اختصاصی از کوشا فایل
دانلود با لینک مستقیم و پرسرعت .
چکیده:
روشهای نوین رمزگذاری (Coding) اطلاعات و کاربرد آنها در مخابره امن (Secure Communication) امروزه اهمیت فراوانی یافته و توجه بسیاری از محققان را به خود جلب کرده است. در این میان روشی ارجح است که دارای کیفیت مناسبی بوده و امنیت بالاتری را برای سیستم ایجاد نماید.یکی از روشهایی که در چند دهه اخیر برای این منظور پیشنهاد شده و مورد بررسی تجزیه و تحلیل قرارگرفته است، بهره گیری از سیستمهای آشوبگون و روشهای کنترلی این سیستمها به خصوص کنترل تطبیقی و سنکرونیزاسیون آشوب برای رمزنگاری اطلاعات میباشد؛ در این روش با استفاده از خصوصیات منحصر بفردی که پدیده ها و سیستمهای آشوبناک دارند – مانند حساست بالا به شرایط اولیه و تغییرات پارامترها – میتوان امنیت خوب و قابل قبولی را در مخابره اطلاعات فراهم نمود.
هدف از این پروژه طراحی و پیاده سازی کنترل تطبیقی و سنکرونیزاسیون آشوب و بهره گیری از آن در افزایش ضریب امنیتی مخابره و انتقال اطلاعات بوده است که از سیستمهای آشوب چوا (Chua) ولو (Lu) برای رمزنگاری اطلاعات و از روش سویچینگ بین نواحی جذب آشوب – CSK – برای پنهان سازی و انتقال اطلاعات استفاده شده است.
همانطور که گفته شد و خواهیم دید از دو سیستم برای تولید آشوب استفاده شده که یکی از آنها (فرستنده) اطلاعات را رمزگذاری کرده و سیستم دیگر (گیرنده) براساس سنکرون بودن دو سیستم، اطلاعات را بازیابی می کند. همچنین مدارهایی برای تبدیل سیگنال پیام به سیگنالهای آشوب و همجنین مدارهایی برای بازیافت سیگنال ماسک شده انتقالی معرفی می گردد.
مقدمه:
در این پروژه در ابتدا برای آشنایی هر چه بیشتر با مطالب موجود، سعی بر ارائه تعاریف پایه و مفاهیم عمومی در زمینه آشوب و کنترل و سنکرونیزاسیون تطبیقی سیستم های Chaotic گردید. مثل تعریف دینامیک غیرخطی آشوب و تعریف مربوط به روشهای سنکرونیزاسیون که در ادامه نیز اشارهای بسیار مختصر به آن می شود.
از مهمترین شناسه های سیستم آشوب می توان به موارد زیر اشاره کرد:
1- حساسیت بسیار بالا به شرایط اولیه
2- حساسیت بسیار بالا به تغییر پارامترهای سیستم
3- تأثیر فیدبک خروجی بر ادامه فعالیتهای سیستم
با آغاز بحث آشوب در سیستمهای غیرخطی و کنترل آن، روشها و نظریات و تئوریهای کنترلی گوناگونی اعم از خطی و غیرخطی در این زمینه پیشنهاد و ارائه گردید؛ نظیر:
– کنترل فیدبک خطی
– کنترل فیدبک با تأخیر زمانی
– کنترل بازگشتی یا Back Stepping Control
– متغیرهای لغزشی و…
یکی از مباحث مطرح شده در زمینه فوق، مبحث کنترل تطبیقی و یکسان سازی سیستمهای آشوب است که کماکان مسائل زیادی را برای طرح و تحقیق و ارائه در خود جای داده است.
تحقیقات و بررسیهای بسیاری در زمینه کنترل تطبیقی و یکسان سازی سیستمهای دینامیکی آشوب صورت گرفت و نتایج مطلوبی حاصل گردید که در اغلب آنها “روش کنترل تطبیقی، “تئوری پایداری لیاپانف”، “طراحی تخمینگر پارامترهای مجهول” و… نقش محوری را بر عهده داشتند.
Chen,Ch.Hua,Pikovsky,Fradkov,Coworker و… ازجمله محققانی بوده اند که تلاشهای بسیاری در زمینه تجزیه و تحلیل موضوع مورد اشاره انجام دادند که نتایج بررسیهای برخی از این محققین ارائه و روشهای بکار گرفته شده توسط هر کدام که گاه باهم شباهتها و تفاوتهایی داشتند با یکدیگر مقایسه گردید.از این موارد می توان نمونه های زیر را نام برد:
– پیاده سازی قانون کنترل تطبیقی و سنکرونیزاسیون آشوب به سیتمهایی نظیر Arneodo
– طراحی و پیاده سازی کنترل تطبیقی و سنکرونیزاسیون سیتم آشوب Chen (کلیه پارامترها نامعین)
– شناسایی پارامتر و کنترل سیستم Unified Chaotic با دیدگاه کنترل تطبیقی
– اعمال روش قانون کنترل تطبیقی سنکرونیزاسیون سیستم unified با سویچ متناوب پیوسته تأخیردار
– طراحی و پیاده سازی کنترل کننده تطبیقی خالص برای سنکرونیزاسیون سیستم لرنز
در تمام این موارد نتایج شبیه سازی ارائه شده، مهر تأییدی بر اجرای موفق طراحی ها بود.
بعد از آشنایی مقدماتی در واقع تعریف مسأله در زمینه سنکرونیزاسون تطبیقی آشوب بصورت زیر مطرح گردید:
با توجه به اینکه سنکرونیزاسیون تطبیقی آشوب به معنای طراحی قانون کنترل بر اساس روش تطبیقی با هدف یکسان و همانند سازی دو سیستم آشوب یکسان (که اغلب با نامهای Drive & Response Systems و یا Master & Slave Systems معرفی می شوند) با شرایط اولیه مختلف یا یکسان سازی دو سیستم آشوب با دینامیک مختلف می باشد:
“چگونه قانون کنترل u براساس روش کنترل تطبیقی با هدف سنکرونیزاسیون سیستمهای آشوب گونه -که در حقیقت یکسان سازی سیستمهای غیرخطی آشوب با مدل نامعین(با پارامترهای مجهول) با دینامیک یکسان و شرایط اولیه مختلف یا با ساختار دینامیکی متفاوت و به فرم کلی x(t)=A.x(t)+f(x در ناحیه پایداری آنهامی باشد، طراحی و پیاده سازی شود؟”
در واقع طراحی قانون کنترل تطبیقی برای سنکرونیزاسیون را می توان به دو دسته طبقه بندی کرد:
1- طراحی که نیاز به مدل دقیق ریاضی و مشخص سیستم دارد و کنترل طراحی شده اغلب ساده است.
2- طراحی قانون کنترل برای سیستمهایی که همه یا بخشی از اطلاعات مربوط به سیستم ناشناخته و نامعین (مجهول) می باشد که معمولا منجر به طراحی یک قانون کنترل پیچیده می گردد.
با توجه به اینکه در کاربردهای عملی، اغلب مدل ریاضی دقیق سیستم قابل دسترس نمی باشد لذا علاقه محققان به اجرایی ساختن کنترل کننده های موثر و ساده افزایش پیدا کرده و توجه فراوانی را معطوف خود داشته است.
تعداد صفحه : 159