فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:108
فهرست مطالب:
عنوان صفحه
مقدمه 1
فصل اول-همجوشی هستهای 3
1-1- واکنشهای هستهای 3
1-2- شکافت هستهای 3
1-3- همجوشی هستهای 4
1-4- انتخاب سوخت مناسب 6
1-5- یدههای راکتور همجوشی 10
1-5-1- همجوشی هستهای کنترل شده توسط لختی(ICF) 11
1-5-2- همجوشی هستهای توسط کاتالیزور میون(µCF) 13
1-5-3- محصورسازی مغناطیسی (MCF) 14
1-6- طبقه بندی انواع راکتور ها برحسب روش محصور کردن پلاسما 16
1-6-1- راکتور توکامک 17
1-6-2- قسمتهای اصلی راکتور توکاماک ITER 18
1-6-3- راکتور اسفرومک 20
1-6-4- سایر راکتورهای محصورسازی مغناطیسی 20
فصل دوم: سینیتیک همجوشی پلاسمای دوتریوم–هلیوم 3 22
1-2- سوختهای جدید و خواص آنها 22
2-2- خواص دوتریوم 24
2-3- خواص هلیوم 3. 25
2-4- پلاسما حالت چهارم ماده 29
2-5- روشهای تولید پلاسما 30
2-6- پارامترهای بنیادی پلاسما 31
2-6-1- فرکانسها در پلاسما 31
2-6-2- سرعتها در پلاسما 32
2-7- گرم کردن پلاسما 33
2-7-1- گرمایش مقاومتی 33
2-7-2- گرمایش از طریق فشرده سازی 35
2-7-3- گرمایش توسط تاثیر میدانهای الکترومغناطیسی 35
2-7-4- گرمایش توسط تزریق پرتو خنثی 36
2-8- گرمای همجوشی ذرات باردار 36
2-9- روشهای بررسی پلاسما 37
2-10- فشار جنبشی و مغناطیسی پلاسما 38
2-11- دیواره سیستم راکتورهای همجوشی D-3He از طریق محصورسازی مغناطیسی 39
2-12- بارگذاری دیواره راکتور 42
2-13- اساس روش محصورسازی 42
2-14- اتلاف انرژی پلاسما 46
2-14-1-تابش ترمزی 46
2-14-2- تابش سیکلوترونی 47
2-14-3- افتهای انتقالی 48
2-15- فیزیک واکنشهای همجوشی 48
2-16- آهنگ انجام واکنش 49
2-17- واکنش پذیری 50
2-17-1- واکنش پذیری واکنشهای هستهای (پارامتر سیگما-وی) 50
2-17-2- واکنشپذیری باکی 51
2-17-3- واکنشپذیری با معادله بوش-هال 51
2-17-4- واکنشپذیری با معادله ماکسول 52
2-18- فاکتور Q، زمان محصورسازی انرژی، توازن توان 54
2-18-1- فاکتور Q 54
2-18-2- زمان حبس انرژی 55
2-18-3- توازن توان. 55
2-19- معیار لاوسون و زمان حبس انرژی 56
2-20- معادلات اساسی دوتریوم و هلیوم 3 60
2-21- موازنه انرژی. 60
2-22- سوختن پلاسمای دوتریوم و هلیوم 3 61
فصل سوم:کنترل ناپایداری گرمایی در سوخت پلاسمای D-3He 66
3-1- مشکل اساسی راکتورهای همجوشی 66
3-2- کنترل مغناطیسی 67
3-3- کنترل جنبشی.................................................................................................................................................................68
3-4- کنترل مگنتو هیدرودینامیکی(MHD) 69
3-5- روشهای استفاده از کنترل جنبشی 70
3-6- اهداف کنترل 74
3-7- طراحی کنترلر 76
3-8- نتایج شبیه سازی 78
3-9-کنترل خطی با استفاده از روش تعدیل تزریق سوخت 80
فصل چهارم: پارامترهای موثر بر همجوشی پلاسمای D-3He در سیستم توکامک 82
4-1- مقدمه 82
4-2- نتایج برای حالت ناپایدار 83
4-3- پایداری پلاسمای دوتریوم و هلیوم 3 با استفاده از روش کنترلی تعدیل میزان تزریق 94
فصل پنجم: نتیجه گیری وبحث 101
مراجع:
فهرست جداول
جدول1-1- برخی از واکنشهای همجوشی 7
جدول1-2- انواع راکتورها برحسب روش محصور کردن پلاسما 17
جدول2-1- نسلهای مختلف سوختهای همجوشی 27
جدول 2-2- مقادیر عددی پارامترهای معادله باکی 51
جدول2-3- مقادیر ثوابت برای واکنشهای همجوشی مختلف در معادلات بوش-هال 52
جدول2-4- مقادیر عددی C1 و C2 و C3 برای واکنشهای D-T, D-D و D-3He 54
جدول 3-1- پارامترهای ITER90-HP 73
جدول 3-2- شرایط اولیه ی پلاسما 74
جدول 3-3- نقطه تعادل–نقطه احتراق 79
جدول 3-4- پارامترهای کمیت کنترل 81
فهرست اشکال
شکل 1-1- مراحل زنجیرهی پروتون – پروتون که در خورشید اتفاق میافتد 6
شکل 1-2- انرژی پتانسیل بر حسب فاصلهی دو هستهی باردار که با انرژی مرکز جرم به هم نزدیک میشوند. 10
شکل 1-3- نمایی از کپسول هدف 12
شکل 1-4- مراحل همجوشی به روش محصورسازی لختی 13
شکل1-5- راکتور آینه ای 16
شکل 1-6- نمایی از دستگاه چنبرهای پلاسما 17
شکل 1-7- راکتور توکاماک ایتر 19
شکل 1-8- سطح مقطع ایتر با پلاسمای بیضی 19
شکل1-9- شماتیک هندسی راکتور استلاتور 21
شکل2-1- واکنش پذیری انواع سوختها 26
شکل2-2- روشهای گرم کردن پلاسما 36
شکل2 3: مدارهای لارمور در یک میدان مغناطیسی 44
شکل 2-4: نمایش میدان مغناطیسی توروئیدی و پولوئیدی و تبدیل چرخشی 44
شکل 2-5: سوقگیری ذره، در میدانهای الکتریکی و مغناطیسی متعامد 45
شکل 2-6: حرکت مارپیچی الکترونها و یونها در امتداد خطوط مغناطیسی 46
شکل2-7- آهنگ واکنش به صورت تابعی از دما برای واکنشهای مختلف همجوشی با توزیع سرعت ماکسولی 50
شکل2-8- معیار لاوسون nτE برحسب دما T(keV) برای پلاسمای D-3He و D-T با فرض محصورسازی کامل ذرات باردار محصولات عمل 59
شکل4-1- مقایسه تغییرات پارامتر واکنشپذیری برای واکنش همجوشی D-T و D-3He براساس روش باکی 83
شکل 4-2- چگالی پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی 86
شکل 4-3- دمای پلاسمای دوتریوم و هلیوم3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی 88
شکل 4-4- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 89
شکل 4-5- پارامتر β پلاسمای دوتریوم و هلیوم 3 برحسب زمان در حالت ناپایدار برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 90
شکل 4-6- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی 91
شکل 4-7- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایداربر حسب زمان بدون ناخالصی و با ناخالصی 92
شکل 4-8- توان اهمی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 93
شکل 4-9- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی 94
شکل4-10- چگالی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 95
شکل 4-11- دمای پلاسمای دوتریوم و هلیوم3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی (آرگون و بریلیم) و حالت بدون ناخالصی 95
شکل 4-12- نسبت چگالی ذرهی آلفا به چگالی الکترون در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 96
شکل 4-13-پارامتر پلاسمای دوتریوم و هلیوم 3 در حالت پایدار بر حسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی 97
شکل 4-14- توان تابشی پلاسمای دوتریوم و هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و بدون ناخالصی 97
شکل 4-15- توان ذره آلفا در همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت پایداربر حسب زمان بدون ناخالصی و با ناخالصی 98
شکل 4-16- توان اهمی پلاسمای دوتریوم هلیوم 3 در حالت پایدار برحسب زمان برای دو نمونه همراه با ناخالصی و حالت بدون ناخالصی 99
شکل 4-17- توان خالص همجوشی پلاسمای دوتریوم و هلیوم 3 در حالت ناپایدار برحسب زمان برای دو حالت بدون ناخالصی و با حضور ناخالصی 99
چکیده
هدف از تحقیقات همجوشی، تولید نیروگاه هسته¬ای که از لحاظ اقتصادی و محیطی مناسب باشد. مسئله¬ی تولید انرژی همجوشی، دستگاهی است که بتواند سوخت را تا دمای کافی گرم کرده و سپس آن را برای مدت زمان طولانی نگه دارد، به طوری که بتواند انرژی بیشتری از طریق واکنش¬های همجوشی برای گرم کردن سوخت تولید کند. اما یکی از مسائل مهم فراروی راکتورهای همجوشی آینده، وجود ناپایداری گرمایی ذاتی در راکتورهای گرما هسته¬ای مانند توکامک می¬باشد
فراوانی سوختهای مورد نیاز در همجوشی هستهای یکی از بزرگترین مزایای این روش تولید انرژی، نسبت به شکافت هستهای میباشد. در این کار تحقیقانی، همجوشی مغناطیسی پلاسمای D-3He را در راکتور توکامک ITER- 90HP مورد بررسی قرار داده و با حل معادلات توازن انرژی حاکم بر همجوشی هستهای به روش خطی، تغییرات برخی از پارامتر های حاکم بر پلاسما را در دو حالت بدون ناخالصی و در حضور ناخالصی بدست میآوریم. با توجه به اهمیت کنترل ناپایداریهای ذاتی ایجاد شده در فرایند تولید انرژی هستهای در راکتورهای همجوشی، از روش کنترل تزریق میزان سوخت، با اختلال در دمای اولیه، استفاده کرده و پلاسمارا به پایداری میرسانیم و با حل دوبارهی معادلات توازن انرژی، تغییرات زمانی برخی از پارامترهای پلاسما را مورد بررسی قرار میدهیم.
کلید واژه: همجوشی مغناطیسی، پایداری پلاسما، سوخت D-3He ، کنترل ناپایداری، توکامک.
از دیرباز آرزوی بشر دستیابی به منبعی از انرژی بوده که علاوه بر آنکه بتواند مدت مدیدی از آن استفاده کند، تولید پسماندهای خطرناک نیز در پی نداشته باشد. اکنون در هزاره سوم میلادی این آرزوی به ظاهر دست نیافتنی کم کم به واقعیت میپیوندد. اکنون بشر خود را آماده میکند تا با ساخت اولین رآکتور گرما هستهای (همجوشی هستهای) آرزوی نیاکان خود را تحقق بخشد. سوختی پاک و ارزان به نام هیدروژن انرژی تولیدی سرشار و پسماندی بسیار پاک به نام هلیوم. اکنون به واکنشهای گرما هستهای و راهکارهای استفاده از آن میپردازیم.
خورشید و ستارگان
سالهاست که دانشمندان واکنشی را که در خورشید و ستارگان رخ داده و در آن انرژی تولید میکند کشف کردهاند. این واکنش عبارت است از ترکیب (برخورد) هستههای چهار اتم هیدروژن معمولی و تولید یک هسته اتم هلیوم. اما مشکلی سر راه این نظریه است. بالاترین دمایی که در خورشید وجود دارد مربوط به مرکز آن است که برابر 15ضرب در 10 به توان 6 میباشد. در حالی که در ستارگان بزرگتر این دما به 20 ضرب در ده به توان 6 میرسد. به همین خاطر تصور بر این است که آن واکنش معروف ترکیب چهار اتم هیدروژن معمولی و تولید یک اتم هلیوم در سایر ستارگان بزرگ نیست که باعث تولید انرژی میشود.
بلکه احتمالا چرخه کربن در آنها به کمک آمده و کوره آنها را روشن نگه میدارد. منظور از چرخه کربن آن چرخهای نیست که روی زمین اتفاق میافتد، بلکه به این صورت است که ابتدا یک اتم هیدروژن معمولی با یک اتم 12C ترکیب میشود (همجوشی) و یک اتم 13N به همراه یک واحد پرتو گاما را آزاد می کند. بعد این اتم با یک واپاشی به یک اتم 13C به علاوه یک پوزیترون و یک نوترینو تبدیل میشود. بعد این 13C دوباره با یک اتم هیدروژن ترکیب میشود و 14N و یک واحد گاما حاصل میشود.
دوباره در اثر ترکیب این نیتروژن با یک هیدروژن معمولی اتم 15O و یک واحد گاما تولید میشود و 12C واپاشی کرده و 15N به علاوه یک پوزیترون و یک نوترینو را بوجود میآورد. و دست آخر با ترکیب 15N با یک هیدروژن معمولی 12C به علاوه یک اتم هلیوم بدست میآید.
دیدید که در این چرخه 12C نه مصرف شد و نه بوجود آمد، بلکه فقط نقش کاتالیزگر را داشت. این واکنشها به ترتیب و پشت سر هم انجام میشوند. و واکنش اصلی همان تبدیل چهار اتم هیدروژن به یک اتم هلیوم است. مزیت چرخه کربن این است که سرعت کار را خیلی بالا میبرد. ولی اشکالی که دارد این است که در دمای حد اقل20 ضرب در ده به توان 6 شروع میشود. بنابراین احتمال زیادی میرود که در ستارههای بزرگتر چرخه کربن باعث تولید انرژی میشود.