کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود مقاله آنالیز از طریق ایجاد پلاسما در جفتهای القایی

اختصاصی از کوشا فایل دانلود مقاله آنالیز از طریق ایجاد پلاسما در جفتهای القایی دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله آنالیز از طریق ایجاد پلاسما در جفتهای القایی


دانلود مقاله آنالیز از طریق ایجاد پلاسما در جفتهای القایی

ICP یکی از روشهای مخرب تجزیه شیمیایی می باشد که بایستی نمونه را بصورت محلول در آورده و سپس آنرا تبخیر نمود.

اصول عملیات:

ICP یک منبع تحریک است برای طیف نمایی نشر اتمی. آن یک پلاسمای آرگون بکار رفته در فشار یک اتمسفر و نگهداشته شده بوسیله جفت کردن القایی بصورت یک میدان الکترومغناطیسی با فرکانس رادیویی می باشد. گاز آرگون بصورت محوری در درون یک تیوپ کوارتزی نگه داشته شده بوسیله سه یا چهار سیم پیچ از یک القاء یا هسته کار متصل شده به یک ژنراتور RF (رادیویی) جریان می یابد. فرکانسهای استاندارد عملکردی 12/27 مگاهرتز یا معمولاً کمتر از 68/40 مگاهرتز می باشند. فرکانسها توسط کمیسیون تبلیغات فدرال برای اسناد پزشکی و علمی تعیین شده است. جریان با فرکانس بالای بیش از 100 آمپر در هسته های القایی مس خنک شونده با آب جریان می یابد. خطوط نیروی تولید شده از میدانهای مغناطیسی نوسانی بصورت محوری در درون تیوپ کوارتزی جریان می یابند و از مسیر بستة بیضی شکل در خارج از تیوپ پیروی می کنند. اگر الکترونهای آزاد در تیوپ حضور داشته باشند، میدانهای مغناطیسی القایی ایجاد می کنند. الکترونهایی که در گاز جریان می یابند در مسیرهای منحنی نوسانی بسته در درون فضای تیوپ کوارتزی می باشند. این جریان الکترونی جریان گردابی نامیده می شود و الکترونها توسط تغییر زمان میدان مغناطیسی شتاب می گیرند. ایجاد برخورد که از یونیزاسیون بیشتر گاز آرگون و نیز گرمای مقاومتی نتیجه می شود، این میدانهای کغناطیسی و الکتریکی مسئول پلاسما در شکل (1) نشان داده می شود. انتقال انرژی در پلاسما مشابه مواد الکتریکی است که هسته های القایی سیم پیچ اولیه هستند و گاز یونیزه شده ثانویه می باشد زیرا گاز آرگون در ابتدا خنثی و غیر رسانا است. پلاسما باید با الکترونهای دانه آغاز شود. معمولاً بوسیله تخلیه خفیفی بر جسب تسلا تولید می شود. با قدرت فرکانس رادیویی بکار رفته، پلاسما بطور آنی روشن می شود، سپس خود پایدار می ماند. پلاسمای نتیجه شده گازی است بشدت یونیزه شده با درجه حرارتهایی در حدود 10000درجه کلوین. مشعل پلاسما از یک تیوپ کوارتزی تنها تشکیل نشده بلکه از سه تیوپ متحدالمرکز تشکیل شده است( شکل 2).

شامل 11 صفحه فایل word


دانلود با لینک مستقیم

دانلود پایان نامه بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

اختصاصی از کوشا فایل دانلود پایان نامه بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی


دانلود پایان نامه بررسی و تحلیل درایوهای تراکشن جریان مستقیم و القایی

1-1) تعیین مشخصات حرکتی قطار

همانطور که می دانید، برای تعیین نحوة حرکت قطارها در هر مسیر از راه آهن، از یک جدول زمانبندی (Time Table) استفاده می شود که دارای سه بعد: 1- شمارة قطار، 2- مسافت قطار، 3- زمان
می باشد. از طرفی‌تعیین جدول زمانبندی یک مسیر نیازمند‌ دانستن دو دسته اطلاعات برای هر قطار است.

دسته اول شامل اطلاعات مربوط به لحظات خارج بودن قطار از مسیر هستند مانند: زمان توقف در هر ایستگاه (Dwell Time) ، زمان تعویض مسیر ( Time Shunting) و ... که با توجه به طراحی اولیه معلوم فرض می شوند.

دسته دوم شامل اطلاعات مربوط به لحظات حرکت قطار در مسیر هستند که از حل معادلات حرکتی قطار بدست می آیند. برای حل این معادلات، باید در هر لحظه نیروهای وارد بر قطار را که شامل نیروی کششی (Tractive Effort) قطار، نیروی مقاوم (Drag Resistance) یا نیروی کند کننده قطار و نیروی ترمزگیری (Braking Effort) یا متوقف کنندة قطار هستند، تعیین شوند. در ادامه به محاسبه این نیروها می پردازیم.

1-1-1) نیروی محرک قطار

به طور کلی نیروی محرک قطار، تابع نوع موتورهای کششی (Traction Motors) موجود در لکوموتیو و سیستم کنترل آنها بوده و مشخصه این نیرو توسط کارخانه سازنده برای هر نوع لکوموتیو بصورت منحنی نیروی کششی بر حسب سرعت قطار تعیین می گردد.

شکل (1-1) منحنی نیروی کششی F بر حسب سرعت V یک لکوموتیو را نشان می دهد. همانطور که می بینید این منحنی شامل دو ناحیه است. در ناحیه اول نیروی محرک زیاد و بطور تقریباً ثابتی از لحاظ راه اندازی تا سرعت پایه (Base Speed) به لکوموتیو اعمال می شود، بنحویکه سرعت قطار با شتابی زیاد و بصورت تقریباً ثابتی افزایش یابد. در ناحیه دوم که قطار دارای سرعتی بیش از سرعت پایه است، نیروی محرک قطار با افزایش سرعت، کاهش می یابد، بنحویکه حاصلضرب آنها که همان توان مکانیکی قطار است تقریباً ثابت بماند. بنابراین چنانچه نوع لکوموتیو معلوم باشد، نیروی محرک در طول مسیر، تابعی از سرعت قطار خواهد بود. بنابراین داریم:

(1-1)                                                                                  F = fF(V)

1-1-2) نیروی مقاوم قطار ( Train Resistance )

بطور کلی، نیروی مقاوم قطار در طول مسیر حرکت آن ثابت نیست. این نیرو از مولفه هایی که تابع نوع، وضعیت و مشخصات حرکتی قطار هستند، تشکیل می شود. در ادامه به معرفی این مؤلفه ها می پردازیم.

الف) مقاومت مخصوص چرخشی:

(Specific Rolling Resistance)

مقاومت مخصوص چرخشی Rr ، تابع سرعت قطار V بوده و شکل عمومی آن عبارتست از:

(2-1)                                                                        Rr = C0+C1.v + C2.v2

در این رابطه ضریب C0 ناشی از مقاومت غلتشی بوده و شامل اصطکاک یاتاقانها و مقاومت مسیر نیز می باشد. ضریب C1 ناشی از تکانهای مزاحم واحد جلو برندة قطار است و ضریب C2 نیز ناشی از مقاومت هوا می باشد.

یکی از روابط تجربی متداول برای مدل کردن مقاومت مخصوص چرخشی، رابطه شاتوف (Sauthoffs formula) می باشد که بصورت زیر بیان می شود:

(3-1)                                 

Rr مقاومت مخصوص چرخشی بر حسب [ N/t]

a ضریبی وابسته به نوع یاتاقانها

v سرعت قطار بر حسب [Km/h]

Fe ضریبی وابسته به سطح جلویی واگنها

W جرم قطار بر حسب [t]

nw تعداد واگنها

g شتاب جاذبه بر حسب [m/s2]

ب) مقاومت مخصوص شیب (Specific Grade Resistance):

مقاومت شیب، مولفه ای، از نیروی جرم قطار است که در جهت عکس قطار و یا در جهت حرکت آن اعمال می شود. بنابراین هنگامیکه شیب مثبت باشد، موجب کندی سرعت قطار شده و در حالیکه شیب منفی است موجب افزایش سرعت آن می شود. بعبارت دیگر، این مقاومت تابع وضعیت قطار بر روی مسیر است.

شکل (2-1) اثر مقاومت شیب بر روی سرعت قطار

مطابق شکل (2-1) می توان نوشت:

(4-1)                                                                            

Rg مقاومت مخصوص شیب بر حسب [N/Kg]

g شتاب جاذبه بر حسب [m/s2]

زاویه بین سطح قطار و سطح افق

رابطه (4) معمولاً بصورت زیر بیان می شود:

(5-1)                                                                                        

مقدار s برای نقاط مختلف مسیر بصورت جدول داده می شود.

این مقاومت ناشی از لغزش بین چرخ قطار و ریل در قسمتهای خمیدة مسیر است و در نتیجه، تابع وضعیت قطار بر روی مسیر می باشد. یکی از روابط تجربی متداول برای محاسبه مقاومت مخصوص قوس، رابطه عمومی (Universal Formula) می باشد که بدین صورت بیان می شود:

(6-1)                                                                             

Ra مقاومت مخصوص قوس بر حسب [N/t]

S فاصلة بین سطوح چرخ های گردانندة محور قطار بر حسب [m]

d مقدار متوسط طول کلیه پایه های نگهدارنده چرخها بر حسب [m]

g شتاب جاذبه بر حسب [m/s2]

R شعاع قوس بر حسب [m]

 

ت) مقاومت مخصوص شتاب:

(Specific Acceleration Resistance)

بر اساس قانون دوم نیوتن، این مقاومت ناشی از اینرسی قطار بوده و به شتاب قطار بستگی دارد. در عمل، جرم مؤثر قطار متحرک را کمی بیشتر از جرم واقعی آن در نظر می گیرند و بنابراین می توان نوشت:

(7-1)                                                                                               Rac = 1060.a

Rac مقاومت مخصوص شتاب بر حسب [N/t]

a شتاب قطار بر حسب [m/s2]

ث) مقاومت مخصوص راه اندازی:

(Specific Starting Resistance)

گذر از حالت سکون به حرکت قطار، همراه با مقاومت می باشد. این مقاومت که تنها در لحظه راه اندازی وجود دارد، به نوع یاتاقانهای قطار بستگی دارد. بنابراین می توان نوشت:

(8-1) برای یاتاقانهای چرخنده                                                         15 < Rst < 70

(9-1) برای یاتاقانهای مسطح                                                               120 < Rst < 260

در اینجه R­st بر حسب [N/t] می باشد.

تا اینجا روش محاسبه مولفه های نیروی مقاوم بیان شد. بنابراین، نیروی مقاوم یک قطار در حال حرکت بدین صورت محاسبه می شود:

(10-1)                                                                      R = W (Rr + Rg + Ra + Rac)

R نیروی مقاوم قطار بر حسب [N]

W وزن قطار بر حسب [t]

Rr و Rg و Ra و Rac مولفه های نیروی مقاوم بر حسب [N/t]

بنابراین چنانچه نوع قطار معلوم باشد. نیروی مقاوم را می توان تابعی از مسافت x، سرعت v و شتاب a قطار در طول مسیر دانست.

پیشگفتار
فصل اول
کشش الکتریکی 
تعیین مشخصات حرکتی قطار
نیروی محرک قطار
نیروی مقاوم قطار ( Train Resistance )
مقاومت مخصوص چرخشی
مقاومت مخصوص شیب (Specific Grade Resistance)
مقاومت مخصوص شتاب
مقاومت مخصوص راه اندازی
نیروی ترمز گیری قطار
محاسبه منحی سرعت بر حسب زمان
ناحیه  از لحظه to تا t
ناحیه  از لحظه t تا t
ناحیه  از لحظه t تا t
ناحیه  از لحظه t تا t
ناحیه  از لحظه t تا t
تعیین مشخصات موتورهای کششی
مشخصه گشتاور – سرعت موتورهای الکتریکی
عملکرد موازی
نوسانهای ولتاژ
محدودیت وزن وحجم
فصل دوم
موتورهای تراکشن جریان مستقیم
تاریخچه سیستم های حمل و نقل الکتریکی DC
موتور جریان مستقیم با تحریک موازی
موتورهای جریان مستقیم با تحریک مجزا
معادلات ماشین جریان مستقیم با تحریک مجزا
کنترل ماشین جریان مستقیم با تحریک مجزا در حالت موتوری
ناحیه اول موتوری
ناحیه دوم موتوری
شکل (1) منحنی مشخصه های موتور در ناحیه دوم
کنترل ماشین جریان مستقیم با تحریک مجزا درحالت ژنراتوری
ناحیه اول ژنراتوری
شکل (2) منحنی مشحصه های ژنراتور در حالت گشتاور ثابت در ناحیه اول
ناحیه دوم ژنراتوری
ج) ناحیه سوم ژنراتوری
شکل (3) منحنی مشخصه های ماشین در ناحیه دوم ژنراتوری
شکل (4) منحنی مشخصه های ماشین در ناحیه سوم ژنراتوری
موتور جریان مستقیم با تحریک سری
معادلات ماشین جریان مستقیم با تحریک سری
کنترل ماشین جریان مستقیم با تحریک سری در حالت موتوری
ناحیه اول موتوری
ناحیه دوم موتوری
شکل (5) منحنی مشخصه های ماشین سری در ناحیه اول موتوری
شکل (6) مقاومت قابل تنظیم برای کنترل ماشین در ناحیه دوم موتوری
شکل (7) منحنی مشخصه های ماشین سری در ناحیه دوم موتوری
کنترل ماشین جریان مستقیم با تحریک سری در حالت ژنراتوری
ناحیه اول ژنراتوری
ناحیه دوم ژنراتوری
ناحیه سوم ژنراتوری
شکل (8) منحنی مشخصه ماشین سری در ناحیه دوم ژنراتوری
شکل (9) منحنی مشخصه ماشین سری در ناحیه دوم ژنراتوری
فصل سوم
مدارهای کنترل سیستم های تراکشنن جریان مستقیم
موتور جریان مستقیم تحریک سری  با کنترل مقاومتی
مدار کامل روش قدیمی کنترل موتور تحریک سری
موتور جریان مستقیم تحریک سری با کنترل چاپر یک ربعی
موتور جریان مستقیم تحریک سری با کنترل چاپر دو ربعی
موتور جریان مستقیم تحریک سری با کنترل چاپر ترکیبی
موتور جریان مستقیم موازی با کنترل چاپر چهار ناحیه ای
نتیجه گیری
فصل چهارم
ملاحظات کاربردی در سیستم های تراکشن القایی
تاریخچه سیستم های حمل و نقل الکتریکی AC
مقایسه کاربرد موتورهای القایی قفسه سنجابی با انواع دیگرسیستم های کشنده
( Traction )
مقایسه با موتور DC
سرعتهای زیاد
مقاومت و قابلیت بالا و هزینه نگهداری و تعمیرات کم
گشتاور یکنواخت بالا با قابلیت اضافه بار ذاتی
نسبت توان به وزن بالا
قابلیت ترمز احیا کنندة ذاتی
مشخصه گشتاور – سرعت تند (Hteep )
مقایسه با  موتور سنکرون
مقایسه با موتور سوئیچ رلوکتانس و سنکرون رلوکتانس
مدار معادل تکفاز و معادلات حاکم بر موتور القایی در حالت دائمی سینوسی
ایجاد گشتاور در موتور القایی سه فاز
مدار معادل تکفاز
شکل(10)مدار معادل تکفاز موتور القایی
شکل (11) دیاگرام فازوری مدار معادل شکل ( ب)
V/f ثابت
شکل(12)مدار معادل تقریبی
شکل(13) منحنی گشتاور سرعت در فرکانس و ولتاژ ثابت
عملکرد ولتاژ متغیر
عملکرد فرکانس متغیر
شکل (14) منحنی گشتاور – سرعت در فرکانس های مختلف
شکل (15) منحنی های گشتاور لغزش در نسبت ثابت ( هرتز/ ولت)
شکل (16) ناحیه های مختلف منحنی گشتاور – سرعت با منبع تغذیه فرکانس متغیر – ولتاژ متغیر
شکل(17)اتباط بین فرکانس ولتاژدرماشین القایی
عملکرد جریان کنترل کننده استاتور
شکل(18) منحنی گشتاور لغزش با جریان های متفاوت استاتور
عملکرد HP ثابت (ConstantHorse Power)
فصل پنجم
طراحی و مقادیر نامی موتور و اینورتر در سیستم های تراکشن القایی
کلیات طراحی موتور و اینورتر در سیستم های تراکشن
شکل (19) مدار قدرت اینورتر PWM
طراحی موتور القایی برای کاربردهای تراکشن
مشخصه های الکترومغناطیسی                   (Electromagnetic Characteristic)
معیار طراحی موتور
تعداد قطب
نسبت طول رتور به قطر رتور
جدول (1) تأثیر نسبت طول به قطر رتور   بر مشخصه های موتور ( P.U.)
تعداد شیار استاتور و رتور
جدول (2) تأثیر تعداد شیارهای استاتور بر مشخصه های موتور (P.U. )
ضخامت فاصله هوایی
جدول (3) تأثیر ضخامت فاصله هوایی بر مشخصه های موتور (P.U. )
چگالی جریان استاتور و رتور
سوئیچینگ تغذیه
جدول (4) مقایسه بین پارامترهای دو موتور طرح معمولی و طرح مخصوص
فاکتورهای احیا کنندگی (Regeneration Factors)
شکل (20) مقایسه احیاء کنندگی دو اینورتر
بررسی نمونه عملی
نیازهای عملکردی
نیازهای ترمزی
شکل (21) دیاگرام شماتیکی سیستم ترمزی
شکل (22) منحنی پیش بینی شده برای نیروهای ترمزی
طراحی الکتریکی
شکل (23) شیارهای استاتور و رتور TAIM
نوسان های گشتاور
فصل ششم
درایوهای تراکشن اینورتری پیشرفته و کنترل آنها
سیر تکامل درایو AC در سیستم های تراکشن
درایوهای تراکشن موتور القایی
چاپر (DC Chopper )DC
درایوهای تراکشن اینورتر منبع جریان تغذیة DC
شکل(24) سیستم اینورتر منبع جریان با تغذیه DC
ترمز احیاء کننده در درایوهای اینورتر منبع جریان
درایوهای تراکشن اینورتر منبع ولتاژ تغذیه DC
اینورتر منبع ولتاژ(VSI)
شکل (25) اینورتر منبع ولتاژ مدار قدرت و شکل موج ها
درایوهای تراکشن اینورتر دوسطحی
درایوهای تراکشن اینورتر سه سطحی
شکل (26) اینورتر منبع ولتاژ سه سطحی NPC مدار قدرت و جدول سوئیچینگ
درایوهای تراکشن VSI تغذیه AC مبدل پالس
سیستم نیرو محرکة توان بالای لوکوموتیو BR
بررسی انواع روش های PWM
PWM موج مربعی(Square – Wave PWM)
عملکرد   ثابت PWM موج مربعی
PWM سینوسی (Sinusoidal PWM)
عملکرد   ثابت PWM سینوسی
PWMبا کنترل جریان
شکل(27 ) سیستم کنترل کننده جریان PWM در حالت کلی
شکل (1) اینورتر  PWM با کنترل جریان
پیوست
مقایسه سیستم های محرک انواع لوکوموتیو و انتخاب سیستم مناسب برای حمل و نقل ریلی
مقدمه
لکوموتیو بخاری
لکوموتیو الکتریکی
لکوموتیوهای دیزل – الکتریک
نتیجه گیری
منابع و مآخذ                                                                                        


دانلود با لینک مستقیم

کوره هاب القایی

اختصاصی از کوشا فایل کوره هاب القایی دانلود با لینک مستقیم و پرسرعت .

کوره هاب القایی


کوره هاب القایی

19 اسلاید

کوره ها
دید کلی
با توجه به اینکه در اکثر پروسس و فرایندهای با حرارت بالا از دستگاههای مخصوص که به دما و حرارت بالا مقاوم باشند، استفاده می‌گردد و گاهی بر حسب نوع پروسس و مواد ، محدودیتهای خاصی نیز برای استفاده از این دستگاهها وجود دارد که در محدوده بحث این مقال نیست، لذا در این قسمت به انواع کوره‌ها و دستگاههایی که در پروسس‌های شیمیایی حرارت بالا بکار می‌روند و بیشتر در رابطه با سیستم هتروژن است، استفاده می‌گردد.
هیچ کارگاه و کارخانه ای بدون انرژی حرارتی قادر به کار و تولید نیست. در این میان ، کوره‌ها از مهمترین منابع تولید انرژی هستند و قسمت عمده هزینه تولید محصولات را انرژی حرارتی در بر می‌گیرد. به عنوان مثال ، اگر مخارج پالایشگاهی برابر یک دلار باشد، یک‌چهارم آن ، خرج کوره و یا در حقیقت مخارج مربوط به سوخت می‌شود. لذا با طراحی کوره مناسب و بالا بردن راندمان حرارتی ، می‌توان هزینه تولید را کاهش داد .
کوره های القایی
به طور کلی قسمت های مختلف کوره های القائی عبارتند از :
الف- بوته :
حاوی اسکلت فلزی کوره ، کویل ، جداره نسوز – هسته ترانسفورمر، بوغها(yokes)پلات فرم
(سکو)
ب- تاسیسات الکتریکی
شامل دژنکتور،سکیونر، ترانسفورماتور، مبدل فرکانس ، خازن ها ، چوکها، کلید های کولرها ،مکنده ها و تابلو های کنترل.
تاسیسات خنک کن:
تاسیسات الکتریکی کوره القائی مثل ترانسفورماتور چوک ، خازن ها ، کلیدهای فشار قوی و تابلو مدار فرمان در محدوده ی زمانی خاصی می توانند کار کنند و اگر از حد معینی گرمتر شوند باعث ایجاد مشکلاتی می گردند ، لذا این تاسیسات باید خنک گردند ، خنک کردن تاسیسات الکتریکی می تواند ب فن ، ارکاندیشن یا کولر گازی صورت گیرد .

 

دانلود با لینک مستقیم

پروپوزال کارشناسی ارشد کنترل مستقیم گشتاور و سرعت موتور القایی سه فاز با استفاده از مد لغزشی مرتبه دوم

اختصاصی از کوشا فایل پروپوزال کارشناسی ارشد کنترل مستقیم گشتاور و سرعت موتور القایی سه فاز با استفاده از مد لغزشی مرتبه دوم دانلود با لینک مستقیم و پرسرعت .

پروپوزال کارشناسی ارشد کنترل مستقیم گشتاور و سرعت موتور القایی سه فاز با استفاده از مد لغزشی مرتبه دوم


پروپوزال کارشناسی ارشد کنترل مستقیم گشتاور و سرعت موتور القایی سه فاز با استفاده از مد لغزشی مرتبه دوم

مساله اساسی تحقیق:

امروزه موتورهای القایی نیروی محرکه اصلی در صنایع مختلف هستند که در توان های مختلف در بازار موجود می باشند. قابلیت اطمینان بالای این تجهیزات نسبت به انواع دیگر موتورهای الکتریکی عامل اصلی استفاده از آنها می باشد. بعلاوه که با گسترش استفاده از درایوهای کنترل سرعت به این گستردگی نیز افزوده شده است. این موتورها، محرکه ی اصلی صنعت و کارخانجات می باشند. موتورهای القایی در مقابل موتورهای جریان مستقیم دارای مزایای زیادی مانند سادگی، استحکام، قابلیت کارکرد در محیط های مختلف صنعتی، بازده رضایت بخش بوده و نیاز به هزینه ی نگه داری کمی دارند. ولی سرعت این موتور ها به آسانی موتور های جریان مستقیم قابل کنترل نیست.همزمان با پیشرفت و افزایش کاربرد موتورهای القایی، تکنولوژی درایو آنها نیز دستخوش تغییرات شگرفی شده است. بطوریکه باعث تکمیل قابلیت موتورهای القایی شده اند.

جنبه جدید بودن و نوآوری در تحقیق:                                  

 در تحقیق مورد نظر، برای کنترل سرعت موتور القایی از روش کنترل مستقیم گشتاور(DTC) و از روش مد لغزشی مرتبه دوم استفاده خواهد شد.


دانلود با لینک مستقیم

پروپوزال کنترل ژنراتور القایی تغذیه دوبل منابع بادی با استفاده از کنترل مستقیم توان

اختصاصی از کوشا فایل پروپوزال کنترل ژنراتور القایی تغذیه دوبل منابع بادی با استفاده از کنترل مستقیم توان دانلود با لینک مستقیم و پرسرعت .

پروپوزال کنترل ژنراتور القایی تغذیه دوبل منابع بادی با استفاده از کنترل مستقیم توان


پروپوزال کنترل ژنراتور القایی تغذیه دوبل منابع بادی با استفاده از کنترل مستقیم توان

عنوان:

کنترل ژنراتور القایی تغذیه دوبل منابع بادی با استفاده از کنترل مستقیم توان

عنوان به انگلیسی:

Double-fed induction generator of wind resources control

using direct power control method


منابع تولید پراکنده به عنوان منابع تولید انرژی پشتیبان و با هدف افزایش قابلیت اطمینان و بهبود کیفیت توان به شبکه های قدرت متصل می شوند. استفاده از این منابع روز به روز مورد توجه بیشتر مهندسین و بهره برداران صنعت برق قرار می گیرد.ترویج روز افزون منابع تولید پراکنده در شبکه های قدرت به دلیل صرفه اقتصادی آن با هدف بهبود کیفیت توان و سازگاری با محیط زیست است.اخیرا با تبدیل صنعت برق به یک ساختار رقابتی و تشدید مقررات زیست محیطی افزایش قابل توجهی در رویکرد به سیستم های تولید پراکنده را شاهد بوده ایم. از طرفی بالا رفتن هزینه های انتقال و توزیع به مولدهای پراکنده این امکان را می دهد که برق تولیدی خود را به قیمتی ارزانتر در اختیار مصرف کنندگان قرار دهند. 


دانلود با لینک مستقیم