کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

مقاله صنعت ریخته گری (خاک)

اختصاصی از کوشا فایل مقاله صنعت ریخته گری (خاک) دانلود با لینک مستقیم و پرسرعت .

مقاله صنعت ریخته گری (خاک)


مقاله  صنعت ریخته گری (خاک)

فایل بصورت ورد (قابل ویرایش) و در 33 صفحه می باشد.

 

مقاله ۱ ۴
انواع چسب ها (Types of binder) 10
چسب های غیر آلی (Inorganic binders) 12
بنتونیت غربی (Western bentonite) 14
بنتونیت جنوبی ۱۵
کائولیت (Caolinite) 18
ایلیت (Illite) 19
مکانیزم اتصال خاک رس ۲۰
اتصال تر (Green bond) 20
فصل مشترک کوراتز – خاک رس ۲۲
اتصال خشک (Dry bond) 22
سیمان ها (Cements) 23
سیمان بعنون یک چسب (Cements) 23
سیمان لاستیکی ۲۶
سیمان های شیمیایی ۲۶
سیلیکات ها (Silicates) 27
فوران (Furan) 27
فورفورال (FurFural) 27
الکل فورفوریل (F urfuryl alcohol) 28
فرآیند اصلاح سازی (Cold – curing process) 29

 

 

مقاله ۱:

انواع مختلفی از خاک در جهان وجود دارند که بسیاری از آنها  در صنعت ریخته گری آزمایش شده اند اما سه نوع اصلی که در این صنعت بکار می روند شامل کائولن (خاک نسوزط)، مونت موریلونیت (بنتونیت) و ایلیت می باشند. مونت موریلونیت مهم ترین کانی بنتونیت بود۹ که از یک ساختار سه لایه صفحه ای تشکیل شده است. ۲ لایه از تتراهدلا سیلیسییم – اکسیژن و یک لایه دی اکتاهدرال یا تری اکتاهدرال هیدوکسیل آلومینیم (گیبسیت). لایه میانی‌ آلومینیوم از اکتاهدرالی با یک اتم آهن که توسط شش واحد  هیدلوکسیل محاصره شده تشکیل گردیده است. به شکلهای ۱ و ۲ مراجعه کنید.

خاک های سدیمی، کلسیمی . و بنتونیت های فعال شده دراین خانواده قرار گرفته و به میزان فراوانی در صنعت ریختهگری استفاده می شوند. کائولن از دو لایه ساختاری تشکیل  شده است یک لایه اکتاهیدال آلومینیم و یک لایه تتراهیدال الومینیم و یک لایه تتراهدرال سیلیسیم. لایه سیلیسیم از یک اتم سیلیسیم و ۴ اتم اکسیژت تشکیل شده است.

خاک نسوز، خاک چینی، کائولینیت  و خاک رس دراین خانواده قرار می گیرد. در صنایع مدرن بریخته گری بندرت از این خاکها استفاده می‌شود.

 

ایلیت خاکی با نسوزندگی ضعیف است. این خاک غالبا در ماسه های طبیعی دیده شده اما در ماسه های مصنوعی هیچگاه افزوده نمی‌شود.

مونت موریلونیت دارای یک صفحه میانی هیدروکسیل آلومینیوم است که بین دو لایه اکسید سیلیسیم آلومینیم است که بین دو لایه اکسید سیلیسیم قرار گرفته است. بخشی از آلومینیم  توسط منیزیم جانشین شده که یک حالت عدم تعادلی یونی را به وجود می آورد.  تعادل یونی را می توان با افزودن سدیم، کلسیم یا منیزیم بدتس آورد که این عمل تبادل یونی نامیده می‌شود.

در صنایع جدید ریخته گری ، برخی خاکهای مورد استفاده از نوع تبادل یونی (فعال شده)  هستند. دو نوع مونت موریلونیت مهم که در آن صنعت ریخته گری بکار می‌روند عبارتند از :

الف) بنتونیت سدیم که با خاصیت تورم زیاد شناخته می‌شود.

ب) بنتونیت کلسیمی که تورم پذیری کلسیمی هستند که با نمکهای سدیم نظیر کربنات سدیم فرآوری شده تاند تا خواص خاک بهبود یابد.این فعال سازی بودن آنکه باعث کاهش استحکام خشک گردد، موجب بهبود پایداری خواص شده و عیوب ناشی از انبساط را کاهش می دهد.

عمل فعال سازی می‌تواند به صورت «تر» یا «خشک» انجام شود  اما نتایج بررسیها نشان می دهند که فعال سازی «تر» خواص بهتری را بدست می دهد.

بنتونیت های سدیمی، کلسیمی و خاک های تبادل بودن کره، هر یک خواص منسبی دارند. انتخاب نوع خاک به خواص مورد نیاز و مسائل اقتصادی ازتباط دارد. در صنعت ریخته گری فولاد، برای ریخته گری  چدن و فلزات غیر آهنی درماسه‌تر معمولاً از بنتونیت کلسیمی یا بنتونیت فعال شده یا مخلوطی از ینتونیت سدیمی/کلسیمی استفاده می‌شود. هر کارخانه ریته گری باید نیازمندیهای خود را شندهته و بر آن اساس نوع خاک مناسب را انتخاب کند. ازیک خاک یا مخلوطی از خاک ها  می توان در اغلب موارد برای دست یابی به خواص مورد نظر استفاده کرد. در فرآیندهای قالب گیری ماشینی با فشار بالا، این انتخاب اهمیت بیشتری داشته و معمولاً برای بهبود عملکرد، افزودنی دیگرنیز به ماسه اضافه می شوند.

مقاله ۲: چسب های زرین نوع فوران ابتدا در سال ۱۹۵۸ به عنوان سیستم =سب فوران بدون پخت اسید کاتالیز شده معرفی شدند. دو سال بعد صنعت اتومایتو این رزین ‌ها را اصلاح کرد تا به کاتالیزورهای نمکی اسید عمل کنند تا در ماهیچه های Hotbox استفاده شود سپس در اوایل دهه ۸۰ (زرین های فوران به عنوان بزرگترین سیستم  فروش بدون پخت تبدیل شدند.

چسب های فوران بدون پخت (سردگیر ) در تهیه قالبهای ماسه ای در ریخته گری قطعات چدنی و فولادی کاربرد زیادی پیدا کرده اند. در این پژوهش متغیرها موثر در سخت شدن چسب شامل:  درصد کاتالیست، رطوبت ماسه، اثر دمای محیط و فاصله زمانی بین سنجش استحام و زمان قالبگیری مورد بررسی قرار گرفته است. نهایتا شرایط بهینه قالب گیری چسب فوران با کاتالیست اسیدتولوئن سولفونیک به دست آمد. در این شرایط استحکام فشاری ماسه برابر  ۴۰۰، عبود گاز آن AFS 130، وز مان عمر مفید این ماسه برابر ۲۰ دقیقه تعیین گردید.

چسب های فوارن بدون پخت (سردگیر) ر تهیه قالب های ماسه ایدر ریخته‌گری قطعات چدنی فولادی کاربرد زیادی پیدا کرده اند. سیستم چسبهای فورانی بدون پخت (No- boke) دراواخر سال ۱۹۵۰ به صنعت ریخته گری معرفی شد  و از سال ۱۹۶۰ تاکنون به طور گسترده ای در صنایع ریخته گری کشورهای جهان استفاده می‌شود. پایه چسبهای فورانی. الکل فورقوریل با فرمول شیمیایی C4H3OCH2OH است که از فورفورال تهیه می‌شود. فورفورال نیز خود از ت۰حول بقایای محصولات غذاییی همچون غلات،  پوست جو ، تفاله نیشکر و غیره بدست می آید. درجه چسب فوران با استفادهاز مقدار آب و نیتروژن و میزان فورفوریل الکل پایین برای ریخته گری و ماهیچه سازی چدن و آلیاژهای کم و یا بع عبارتی با فورفوریل الکل زیاد برای ریخته گری و ماهیچه سازی قطعات فولادی بکار برده می شوند. یکی از انواع خاص چسبهایفورانی سردگیر چسبهای بدون نیتروژن است. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود ولی از طرفی وجود آن در بسیاری از موارد با تشکیل گاز، باعث ایجاد عیوب ریخته گری می‌شود که اغلب از نوع تخلخل و حفره ای بوده و خطرناک می باشند. نیتروژن همچنین ممکن است تخلخل های زیر سطحی ایجاد کند. برای بکار بدن این چسب در قالب گیری، ابتدا ماسه را با یک کاتالیست یا سخت کننده مخلوط می کنند و سپس چسب فوران را را آن مخلوط می نمایند. انواع کاتالیستهای معمول این چسب به ترتیب افزایش واکنش دهندگی عبارتند از: اسید فسفریک و یا مخلوطی از اسید فسفریک و اسید سولفوریک، آریل سولفونیکها مثل اسید تولئون سفلونیک(TSA) با فرمول شیمیای CH3So3H و اسید بنزن سولفونیک (‌BSA) با فرمول SO­۳ H  اسید فسفریک ضعیف تین اسید بین اسیدهی مذکوراست.

معمولاً مقداراسید فسفریک  لازم جهت افزودن به مخلوط حدود ۴۰ الی ۶۰ درصد وزنی چسب فوران می باشد. بعد از اسید فسفریک امروزه بیشتر از اسیدها آروماتیک TSA و پس از آن BSA  که قوی تر است  استفاده می‌شود. معمولاً وقتی که ماسه مصرف شده (غیر تازه) باشد یا حالت قلیایی داشته باشد استفاده از BAS  مطلوب تر است. افزودن این دواسیددرحدود ۲۰ الی ۲۵ درصد چسب به مخلطو کاسه کافی است. به طول کلی مکانیزم سخت شده چسب در چسبهای سرد فورانی که با اسید سخت می شوند به صورت پلبیمریزاسیوناست. در واقع با وجود یک اسید قوی، زنجییزه های الکل فورفرویل به صورت فیلمی ذرات ماسه را می پوشاند و باعث چسبیدن این ذرات ب۹ه هم می شوند. واکنش پلیمریزاسیون این چسب از نوع تراکمی است و محصول جنبی داشته و به صورت زیر می باشد.

این واکن گرمازا است وحرارات  ناشی ازآن  باعث تسریع پلیمریزاسیون به صولت لایه لایه تا بخشهایمرکزی می‌شود. آب تولید شده از واکنش پلیمریزاسیون برای تکمیل گیرش رزین باید بخیر شود. به همین دلیل گیرش رزین از سطح خارجی قالب به سمت داخل اتفاق می افتد. سرعت واکنش تحت تاثیر عواملی چون دمای  ماسه و نوع ماسه، نوع مخلوط کنو سرعت مخلوط کردن ، ترکیب چسب وننع و مقدار عنصر فعال کننده مصرفی قرار دارد. افزایش دمای محیط تا C 0  ۳۰  موجب افزایش سرعت‌گیرش و رسیدن به استحکام بالا می‌شود. افزایش رطوبت نیز در دمای ثابت باعث کم شدن سرعت گیرش می‌شود. دمای ماسه تأثیر بسزایی را روی فرآیند پلیمریزتاسیون دارد. درمحدوده دمایی C 0 16 تا C 0 38 استحکامهای مناسب تری بدست می آید. در ضمن هر چه روطوبت نسبی هوا بالاتر رود به دلیل کاهش سرعت تبخیر حاضر در کاتالیست و آب تولید شده از وانش تراکمی‌، استحکام کاهش می‌یابد.

یکی از مزایای فآیند قالب گیری با این چسب نیاز به تجهیزات و ماشین آلات پیچیته است. از مزایای دیگر این چسب استحکام بالا، سادگی  مخلوط ماسه‌، دستیابی به دقت ابعادی بالا  و کاهش هزینه های مربوط به ماشین کاری، کنترین میزان واکنش درفل مشترک ماسه و فلز و عدم نیاز به مهارت قالب گیری و ماهیچه سازی می باشد. همچنین از معایب آن نیز می تان با پایین بودنسرعت تولید، قیمت بالای چسب، بدبو بودن میحط کاری آن واحتمال ابتلا به امراض پوستی و صنعتی و نیاز به استفاده از ماسه  با کیفیت بالا اشاره کرد.

مداول ترین نوع ریخته گری نوع قالب ماسه ای است که دو نوع مخلوط پایه‌ای برای آن وجود دارد.

ماسهتر (green Sand)  و مساه سردگیر (no – bake sand) از (Synthctic resins) استفاده می کنند.

عمیلایت بدون پخت : قالب ها یا ماهیچه هایی که به وسیله رزیل هایی که ماسه ها را درهوا به هم می چسبانند تهیه شده اند گفته می‌شود. این پروسته (airset ) موسوم است چون قالب ها برای سخت شدن در شرایط محیط قرار داده می شوند.

شادی معمولاً پس از عملیات زینتر، دانه بندی می‌شود و برای قالبگیری با ماسه خشک بمنظور ریبختهگری قطعات ریختگی فولادی به کار می رود.

انواع چسب ها (Types of binder)

تقسیم بندی چسب ها از دو دیدگاه صورت می گیرد؛ یکی از نققطه نشر ماهیت و طبیعت جسب ها و دیگری از نظر نحوه انجماد و چگونگی  خودگیری و سفت شدن (Setting) چسب ها، از نقطه نظر ماهیت، چسبها به دو گروه چسب های آلی ‍(Organec)  و غیر آلی (Inorganic) و یا به دو دسته قابل  حل در آب ( Warer – Soluble) یا آبدار (Hydrous) و غی قابل حل در آب (Warer – Insolube) یا غیر آبدار (Anhydrous) تقسیم بندی می شوند.

ازنقطه نظر نحوه اینجماد و چگونگی سفت شدن و خودگیری، چسب ها به سه گروه برگشت ناپذیر (Irreversible) ، میانه (UNTermediarte) و برگشت پذیر (Reversible) تقسیم می شوند.


دانلود با لینک مستقیم

ریخته گری ,کاربرد – مزایا و...

اختصاصی از کوشا فایل ریخته گری ,کاربرد – مزایا و... دانلود با لینک مستقیم و پرسرعت .

ریخته گری ,کاربرد – مزایا و...


ریخته گری ,کاربرد – مزایا و...

فایل بصورت ورد (قابل ویرایش) و در 176 صفحه می باشد.

 

تعریف ریخته گری:

ریخته گری یکی از روشهای ساخت و شکل دادن فلزات است.

 در این روش یک فلز یا آلیاژ ابتدائاً ذوب شده و در درون یک محفظه تو خالی بنام قالب که تقریباً به شکل قطع ساخته شده ریخته می شود، بنحوی که پس از پایان انجماد شکل، ابعاد، ترکیب شیمیای و خواص مورد نظر بدست آید.


دانلود با لینک مستقیم

مقاله ریخته گری

اختصاصی از کوشا فایل مقاله ریخته گری دانلود با لینک مستقیم و پرسرعت .

مقاله ریخته گری


 مقاله ریخته گری

فایل بصورت ورد (قابل ویرایش) و در 116 صفحه می باشد.

 

مقدمه: ریخته گری در اشکال مختلف آن یکی از مهمترین فرایندهای شکل دهی فلزات
می باشد. گرچه روش ریخته گری ماسه ای یک فرایند متنوع بوده و قادر به تولید ریخته با اشکال پیچیده از محدوده زیادی از فلزات می باشد، ولی دقت ابعادی و تشکیل سطح مختلف ساخته شده به این روش نسبتاً ضعیف می باشد. علاوه بر این ریخته گری ماسه ای عموماً برای حجم تولید بالا مناسب نمی باشد. به ویژه در جایی که ریخته ها احتیاج به جزئیات دقیق دارد، جهت از بین بردن این محدودیت ها فرایندهای ریخته‌گری دیگری که هزینه تولید کمتری هم دارند به وجود آمده اند، این روش شامل:

(i) قالب گیری پوسته‌ای

( ii ) قالب‌گیری بسته‌ای

(iii ) دای کاست یا ( ریخته گری حدیده ای که علاوه برفرآیندهای ریخته گری شکل دهی قطعات با استفاده از پودرهای فلزی نیز شامل این فصل می باشد.


دانلود با لینک مستقیم

کارخانه ریخته گری آلومینیوم

اختصاصی از کوشا فایل کارخانه ریخته گری آلومینیوم دانلود با لینک مستقیم و پرسرعت .

کارخانه ریخته گری آلومینیوم


کارخانه ریخته گری آلومینیوم

فایل بصورت ورد (قابل ویرایش) و در 32 صفحه می باشد.

 

هدف این بخش تولید سیلندر و سر سیلندر و پوسته کلاج پژو می باشد. در این قسمت ریخته گری سیلندر از نوع تحت فشار که از دستگاه  High Pressure  با قدرت

2500 HP  که یک دستگاه ژاپنی است استفاده می شود و پوسته کلاج و سرسیلندر با دو دستگاه Low Pressure  با قدرت 1600 HP که دستگاه ایتالیایی است تولید می شود البته قبلاً در این واحد دستگاه ریژه ریزی نیز موجود بود که با توجه به طرح انتقال بخش ریخته گری به شهرستان ابهر این دستگاه جمع آوری و به ابهر منتقل شد.

در قسمت تولید ذوب از 5 کوره استفاده می شود که این کوره ها شعله ای بوده و دمای حداکثر آنها در حدود   می باشد. سه کوره آن برای تامین ذوب قسمت سیلندر با ظرفیت سه تن و سرعت تولید یک تن در ساعت بکار می رود دمای ذوب هنگامی که درون با قبل ریخته می شود حدود 750- 730 درجه سانتگراد می باشد که توسط لیفتراک به قسمت ریخته گری سیلندر حمل می شوند. درجه حرارت مذاب هنگام تحویل در قیمت ریخته گری سیلندر به  می رسد که در کوره نگهدارنده، موجود می باشد و دو کوره دیگر هر کدام با ظرفیت ذوب 500 کیلوگرم و سرعت تولید 150 کیلوگرم در ساعت موجود می باشند و برای قسمت سر سیلندر بکار می روند.


دانلود با لینک مستقیم

تحقیق ریخته گری فولاد ذوب فلزات

اختصاصی از کوشا فایل تحقیق ریخته گری فولاد ذوب فلزات دانلود با لینک مستقیم و پرسرعت .

تحقیق ریخته گری فولاد ذوب فلزات


تحقیق ریخته گری فولاد ذوب فلزات

فایل بصورت ورد (قابل ویرایش) و در 132 صفحه می باشد.

 

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

 

مقدمه    ۹
۱-۱- معرفی و به کار گیری سوپر آلیاژها    ۹
۱-۲- مروری کوتاه بر فلزات با استحکام در دمای بالا    ۱۰
۱-۳- اصول متالورژی سوپر آلیاژها    ۱۱
۱-۴- بعضی از ویژگیها و خواص سوپر آلیاژها    ۱۳
۱-۵- کاربردها    ۱۵
۲-۱- کلیات    ۱۸
۲-۲- شکل سوپر آلیاژها    ۱۸
۲-۳- دمای کاری سوپرآلیاژها    ۱۹
۲-۴- مقایسه سوپر آلیاژهای ریخته و کار شده    ۲۰
۲-۴-۱- سوپر آلیاژهای کار شده    ۲۰
۲-۴-۲- سوپر آلیاژهای ریخته    ۲۱
۲-۵- خواص سوپرآلیاژها    ۲۲
۲-۵-۱- کلیات    ۲۲
۲-۵-۲- سوپر آلیاژهای پیشرفته    ۲۳
۲-۵-۳- خواص مکانیکی و کاربرد سوپرآلیاژها    ۲۴
۲-۶- انتخاب سوپرآلیاژها    ۲۶
۲-۶-۱- کاربردهای آلیاژهای کار شده در دمای متوسط    ۲۶
۲-۶-۲- کاربردهای آلیاژهای ریخته در دمای بالا    ۲۷
۳-۱- گروه‌ها، ساختارهای بلوری و فازها    ۳۱
۳-۱-۱- گروه‌های سوپرآلیاژها    ۳۱
۳-۱-۲- ساختار بلوری    ۳۱
۳-۱-۳- فاز در سوپرآلیاژها    ۳۲
۳-۲- مقدمه‌ای بر گروه‌های آلیاژی    ۳۳
۳-۲-۱- سوپر آلیاژهای پایه آهن- نیکل    ۳۳
۳-۲-۲- سوپرآلیاژهای پایه نیکل    ۳۴
۳-۲-۳- سوپرآلیاژهای پایه کبالت    ۳۵
۳-۳- عناصر آلیاژی و اثرات آنها بر ریزساختار سوپرآلیاژها    ۳۶
۳-۳-۲- عناصر اصلی در سوپرآلیاژها    ۳۶
۳-۳-۳- عناصر جزئی مفید در سوپرآلیاژها    ۳۷
۳-۳-۴- عناصر تشکیل دهنده فازهای ترد    ۳۷
۳-۳-۵- عناصر ناخواسته و مضر در سوپرآلیاژها    ۳۸
۳-۳-۶- عناصر ایجاد کننده مقاومت خوردگی و اکسیداسیون    ۳۸
۳-۴- استحکام دهی سوپرآلیاژها    ۳۹
۳-۴-۱- رسوب‌ها و استحکام    ۳۹
۳-۴-۲- فاز      ۴۰
۳-۴-۳- فاز      ۴۱
۳-۴-۴- کاربیدها    ۴۱
۳-۴-۵- کاربیدهای M7C3    ۴۴
۳-۴-۶- بوریدها و عناصر جزئی مفید دیگر (به جز کربن)    ۴۴
۳-۵- تاثیر فرآیند بر بهبود ریز ساختار    ۴۵
ذوب و تبدیل    ۴۶
۴-۱- فرآیند EAF/AOD    ۴۷
۴-۱-۱- تشریح فرآیند EAF/AOD    ۴۷
۴-۲- عملیات کوره قوس الکتریکی/ کربن زدایی با اکسیژن و آرگن (EAF/AOD)    ۵۰
۴-۲-۱- ترکیب شیمیایی آلیاژ و آماده کردن شارژ    ۵۰
۴-۲-۲- بارگذاری EAF    ۵۲
۴-۲-۳- کوره قوس الکتریک    ۵۲
۴-۲-۴- تانک AOD    ۵۵
۴-۲-۵- پاتیل ریخته‌گری    ۵۷
۴-۳- مروری بر ذوب القایی در خلاء (VIM)     ۵۸
۴-۳-۲- تشریح فرآیند VIM    ۵۹
۴-۴- عملیات ذوب القایی در خلاء    ۶۱
۴-۴-۱- عملیات ذوب القایی در خلاء    ۶۱
۴-۴-۲- کوره القائی تحت خلاء    ۶۳
۴-۴-۳- سیستم‌های ریخته‌گری    ۶۵
۴-۴-۴- عملیات ذوب القایی در خلاء    ۶۷
۴-۵- مروری بر ذوب مجدد    ۷۱
۴-۵-۲- تشریح فرآیند ذوب مجدد در خلاؤء با قوس الکتریکی (VAR)    ۷۲
۴-۵-۳- تشریح فرآیند مجدد با سرباره الکتریکی (ESR)    ۷۳
۴-۶- عملیات ذوب مجدد در خلاء با قوس الکتریکی    ۷۴
۴-۶-۱- کوره VAR    ۷۴
۴-۶-۲- عملیات ذوب مجدد در خلاء با قوس الکتریکی    ۷۶
۴-۶-۳- کنترل ذوب مجدد در خلاء با قوس الکتریکی    ۷۶
۴-۷- عملیات ذوب مجدد با سربار الکتریکی (ESR)    ۷۹
۴-۷-۱- کوره ESR    ۷۹
۴-۷-۲- عملیات کوره ذوب مجدد با سرباره الکتریکی    ۸۰
۴-۷-۳- کنترل ذوب مجدد با سرباره الکتریکی    ۸۱
۴- انتخاب سرباره    ۸۳
۴-۸- محصولات ذوب سه مرحله‌ای    ۸۴
۴-۸-۲- ‏فرآیند ذوب سه مرحله‌ای شمش    ۸۵
۴-۹- تبدیل شمش و محصولات نورد    ۸۶
۴-۹-۲- همگن‌سازی توزیع عنصر محلول در شمش‌ها    ۸۸
۴-۹-۳- آهنگری محصول نیمه تمام    ۸۹
۴-۹-۴- آهنگری محصول نیمه تمام آلیاژ IN-718    ۹۱
۴-۹-۵- اکستروژن    ۹۲
۴-۹-۶- نورد    ۹۳
۴-۹-۷- دسترسی به محصولات نورد    ۹۴

مقدمه

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال ۱۹۲۰ افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

۱-۱- معرفی و به کار گیری سوپر آلیاژها

سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده می‌شوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فن‌آوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده می‌باشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی می‌توانند به صورت ریخته یا کار شده باشند.

در شکل ۱-۱ رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شده‌اند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای ۱-۱ و ۱-۲ فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.

سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را می‌توان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیب‌های شیمیایی پر آلیاژتر معمولاً به صورت ریخته‌گری می‌باشند. ساختارهای سرهم بندی شده را می‌توان با جوشکاری یا لحیم‌کاری بدست آورد، اما ترکیب‌های شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری می‌شوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) می‌توان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.

۱-۲- مروری کوتاه بر فلزات با استحکام در دمای بالا

استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازه‌گیری و گزارش می‌شود. با افزایش دما به ویژه در دماهای بالاتر از ۵۰ درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازه‌گیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظه‌ای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا می‌کند. این ازدیاد طول وابسته به زمان خزش نامیده می‌شود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده می‌شود) همانند استحکام‌های تسلیم و نهایی در دمای اتاق یکی از مولفه‌های مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا می‌کند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکام‌های تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل می‌کنند.

۱-۳- اصول متالورژی سوپر آلیاژها

سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل می‌شود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمی‌شود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین می‌گردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب می‌شود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژه‌ای صورت نمی‌گیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژه‌ای مانند رسوب‌ها افزایش می‌یابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش می‌دهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف می‌شود.

تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق می‌افتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطاف‌پذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3 ۹/۸ می‌باشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.

چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش می‌دهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.

دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب ۱۴۵۳ و ۱۴۹۵ و ۱۵۳۷ درجه سانتی‌گراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.

۱-۴- بعضی از ویژگیها و خواص سوپر آلیاژها

۱- فولادهای معمولی و آلیاژهای تیتانیوم در دماهای بالاتر oC540 دارای استحکام کافی نیستند و امکان خسارت دیدن آلیاژ در اثر خوردگی وجود دارد.

۲- چنانچه استحکام در دماهای بالاتر (زیر دمای ذوب که برای اکثر آلیاژها تقریباً ۱۳۷۱-۱۲۰۴ درجه سانتیگراد است) مورد نیاز باشد، سوپر آلیاژهای پایه نیکل انتخاب می‌شوند.

۳- از سوپر آلیاژهای پایه نیکل می‌توان در نسبت دمایی بالاتری (نسبت دمای کار به دمای ذوب) در مقایسه با مواد تجاری موجود استفاده کرد. فلزات دیرگداز (نسوز) نسبت به سوپر آلیاژها دمای ذوب بالاتری دارند ولی سایر خواص مطلوب آنها را ندارند و به همین خاطر به طور وسیعی مورد استفاده قرار نمی‌گیرند.

۴- سوپر آلیاژهای پایه کبالت را می‌توان به جای سوپر آلیاژهای پایه نیکل استفاده کرد که این جایگزینی به استحکام مورد نیاز و نوع خوردگی بستگی دارد.

۵- در دماهای پایین‌تر وابسته به استحکام مورد نیاز، سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت کاربرد بیشتری پیدا کرده‌اند.

۶- استحکام سوپر آلیاژ نه تنها مستقیماً به ترکیب شیمیایی بلکه به فرآیند ذوب، آهنگری و روش شکل‌دهی، روش ریخته‌گری و بیشتر از همه به عملیات حرارتی پس از شکل‌دهی، آهنگری یا ریخته‌گری بستگی دارد.

۷- سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت ارزان‌تر هستند.

۸- اکثر سوپر آلیاژهای کار شده برای بهبود مقاومت خوردگی دارای مقداری کروم هستند. مقدار کروم در آلیاژهای ریخته در ابتدا زیاد بود، اما به تدریج مقدار آن کاهش یافت تا عناصر آلیاژی دیگری برای افزایش خواص مکانیکی سوپر آلیاژهای دما بالا، به آنها افزوده شوند. در سوپر آلیاژهای پایه نیکل با کاهش کروم مقدار آلومینیوم افزایش یافت، در نتیجه مقاومت اکسیداسیون آنها در همان سطح اولیه باقی می‌ماند و یا افزایش می‌یابد، اما مقاومت در برابر انواع دیگر خوردگی کاهش می‌یابد.

۹- سوپر آلیاژها مقاومت در برابر اکسیداسیون بالایی دارند اما در بعضی موارد مقاومت خوردگی کافی ندارند. در کاربردهایی مانند توربین هواپیما که دما بالاتر از oC760 است سوپر آلیاژها باید دارای پوشش باشند. سوپر آلیاژها در کاربردهای طولانی مدت در دماهای بالاتر از oC649 مانند توربین‌های گازی زمینی می‌توانند پوشش داشته باشند.

۱۰- فن‌آوری پوشش‌دهی سوپر آلیاژها بخش مهمی از کاربرد و توسعه آنها می‌باشد. نداشتن پوشش به معنی کارآیی کم سوپر آلیاژ در دراز مدت و دماهای بالا است.

۱۱- در سوپر آلیاژها به ویژه در سوپر آلیاژهای پایه نیکل بعضی از عناصر در مقادیر جزئی تا زیاد اضافه شده‌اند. در بعضی از آلیاژها تعداد عناصر کنترل شده موجود تا ۱۴ عنصر و بیشتر می‌تواند باشد.

۱۲- نیکل، کبالت، کروم، تنگستن، مولیبدن، رنیم، هافنیم و دیگر عناصر استفاده شده در سوپر آلیاژها اغلب گران بوده و مقدارشان در طی زمان متغیر است.

۱-۵- کاربردها

کاربرد سوپر آلیاژها در دماهای بالا بسیار گسترده و شامل قطعات و اجزاء هواپیما، تجهیزات شیمیایی و پتروشیمی است. موتور F119 که یکی از آخرین موتورهای هواپیماهای نظامی است، نشان داده شده است. دمای گاز در بخش داغ موتور (ناحیه خروجی موتور) ممکن است به دمایی بالاتر از oC 1093 برسد. با استفاده از سیستمهای خنک کننده دمای اجزاء فلزی کاهش پیدا می‌کند و سوپر آلیاژ که توانایی کار کردن در این دمای بالا را دارد، جزء اصلی بخش داغ به شمار می‌رود.

اهمیت سوپر آلیاژها در تجارت روز را می‌توان با یک مثال نشان داد. در سال ۱۹۵۰ فقط ۱۰ درصد از کل وزن توربین‌های گاز هواپیما از سوپر آلیاژها ساخته می‌شد، اما در سال ۱۹۸۵ میلادی این مقدار به ۵۰ درصد رسید.

در جدول ۱-۳ فهرستی از کاربردهای جاری سوپر آلیاژها آورده شده است.باید خاطر نشان ساخت، که همه کاربردها به استحکام در دمای بالا نیاز ندارند. ترکیب و مقاومت خوردگی سوپر آلیاژها، مواد استانداردی برای ساخت وسایل پزشکی بوجود آورده است. سوپر آلیا ژها همچنین کاربردهایی در دماهایی بسیار پایین پیدا کرده‌اند.


دانلود با لینک مستقیم