باسلام. دوستان عزیز در این مجموعه به ارائه مععرفی نظریه ی کوانتومی در فیزیک در قالب پاورپوینت زیبا همراه با تصاویری این نظریه در مجموع 25 اسلاید زیبا پرداخته شده است. به امید شادکامی شما
این مقاله در قالب word می باشد و.....
رایانهٔ کوانتومی ماشینی است که از پدیدهها و قوانین مکانیک کوانتوم مانند برهم نهی (Superposition) و در هم تنیدگی (Entanglement) برای انجام محاسباتش استفاده میکند. کامپیوترهای کوانتومی با کامپیوترهای فعلی که با ترانزیستورها کار میکنند تفاوت اساسی دارند. ایده اصلی که در پس کامپیوترهای کوانتومی نهفته است این است که میتوان از خواص و قوانین فیزیک کوانتوم برای ذخیرهسازی و انجام عملیات روی دادهها استفاده کرد. یک مدل تئوریک و انتزاعی از این ماشینها،ماشین تورینگ کوانتومی(Quantum Turing Machine) است که کامپیوتر کوانتومی جهانی (Universal Quantum Computer) نیز نامیده میشود.
غلب کامپیوترهای دیجیتال امروزی برمبنای بیتها یا بایت هایی کار میکنند که محدود به0و1 هستند. کنند.اما رایانه کوانتومی وسیلهای محاسباتی است بجای بیتها دارای کیوبیت ها است.کوبیت مخفف کوانتوم-بیت است و از ویژگی حرکت چرخشی یا اسپینی الکترون ها در آن استفاده میشود که هر زمان نمایانگر بیش از یک عدد است. یک کامپیوتر مبتنی بر بیت های کوانتومی تعداد حالات پایه بیشتری نسبت به کامپیوترهایی بر پایه بیت های معمولی دارد، به طور همزمان می تواند دستورات بیشتری اجرا کند. یکی از قابلیت های کامپیوترهای کوانتومی که موجب تفاوت آنها با کامپیوترهای کلاسیک میشود بحث موازی بودن ذاتی پردازش درآنها است. درکامپیوترهای کوانتومی بزرگترین مشکل تشخیص وتصحیح خطا است. کامپیوترهای کوانتومی مبتنی بر فوتون ها کمترین اثر پذیری از محیط را دارند پس دارای احتمال خطای بسیار کمی هستند، کامپیوتر کوانتومی به عنوان یک ماشین محاسبه گر از گیت های منطقی برای پردازش اطلاعات بهره میبرد تفاوت عمده میان گیت های منطقی کلاسیک و کوانتومی آن است که ورودی وخروجی گیت های کوانتومی میتواند حالت برهم نهاده یک کیوبیت هم باشدیکی از گیت های منطقی کوانتومی،گیت CNOT است. امروزه کامپیوترها به سرعت درحال نزدیک شدن به محدودیتی بنیادین هستند . شاید بزرگترین ضعف آن ها این است که متکی برفیزیک کلاسیک هستند که برازدحام پربرخورد میلیاردها الکترون درون تقریبا همان تعداد ترانزیستورحکم رانی می کنند .تراشه های درون کامپیوترهای امروزی به قدری کوچک می شوند که تداوم حکم رانی فیزیک کلاسیک ممکن نیست
به منظور تبادل اطلاعات به صورت امن در دنیای کوانتومی، رمزنگاری کوانتومی مطرح شد . مخابره مستقیم امن کوانتومی به عنوان یکی از مهمترین شاخه های رمزنگاری، مورد توجه جمعی از محققان در ساله های اخیر قرار گرفته است. ارتباط مستقیم امن کوانتومی به ارسال مستقیم پیام محرمانه میپردازد. به طوریکه، ارسال پیام به کمک ایجاد یک کانال کوانتومی و بدون نیاز به توزیع کلید بین کاربرها صورت میپذیرد. مسئله اصلی در طراحی پروتکل های ارتباط مستقیم امن کوانتومی این است که طرح ارائه شده در برابر انواع حمله های استراق سمع کنندده امدن باشدد . همچندین ، در فرآیند برقراری ارتباط کوانتومی و سپس ارسال پیام محرمانه بین کاربرها، مسئله تعداد کیوبیت های بکار رفتده در طراحی پروتکل و نیز تعداد بیتهای منتقل شده حائز اهمیت است. به عبارتی دیگر، هر چه بازده طرح پیشنهادی بالاتر و پیاده سازی آن ساده تر باشد، پروتکل بهینه تر خواهد بود. در این پایان نامه ابتدا، مروری اجمالی بر مفاهیم و اصول اطلاعات و محاسبات کوانتومی خواهیم داشدت . سپس ، ضمن بیان دو شاخه مهم رمزنگاری، ارتباط مستقیم امن کوانتومی و مخابره از راه دور کوانتومی، پنج پروتکل در راستای بهبود عملکرد پروتکلهای ارتباط مستقیم امن کوانتومی و مخابره از راه دور کوانتومی پیشنهاد میکنیم. در انتها، مقایسه ای از پروتکلهای ارائه شده با کارهای پیشین انجام شده در این دو زمینه را خواهیم داشت.
فهرست :
چکیده
پیشگفتار
مقدمه
نظریه اطلاعات و محاسبات کوانتومی
نظریه رمزنگاری کوانتومی
ارتباط مستقیم امن کوانتومی
مخابره از راه دور کوانتومی
نتیجه گیری
مفاهیم اولیه اطلاعات و محاسبات کوانتومی
اصول موضوعه مکانیک کوانتومی
قضیه کپی ناپذیری
مفهوم درهم تنیدگی کوانتومی
معیار درهم تنیدگی
معرفی حالتهای درهم تنیده
حالتهای بل یا جفتهای EPR
حالتهای GHZ
حالتهای
حالتهای GHZlike
حالتهای خوشهای یا Cluster
حالت Brown
گیتهای کوانتومی
گیتهای تک کیوبیتی
گیتهای دو کیوبیتی
نتیجه گیری
ارتباط مستقیم امن کوانتومی کنترل شده
مخابره از راه دور کوانتومی دو طرفه
پارامترهای ارزیابی
پارامترهای ارزیابی پروتکلهای ارتباط مستقیم امن کوانتومی
پارامتر ارزیابی پروتکلهای مخابره از راه دور کوانتومی
مقایسه
نتیجه گیری
پروتکلهای پیشنهادی ارتباط مستقیم امن کوانتومی به کمک جابجایی درهمتنیدگی
جابجایی درهمتنیدگی
ارتباط مستقیم امن کوانتومی کنترلشده براساس حالت GHZlike
مرحله فراهم آوری
کنترل امنیت کانال کوانتومی
مخابره پیام محرمانه
استخراج پیام محرمانه
تحلیل امنیت
مقایسه
ارتباط مستقیم امن کوانتومی کنترل شده با هدف افزایش بازدهی
مرحله فراهم آوری
کنترل امنیت کانال کوانتومی
مرحله کدگذاری
مرحله کدبرداری
تحلیل امنیت
مقایسه
نتیجه گیری
پروتکلهای پیشنهادی مخابره از راه دور کوانتومی
مخابره از راه دور کوانتومی دو طرفه جهت انتقال یک حالت EPR خالص با استفاده از حالت GHZ
ایجاد کانال کوانتومی شش کیوبیتی با استفاده از دو حالت GHZ
شرح پروتکل پیشنهادی
مقایسه
مخابره از راه دور کوانتومی دو طرفه کنترلی توسط حالتهای EPR
کانال کوانتومی بین کاربرها
مخابره حالت کوانتومی
بازسازی حالت مخابره شده
مقایسه
مخابره از راه دور دو طرفه و ارتباط مستقیم امن کوانتومی با بکارگیری جابجایی درهمتنیدگی
شرح پروتکل مخابره از راه دور کوانتومی دو طرفه
تبدیل طرح مخابره از راه دور کوانتومی دو طرفه به ارتباط مستقیم امن کوانتومی دو طرفه
نتیجه گیری
جمع بندی و پیشنهادها
جمع بندی
نتیجه گیری و مقایسه
پیشنهادها
مراجع
چکیده:
از روی هم قرار دادن لایه های هم بافته مواد نیمه هادی پیوند نامتجانس نوع ایجاد می شود.
در این نوع پیوندها، به واسطه اثرات چاه های کوانتومی ساختار نواری اصلاح می گردد. در ساختار چاه کوانتومی الکترون فقط در یک بعد، محدود می شود.
بنابراین، در دو بعد، روی طیف پیوسته انرژی و در یک بعد، روز ترازهای گسسته انرژی حرکت می کند. در این ساختارها، اثرانی که ناشی از پهنای کم می باشند، به وضوح مشاهده می شود. این اثرات به عنوان اندازه کوانتومی مشهور می باشند. در چاه کوانتومی نوع اول، نوار رسانی و نوار ظرفیت، در یک راستا قرار می گیرند، در حالی که در چاه کوانتومی نوع دوم، نوارهای مذکور در یک راستا قرار نمی گیرند.
خواص منحصر به فرد پیوندهای نامتجانس نوع، امکان تولید آشکارسازهای نوری مادون قرمز جدیدی را با کارایی در دمای بالاتر، قدرت آشکارسازی و یکنواختی بیشتر نسبت به آشکارسازهای موجود را فراهم می کند. این افزاره ها به دو گروه عمده تقسیم می شوند: آشکارسازهای مادون قرمزی که از دستگاه خنک کننده برای کاهش دما عملیاتی آنها استفاده می شود و در محدوده طول موج های بلند مادون قرمز کار می کنند و آشکارسازهای مادون قرمزی که به خنک کننده نیاز ندارند و در محدوده طول موج های خیلی بلند مادون قرمز کار می کنند.
آشکارسازهای مادون قرمزی که به خنک کننده نیاز ندارند، در حسگرهای سبک وزن و ارزان قیمت که کاربردهای پزشکی و صنعتی زیادی دارند، بسیار مورد استفاده قرار می گیرند. در حسگرهایی که نیاز به خنک کننده ندارند، از آشکارسازهای میکروبولومتری یا فروالکتریک استفاده می شود. این حسگرها ذاتا کند هستند و نمی توانند تغییرات سیگنال های سریع مورد نیاز سامانه های مادون قرمز پرسرعت را آشکار کنند.
آشکارسازهای فوتون مادون قرمز را می توان به دو گروه طبقه بندی کرد، یکی آشکارسازهای مادون قرمز میان نواری مانند HgCdTe و دیگری آشکارسازهای مادون قرمز چاه کوانتومی میان زیرنواری (QWIP). از محدودیت های اصلی در آشکارسازی های میان نواری، افزایش نرخ «بازترکیب اوژه» می باشد، که باعث محدودیت های کار آنها در دماهای بالا می باشد. با اصلاح شکاف نوار در «ابرشبکه های نوع » تا حدود زیادی از نرخ بازترکیب اوژه در دمای اتاق، کاسته می شود.
مقدمه
در این سمینار ویژگی های منحصر به فردی از پیوندهای نامتجانس نوع را برای تحقق آشکارسازهای مادون قرمزی با دمای عملیاتی بالاتر و قدرت آشکارسازی و یکنواختی بیشتری نسبت به آشکارسازهای مادون قرمز رایج، استفاده کرده ایم. این تلاش روی دو نوع مهم از افزاره ها متمرکز شده است: آشکارسازهای مادون قرمزی که از دستگاه خنک کننده برای کاهش دما عملیاتی آنها استفاده می شود و افزاره هایی که در آنها از دستگاه خنک کننده استفاده نمی شود. این دو نوع آشکارساز در محدوده طول موج مادون قرمز بلند کار می کنند.
آشکارسازهای مادون قرمز نوع دوم در سامانه های حسگری کم وزن و ارزان قیمت کاربرد دارند این حسگرها در زمینه های پزشکی و صنعتی بسیار مورد استفاده قرار می گیرند.
حسگرهای IR که نیاز به خنک کننده ندارند، از آشکارسازهای میکروبولومتری یا فروالکتریک استفاده می کنند. این حسگرها کند هستند و نمی توانند تغییرات سیگنال های سریع مورد نیاز برای سامانه های مادون قرمز سرعت بالا را آشکار کنند. بعضی از کاربردهای آشکارسازهای سریع در صنایع پزشکی و LIDAR ها می باشد. اگرچه آشکارسازهای نوری، پاسخ فرکانسی بالایی در محدوده مگاهرتز دارند، اما دمای آشکارسازی بالای آنها به خاطر نرخ های بازترکیب بالا، کاهش یافته است. مهندسی شکاف انرژی برای جلوگیری از بازترکیب در دمای اتاق در ابر شبکه های نوع مورد استفاده قرار گرفته است. آشکارسازهای مذکور بر مبنای ابرشبکه های طراحی و پایه گذاری شده اند و قدرت آشکارسازی 10CmHz/W*1/3 را در 11 میکرومتر نشان می دهند. این مقدار قابل قیاس با میکروبولومترها می باشد. در آشکارسازهای رایج از سیلسیم ذاتی و HgCdTe استفاده می شود. که باید تا دمای پایین تر از 10k خنک شوند. اما یکنواختی خوبی در محدوده آشکارسازی طول موج های خیلی بلند ندارند.
تعداد صفحات: 65
این فایل پاورپوینت نظریه کوانتومی می باشد برای کنفرانس دانشجویان
این نظریۀ جدید با تمام جنبه های فیزیکی جدید و اغلب کلاسیک بر خورد پیدا میکند . انبساط گرمایی.گرمای ویژه.
گرمای نهان. مغناطش آهن. نیکل و مواردی از این دست. ابررسانایی و نیز خواص الکتریکی معمولی فلزات و نیم
رسانا ها. خطوط طیفی اتمها و ساختارطیفهای مولکولی. لیزرها. پرتوهای ایکس. پرتوزایی از این جمله اند.
این سیاهه را تقریبا به طور نامحدود میتوان ادامه داد.