با معنی مانند کلمه، پاراگراف، نمادهای معنادار مانند space و tab و … . لازمه ی ایجاد این ابزار جمع آوری واحد هایی است که در زبان فارسی به عنوان واحد های مستقل معنایی شناخته می شوند. سپس بر اساس انتخاب هر کدام از این واحدها متن بر اساس آن شکسته خواهد شد. از نمونه های انگلیسی آن می توان به Flex، JLex، JFLex، ANTLR، Ragel و Quex اشاره کرد.
Named entity recognition: ابزاری برای تشخیص اسامی و نوع آنها اعم از اسامی افراد، اماکن، مقادیر عددی و … . برای تشخیص اینکه یک کلمه اسم است، راه های مختلفی وجود دارد که از جمله ی آنها مراجعه به لغتنامه، مراجعه به word-net، در نظر گرفتن ریشه ی کلمه، استفاده از قواعد نحوی ساخت واژه و … می باشد. در این ابزار پس از تشخیص اسم ها با استفاده یک لغتنامه از اسامی افراد، مکان ها، مقادیر عددی و … نوع اسم تشخیص داده می شود. به نظر می رسد که این لغتنامه در فارسی موجود نمی باشد.
از جمله نمونه های انگلیسی این ابزار می توان به Stanford NER و Illinois NER اشاره کرد.
Word-net: مجموعه ای از لغات و ارتباط میان آنها به لحاظ معنایی. ارتباطات معنایی در داخل این مجموعه شامل ۱۶ رابطه می باشد. این مجموعه به عنوان یک مرجع در بسیاری از پردازش های زبانی مورد استفاده قرار می گیرد. ار نمونه های انگلیسی آن می توان به Princeton Wordnet و EuroWordnet اشاره کرد. آزمایشگاه فناوری وب دانشگاه فردوسی مشهد نیز یک نمونه از این مجموعه با نام فردوس نت را تولید کرده است.
Stemmer: ابزاری برای ریشه یابی لغات و تشخیص نوع کلمه ساخته شده از آن ریشه (اسم مکان، اسم زمان، حالت فاعلی، مفعولی و …). معمولاً ریشه یابی لغات بر اساس قواعد ساخت واژه ای و سپس حذف پسوندها می باشد. تاکنون روش مؤثری برای حذف پیشوندها ارائه نشده است. در تلاشی که در آزمایشگاه فناوری وب انجام شده است، سعی شده تا بر اساس آنالیزهای آماری و داده کاوی پسوندها حذف گردند، که این روش هم می تواند راهی برای تشخیص ریشه باشد.
معروفترین الگوریتم ریشه یابی در انگلیسی porter می باشد.
Similarity recognition: ابزاری برای تشخیص میزان شباهت میان دو عبارت بر اساس پارامترهای مختلف مانند نوع اسامی مشابه به کار رفته، استفاده از word-net و… . در این ابزار پس از تشخیص نوع کلمات به کار رفته در یک جمله و سپس بر اساس جایگاه آن کلمات در جمله، کلماتی که در جایگاه های یکسان قرار دارند، مورد مقایسه قرار می گیرند. از نمونه های انگلیسی آن می توان به Illinois NESim و Illinois WNSim اشاره نمود.
Chunker: ابزاری برای تشخیص گروه های اسمی، فعلی و …. در یک جمله. جهت تقویت الگوریتم های وابسته به SRL لازم است نه تنها نقش های کلمات مشخص گردند، بلکه باید وابستگی های کلمات به لحاظ نقشی در جمله مشخص گردند. از جمله نمونه های انگلیسی آن می توان به Illinois Chunker اشاره کرد.
Semantic role labeler: ابزاری برای تشخیص نقش گرامری کلمه در جمله. این ابزار یکی از مهمترین نقش ها را در پردازش های زبانی بر عهده دارد. دقت در این ابزار بسیار حائز اهمیت است. این ابزار باید نقش های گرامری کلمات در جمله ها مانند فعل، فاعل، مفعول مستقیم، مفعول غیر مستقیم و …. را تشخیص دهد. از جمله نمونه های انگلیسی آن می توان به OpenNlP، Illinois SRL، Swirl و LTHSRL اشاره کرد. این ابزارها از الگوریتم پارسینگ charniak استفاده می کنند.
Annotator: ابزاری برای ایجاد یک نمونه از یک آنتولوژی در یک سند داده شده. از ابزارهای موجود در انگلیسی می توان به Illinois Curator و Stanford Annotator اشاره کرد.
Coreference resolution: ابزاری برای تعیین مرجع اسمی یک اسم یا یک ضمیر در جملات. این ابزار در زبان انگلیسی معادل ابزاری است که مرجع ضمیر را که به صورت اسم در جمله های قبلی آمده است، مشخص می کند. استفاده از ضمایر به جای اسامی در زبان انگلیسی بسیر رایج می باشد. اما در زبان فارسی این امر چندان رایج نیست. اما در زبان فارسی عنوان یک مفهوم اسمی با اصطلاحات مختلف بسیار رایج می باشد. عملاً ما به دنبال ابزاری هستیم که مرجع خاص یک سری از عنوان ها ی مختلف اسمی را مشخص کند. از نمونه های انگلیسی این ابزار می توان به Illinois Coreference package اشاره کرد.
Pos tagger: ابزاری برای مشخص کردن نوع کلمات از قبیل اسم، صفت، قید، فعل و … . یکی از روش های کاری برای ایجاد این ابزار، ایجاد یک rule base که معمولاً به صورت دستی تشکلیل می شود، برای تشخیص نوع کلمه است. از نونه های فارسی آن می توان به ابزار آزمایشگاه آقای دکتر بیجن خان، و ابزار آزمایشگاه فناوری وب دانشگاه فردوسی مشهد اشاره کرد. از نمونه های انگلیسی آن می توان به Illinois Part Of Speech Tagger و Stanford POS Tagger اشاره کرد.
————————————————————————-
نرمالسازی متن
در ابتدا بایستی همهی نویسههای (کاراکترهای) متن با جایگزینی با معادل استاندارد آن، یکسانسازی گردند. در اولین گام باید متون برای استفاده در گامهای بعدی به شکلی استاندارد درآیند. از آنجایی که متون مختلف ممکن است بسیار به هم شبیه باشند اما به دلیل تفاوتهای ساده ظاهری از نظر ماشین متفاوت باشند؛ به همین دلیل سعی شده است این تفاوتهای سادهی ظاهری برطرف گردد. همچنین اصلاحات دیگری نیز به منظور پردازش دقیقتر متون در این مرحله صورت میگیرد.
در اولین گام باید متون برای استفاده در گامهای بعدی به شکلی استاندارد درآیند. از آنجایی که متون مختلف ممکن است بسیار به هم شبیه باشند اما به دلیل تفاوتهای ساده ظاهری از نظرماشین متفاوت باشند؛ به همین دلیل سعی شده است این تفاوتهای سادهی ظاهری برطرف گردد. برای رسیدن به این هدف، قبل از مقایسه متون، پیشپردازشهایی روی آنها آنجام میشود. طبیعتا هر چه این پیشپردازشها قویتر باشد، نتایج حاصل ازمقایسه متون قابل اطمینانتر خواهد بود. لازم به ذکر است که از آن جایی که زبان فارسی جزو زبانهای غیر ساختیافته است با مشکلات بسیار بیشتری نسبت به سایر زبانها مواجه خواهیم شد. متون غیرساختیافته، متونی هستند که پیش فرض خاصی در مورد قالب آنها نداریم و آنها را به صورت مجموعهای مرتب از جملات در نظر میگیریم.
در ابتدا بایستی همهی نویسههای (کاراکترهای) متن با جایگزینی با معادل استاندارد آن یکسانسازی گردند. در پردازش رسم الخط زبان فارسی، با توجه به قرابتی که با رسم الخط عربی دارد، همواره در تعدادی از حرفها مشکل وجود دارد که از جمله آنها میتوان به حروف “ک”، “ی”، همزه و … اشاره نمود. در اولین گام باید مشکلات مربوط به این حروف را برطرف ساخت. علاوه بر این، اصلاح و یکسان سازی نویسهی نیمفاصله و فاصله در کاربردهای مختلف آن و همچنین حذف نویسهی «ـ» که برای کشش نویسههای چسبان مورد استفاده قرار میگیرد و مواردی مشابه برای یکسانسازی متون، از اقدامات لازم قبل از شروع فازهای مختلف میباشد. در این فاز مطابق با یک سری قاعده دقیق و مشخص، فاصلهها و نیمفاصلههای موجود در متن برای علاماتی نظیر “ها” و “ی” غیرچسبان در انتهای لغات و همچنین پیشوندها و پسوندهای فعلساز نظیر “می”، “ام”، “ایم”، “اید” و موارد مشابه جهت استفاده در فازهای بعدی، اصلاح میگردند. در ادامه به چند نمونه از این اصلاحات، اشاره شده است.
با استفاده از این ویژگی نرمافزار میتوان همهی نویسههای (کاراکترهای) متن را استاندارد نمود. اگر نویسهی غیر استانداردی یافت شد، با معادل استاندارد آن جایگزین میشود. برخی از این اصلاحات در ذیل آورده شده است:
برای اعمال اصلاحات اولیه قبل از هر عملیاتی، بایستی متون مورد پردازش توسط ابزار Normalizer طراحی شده، مورد اصلاح قرار گیرند.
——————————————————————–
ریشهیابی معنایی در زبان فارسی
هدف از انجام پروژه ریشه یابی معنایی در زبان فارسی، جداسازی کلمات از متن و بازگرداندن کلمات به ریشه اصلی تشکیل دهنده آنهاست. تفاوت اصلی این پروژه با سایر پژوهشهای انجام شده در زمینه ریشهیابی، قابلیت بازگرداندن کلمات به ریشه بدون از بین رفتن معنای آنها در جمله میباشد. بدین منظور به نقش کلمات در جمله توجه ویژهای شده است. در این طرح از مجموعه افعال گرداوری شده توسط گروه دادگان و لغات پرکاربرد پیکره همشهری استفاده شده است.
——————————————————————–
برچسب گذار نقش کلمات فارسی
برچسب گذاری اجزای واژگانی کلام (Part of Speech tagging) عمل انتساب برچسب های واژگانی به کلمات و نشانه های تشکیل دهنده یک متن است؛ به صورتی که این برچسب ها نشان دهنده نقش کلمات و نشانه ها در جمله باشد. درصد بالایی از کلمات از نقطه نظر برچسب واژگانی دارای ابهام هستند، زیرا کلمات در جایگاههای مختلف برچسب های واژگنی متفاوتی دارند. بنابراین برچسب گذاری واژگانی عمل ابهام زدایی از برچسب ها با توجه به زمینه (متن) مورد نظر است. برچسب گذاری واژگانی عملی اساسی برای بسیاری از حوزه های دیگر پردازش زبان طبیعی(NLP) از قبیل ترجمه ماشینی، خطایاب و تبدیل متن به گفتار می باشد. تا کنون مدل ها و روش های زیادی برای برچسب گذاری در زبان های مختلف استفاده شده است. بعضی از این روش ها عبارتند از:
——————————————————————–
پارسر زبان فارسی
به موازات پیشرفت و تحولات نظری در زبانشناسی جدید، روشهای تحلیل متون و دستورات زبان بوسیلهی رایانه نیز تحول یافته است. منظور از گرامر هر زبان، در دست داشتن یک سری دستورات زبانی قابل فهم برای رایانه است که به کمک آنها بتوان اجزای نحوی یک جمله را به طور صحیح تفکیک نمود. تجزیه و تحلیل جمله و شکستن آن به اجزای تشکیل دهنده مانند گروه های اسمی، فعلی، قیدی و غیره توسط ابزاری به نام پارسر صورت می گیرد که نقش اساسی در طراحی و یا افزایش دقت سایر ابزارهای پردازش متن دارد.
پارسر طراحی شده برای زبان فارسی در این پروژه، از ساختار لغات، موقعیت و ترتیب لغات در جمله، حروف یا عبارات قبل و بعد از آنها و نوع لغات، درخت نحوی یا پارسینگ را برای جملات متن تشکیل می دهد. در واقع عملیات پارسینگ با توجه به ریختشناسی (مطالعه ساختار و حالتهای مختلف یک کلمه) و همچنین دستورات نحوی گرامر زبان فارسی صورت میگیرد. بدیهی است هر چقدر نگارش بکار رفته در جملات و همچنین رعایت علائم سجاوندی طبق اصول و با دقت بیشتری صورت گرفته باشد، عملیات پارسینگ با کیفیت بهتری صورت خواهد گرفت و اجزای تشکیل دهنده ی جمله با عملیات کمتر و ساده تری برچسب زده خواهند شد.
یک فایل فشرده حاوی فایل EXE (شامل ابزارهای پیش پردازش متون زبان فارسی : نرمالسازی – ریشه یابی – برچسب زنی نحوی – پارسر )
کد سی شارپ همراه با کتابخانه های مورد نیاز جهت ریشه یابی کلمات فارسی:
در این نمونه کد، که به زبان سی شارپ نوشته شده است، کتابخانه های لازم برای استفاده از کد ریشه یاب زبان فارسی که در آزمایشگاه فناوری وب دانشگاه فردوسی مشهد تولید شده است، به کد اضافه شده و چگونگی استفاده از این کتابخانه ها در کد مشخص است و در قالب ابزاری جهت دادن ورودی و مشاهده خروجی آماده شده است.
در کد موجود در فایل ضمیمه سه کتابخانه (فایل dll) اضافه شده اند که امکان شناسایی افعال و ریشه یابی کلمات را فراهم می آورند…
برای استفاده از نرم افزار در صورت اجرا نشدم برنامه در فایل EXE، ابتدا بسته نرم افزاری دات نت فریمورک ۴.۵ را نصب نمایید.
قانون مدنی
مقدمه
در انتشار و آثار و اجراء قوانین بطور عموم
ماده1- مصوبات مجلس شورای اسلامی به رئیس جمهور ابلاغ و رئیس جمهور باید ظرف پنج روز آن را امضاء و به دولت ابلاغ نموده و دولت موظف است ظرف مدت 48 ساعت آنرا منتشر نماید.
تبصره- در صورت استنکاف رئیس جمهور از امضاء یا ابلاغ به دولت در مهلت مقرر دولت موظف است مصوبه یا نتیجه همه پرسی را پس از انقضای مدت مذکور ظرف چهل و هشت ساعت منتشر نماید.
ماده2- قوانین 15 روز پس از انتشار ، در سراسر کشور لازم الاجراء است مگر آنکه در خود قانون ، ترتیب خاصی برای موقع اجرا مقرر شده باشد.
ماده3- انتشار قوانین باید در روزنامه رسمی به عمل آید.
ماده4- اثر قانون نسبت به آتیه است و قانون نسبت به ما قبل خود اثر ندارد مگر اینکه در خود قانون ، مقررات خاصی نسبت به این موضوع اتخاذ شده باشد.
ماده5- کلیه سکنه ایران اعم از اتباع خارجه و داخله مطیع قوانین ایران خواهند بود مگر در مواردی که قانون استثناء کرده باشد.
ماده6- قوانین مربوط به احوال شخصیه از قبیل نکاح و طلاق و اهلیت اشخاص و، ارث در مورد کلیه اتباع ایران ولو اینکه مقیم در خارجه باشند مجری خواهد بود.
ماده7- اتباع خارج مقیم در خاک ایران از حیث مسائل مربوط به احوال شخصیه و اهلیت خود و همچنین از حیث حقوق ارثیه در حدود معاهدات مطیع قوانین و مقررات دولت متبوع خود خواهند بود.
ماده8- اموال غیر منقول که اتباع خارجه در ایران بر طبق عهود تملک کرده یا میکنند از هر جهت تابع قوانین ایران خواهد بود.
ماده9- مقررات عهودی که بر طبق قانون اساسی بین دولت ایران و سایر دول منعقد شده باشد در حکم قانون است .
ماده10- قراردادهای خصوصی نسبت به کسانی که آنرا منعقد نمودهاند در صورتی که مخالف صریح قانون نباشد نافذ است .
متن کامل در لینک زیر
نمایشنامه «بچه های محله»
این نمایشنامه در یک پرده بازی می شود صحنه نمایانگر یکی از محل ها می باشد پس از چند لحظه ای نور می آید صحنه روشن می شود و عده ای از مردم در حال رفت و آمدی باشند.
اشخاص بازیگران:
1ـ عمو رفتگر
2ـ محمّد
3ـ حسین
4ـ جعفر
5ـ رضا
6ـ هاشم
7ـ مصطفی
8ـ حسن
پس از چند لحظه ای صدای هم همه بازیگران از پشت صحنه به گوش می رسد و کم کم صداها به تدریج اوج می گیرد و پس از چند لحظه ای یکی پس از دیگری وارد صحنه می شوند هر کدام چیزی می گویند:
محمّد: که نقش کارگردان را دارد.
رضا بچه ها را به آرامش دعوت می کند و همه ساکت می شوند.
حسین رو به کارگردان می گوید: باباجان تو چرا فرار کردی تو ناسلامتی کارگردانی
کارگردان: با اَدا و اصولی: برو باباجان ولم کنید شماها با این کارهاتون آبروی چندین و چند ساله ی مرا برده اید آبرو برام نزاشتین.
شرح مختصر : یک ویرایشگر نیمه حرفه ای برای تمام برنامه نویسانی که علاقه به برنامه نویسی وب به زبان HTML دارند. یک محیط کد نویسی مجزا همراه با محیطی قابل پسند برای شما. این برنامه یک محیط کدنویسی را برای شما فراهم می کند، همچنین امکان ذخیره سازی، امکان ایجاد یک سند جدید، امکان بازکردن یک فایل HTML یا HTM و همچنین امکان نمایش صفحه را دارا می باشد. از دیگر قابلیت های این برنامه امکان ذخیره سازی سند به طور خودکار می باشد. همچنین امکان جستجوی لغت و جایگزینی آن با لغتی جدید را دارا می باشد. و در آخر یک محیطی برای تنظیمات دستی (گرافیکی) برای حالت نمایش محیط ویرایشگر تعبیه شده تا کاربر در صورت نیاز و به سلیقه ی خود به اصلاح محیط بپردازد.
متن به صورتکامل ترجه شده است و دارای ۵ صفحه فایل فارسی است
لینک فایل انگلیسی:
http://s5.picofile.com/file/8141357076/ProfiBus.pdf.html