کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود پایان نامه و تحقیق کامل در مورد کاربرد الگوریتم زنبورعسل در بهینه سازی مسائل ریاضی (تعداد صفحات 104 )

اختصاصی از کوشا فایل دانلود پایان نامه و تحقیق کامل در مورد کاربرد الگوریتم زنبورعسل در بهینه سازی مسائل ریاضی (تعداد صفحات 104 ) دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه و تحقیق کامل در مورد کاربرد الگوریتم زنبورعسل در بهینه سازی مسائل ریاضی (تعداد صفحات 104 )


دانلود پایان نامه و تحقیق کامل در مورد کاربرد الگوریتم زنبورعسل در بهینه سازی مسائل ریاضی (تعداد صفحات 104 )

 انسان همیشه برای الهام گرفتن به جهان زنده‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ی پیرامون خود نگریسته است. یکی ازبهترین طرح‌های شناخته شده، طرح پرواز انسان است که ابتدا لئورناردو داوینچی (1519-1452) طرحی از یک ماشین پرنده را براساس ساختمان بدن خفاش رسم نمود. چهارصد سال بعد کلمان آدر ماشین پرنده‌ای ساخت که دارای موتور بود و به جای بال از ملخ استفاده می‌کرد. در دهه‌های اخیر، روش‌های تکاملی و فراکاوشی به عنوان یک ابزار جستجو و بهینه‌سازی در حوزه‌های مختلفی مانند علوم تجاری و مهندسی مورد استفاده قرار گرفته است. وسعت دامنه‌‌ی کاربرد، سهولت استفاده و قابلیت دست‌یابی به جواب نزدیک و بهینه‌ی مطلق از جمله دلایل موفقیت این روش‌ها می‌باشد. هوش دسته جمعی، زیر شاخه‌ای از هوش مصنوعی است که بر پایه‌ی رفتار جمعی سیستم‌های غیر متمرکز و خود‌‌‌ ‌سازمان‌‌ده بنا شده است. نمونه‌ای از هوش جمعی، کلونی زنبور عسل است. یکی از کاربردهای این الگوریتم، مسائل بهینه‌سازی چندتایی است برای همین برخی به آن الگوریتم بهینه‌سازی زنبورعسل می‌گویند. دراین مقاله، الگوریتم کلونی زنبورعسل مورد استفاده قرار می‌گیرد و نتایج تولید شده توسط الگوریتم مقایسه می‌شوند.  موضوع کلونی زنبور عسل خود به دو بخش جستجوی غذا و فرآیند جفت‌گیری زنبورها تقسیم می‌شود.

فهرست :

مقدمه

فصل اول الگوریتم‌های تکاملی

 هوش مصنوعی

 الگوریتم چیست؟

 الگوریتم‌های تکاملی

 کاربردها

 الگوریتم کلونی مورچه

 بهینه سازی مسائل به روش کلونی مورچه

مورچه‌ها چگونه می‌توانند کوتاه‌ترین مسیر را پیدا کنند؟

 الگوریتم

الگوریتم کلی حرکت

 شبه کد و فلوچارت الگوریتم

 مزیت‌ها

 کاربردها

 الگوریتم رقابت استعماری

 دهی امپراطوری‌های اولیه

 سیاست جذب

 انقلاب

 جابجایی موقعیت مستعمره و امپریالیست

 رقابت استعماری

 سقوط امپراطوری‌های ضعیف

 شبه کد

 مزیت‌ها

 کاربردها

الگوریتم ژنتیک

مکانیزم الگوریتم ژنتیک

عملگرهای الگوریتم ژنتیک

کدگذاری

ارزیابی

ترکیب

جهش

رمزگشایی

شبه کد

کاربردها

الگوریتم ازدحام ذرات

کاربردها

کدام الگوریتم بهتر است؟

فصل دوم الگوریتم زنبور عسل

 تعریف

 کلونی زنبورها

 جستجوی غذا در طبیعت

 الگوریتم کلونی زنبورهای مصنوعی

 بهینه‌سازی کلونی زنبورها

 معرفی کلونی زنبورهای مصنوعی

 شبه کد

 الگوریتم بهینه‌یابی جفت‌گیری زنبورهای عسل

مدل‌سازی جفت‌گیری زنبورهای عسل

فصل سوم کاربردهای الگوریتم زنبورعسل

 The Ride Matching problems

Numerical expriment

دنیای مجازی در تسخیر زنبور دیجیتال

 بهینه‌سازی سد

 ایده‌ی روباتی

 سایر کاربردها

فصل چهارم کاربرد الگوریتم زنبورعسل در بهینه‌سازی مسائل ریاضی

 بهینه‌سازی

 شاخه‌های اصلی

انواع مسائل بهینه‌سازی

یک مساله‌ی بهینه‌سازی

قضایا

وجود نقطه‌ی بهینه

 کاربرد الگوریتم در مثال‌های ریاضی

 تابع سینوسی نامقید

 تابع توانی مقید

 ارزیابی الگوریتم

تابع  Griewank

تابع Rastrigin

تابع Rosenbrock

تابع Ackley

تابع Schwefel

نتیجه‌گیری و پیشنهادات

پیوست کد برنامه‌ی مربوط به الگوریتم زنبور عسل به زبانC

فهرست منابع

فهرست شکل‌ها و جدول‌ها:

شمای گرافیکی مغز انسان

نمونه‌ای از تکامل در طول تاریخ

سختی در حمل غذا و لزوم یافتن کوتاه‌ترین مسیر

فرومون و چگونگی یافتن کوتاه‌ترین مسیر

عدم تاثیر موانع در یافتن کوتاه‌ترین مسیر

فلوچارت الگوریتم مورچه

استعمار

شکل‌دهی امپراطوری اولیه

نحوه‌ی تقسیم مستعمرات میان کشورهای استعمارگر

تغییرات ناگهانی و وقوع انقلاب

تعویض موقعیت مستعمره و استعمارگر

رقابت استعمارگران

سقوط یک امپراطوری

نمای گرافیکی ژن

ترکیب در الگوریتم ژنتیک

الگوریتم اجتماع ذرات

swarm  زنبور‌ها

کدام الگوریتم؟

هدیه‌ای از جانب خدا

تلاش برای یافتن قطعات گلدار

رقص چرخشی

نمودار احتمال انتخاب زنبور‌های نر بر حسب تغییرات سرعت

نمودار احتمال انتخاب زنبور‌های نر برحسب تغییرات مقدار تابع هدف

الگوریتم HBMO

جریان ماهیانه‌ی ورودی به مخزن و نیاز متوسط

میزان متوسط افت خالص ماهیانه

تغییرات تابع هدف در  بهترین پرواز جفت‌گیری

تغییرات حجم مخزن در هر پریود

تغییرات میزان رهاسازی از مخزن در هر پریود

رویه‌ی تابع سینوسی نامقید

تغییرات مقدار تابع هدف در طول پروازهای جفت‌گیری

تعداد تجمعی موفقیت توابع در طول پروازهای جفت‌گیری

تغییرات حداکثر مقدار تابع هدف در  اجرا و در دفعات ارزیابی تابع هدف

تغییرات متوسط مقدار تابع در  اجرا و در طول دفعات ارزیابی تابع هدف

رویه‌ی تابع توانی مقید

تغییرات مقدار تابع هدف در طول پروازهای جفت‌گیری

تعداد تجمعی موفقیت توابع در طول انجام پروازهای جفت‌گیری

تغییرات متوسط مقادیر تابع هدف در  اجرا و در طول تعداد دفعات ارزیابی

تغییرات حداقل مقادیر تابع هدف در  اجرا و در طول تعداد دفعات ارزیابی

جدول ـ مقادیر تابع هدف در  بار اجرا و  پرواز جفت‌گیری

جدول ـ پارامترهای آماری تابع هدف در  بار اجرا و  پرواز جفت‌گیری

جدول ـ مقادیر تابع هدف و دومتغیر تصمیم در  اجرا و درپایان  پروازجفت‌گیری

جدول  پارامترهای آماری تابع هدف و دومتغیر تصمیم در  اجرا  پرواز جفت‌گیری

جدول  پارامترهای آماری مقادیر تابع هدف در  اجرا توسط الگوریتم ژنتیک با احتمالات مختلف

جدول  مقادیرتابع هدف و دو متغیر تصمیم در  اجرا و  پرواز جفت‌گیری

جدول  پارامترهای آماری تابع هدف و دو متغیر تصمیم در  اجرا ودر  پرواز جفت‌گیری

جدول  پارامترهای آماری مقادیر تابع هدف در  بار اجرا توسط الگوریتم ژنتیک با احتمالات مختلف


دانلود با لینک مستقیم


دانلود پروژه الگوریتم های ژنتیک Genetic Algorithms -مهندسی کامپیوتر و نرم افزار(word+ppt)

اختصاصی از کوشا فایل دانلود پروژه الگوریتم های ژنتیک Genetic Algorithms -مهندسی کامپیوتر و نرم افزار(word+ppt) دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه الگوریتم های ژنتیک Genetic Algorithms -مهندسی کامپیوتر و نرم افزار(word+ppt)


دانلود پروژه الگوریتم های ژنتیک  Genetic Algorithms -مهندسی کامپیوتر و نرم افزار(word+ppt)

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:32 صفحه ,19 اسلاید

فهرست مطالب:
چکیده.................................................................................................................4
مقدمه..................................................................................................................5

فصل اول
1-1)الگوریتم ژنتیک چیست؟...................................................................................9
2-1)ایده اصلی....................................................................................................13
3-1)الگوریتم .....................................................................................................15
3-1-1)روش های نمایش ......................................................................................17
3-1-2)روش های انتخاب .....................................................................................18
3-1-3)روش های تغییر .......................................................................................19

فصل دوم
1-2)نقاط قوت الگوریتم های ژنتیک.........................................................................21
2-2)محدودیتهای الگوریتم ژنتیک............................................................................22
3-2)کاربردهای الگوریتم های ژنتیک.......................................................................24
4-2)یک مثال ساده...............................................................................................25

نتیجه گیری........................................................................................................31
منابع................................................................................................................32

چکیده:
     الگوریتم های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش بینی یا تطبیق الگو استفاده می کنند.الگوریتم های ژنتیک اغلب گزینه خوبی برای تکنیک های پیش بینی  بر مبنای رگرسیون هستند.همان طور ساده،خطی وپارامتری یک گفته می شود،به الگوریتم های ژنتیک می توان غیر پارامتریک گفت.
     مختصراً گفته می شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل نمسئله استفاده می کند.مسئله ای که باید حل شود ورودی است و راه حلها طبق یک الگو کد گذاری می شودومتریک که تابع fitness هم نام دارد هر راه حل کاندید را ارزیابی می کندکه اکثر آنها به صورت تصادفی انتخاب می شوند.
کلاً این الگوریتم ها از بخش های زیر تشکیل می شوند :
تابع برازش  - نمایش – انتخاب – تغییر
که در ادامه آنها را توضیح خواهیم داد.


دانلود با لینک مستقیم

دانلود پایان نامه بررسی الگوریتم ژنتیک در TSP و NP-HARD (تعداد صفحات 151)

اختصاصی از کوشا فایل دانلود پایان نامه بررسی الگوریتم ژنتیک در TSP و NP-HARD (تعداد صفحات 151) دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه بررسی الگوریتم ژنتیک در TSP و NP-HARD (تعداد صفحات 151)


دانلود پایان نامه  بررسی الگوریتم ژنتیک در TSP و NP-HARD (تعداد صفحات  151)

الگوریتم ژنتیک (Genetic Algorithm – GA) تکنیک جستجویی در علم رایانه برای یافتن راه حل تقریبی برای بهینه سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریت مهای تکامل است که از تکنیک های زیست شناسی فرگشتی مانند وراثت و جهش استفاده می کند. در واقع الگوریت مهای ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش بینی یا تطبیق الگو استفاده میکنند. الگوریت مهای ژنتیک اغلب گزینه خوبی برای تکنیک های پیش بینی بر مبنای یک تکنیک برنامه نویسی است که از (GA تصادف هستند. مختصراً گفته می شود که الگوریتم ژنتیک ) یا تکامل ژنتیکی به عنوان یک الگوی حل مسئله استفاده می کند. مسأله ای که باید حل شود  ورودی است و راه حلها طبق یک الگو کد گذاری میشوند که تابع fitness نام دارد هر راه حل کاندید را ارزیابی می کند که اکثر آنها به صورت تصادفی انتخاب می شوند.

فهرست :

 مقدمه

 به دنبال تکامل…

 ایده اصلی استفاده از الگوریتم ژنتیک

 درباره علم ژنتیک

 تاریخچۀ علم ژنتیک

 تکامل طبیعی (قانون انتخاب طبیعی داروین)

 رابطه تکامل طبیعی با روش های هوش مصنوعی

 الگوریتم

 الگوریتم های جستجوی ناآگاهانه

جستجوی لیست

جستجوی درختی

جستجوی گراف

 الگوریتم های جستجوی آگاهانه

 الف جستجوی خصمانه

  مسائل NP Hard

 هیوریستیک

 انواع الگوریتم های هیوریستیک

فصل دوم

 مقدمه

 الگوریتم ژنتیک

 مکانیزم الگوریتم ژنتیک

 عملگرهای الگوریتم ژنتیک

 کدگذاری

 ارزیابی

 ترکیب

 جهش

 رمزگشایی

 چارت الگوریتم به همراه شبه کد آ ن

 شبه کد و توضیح آن

 چارت الگوریتم ژنتیک

 تابع هدف

 روش های کد کردن

 کدینگ باینری

 کدینگ جایگشتی

 کد گذاری مقدار

 کدینگ درخت

 نمایش رشته ها

 انواع روش های تشکیل رشته

 باز گرداندن رشته ها به مجموعه متغیرها

 تعداد بیت های متناظر با هر متغی ر

 جمعیت

 ایجاد جمعیت اولیه

 اندازه جمعیت

 محاسبه برازندگی (تابع ارزش)

 انواع روش های انتخاب

 انتخاب چرخ رولت

 انتخاب حالت پایدار

 انتخاب نخبه گرایی

 انتخاب رقابتی

 انتخاب قطع سر

 انتخاب قطعی بریندل

 انتخاب جایگزینی نسلی اصلاح شده

 انتخاب مسابقه

 انتخاب مسابقه تصادفی

 انواع روش های ترکیب

 جابه جایی دودوئی

 جابه جایی حقیقی

 ترکیب تک نقطه ا ی

 ترکیب دو نقطه ای

 ترکیب یکنواخت

 ترکیب حسابی

 ترتیب

 چرخه

 بخش نگاشته

 احتمال ترکیب

 تحلیل مکانیزم جابجایی

 جهش

 جهش باینری

 جهش حقیقی

 وارونه سازی بیت

 تغییر ترتیب قرارگیر ی

 وارون سازی

 تغییر مقدار

 محک اختتام اجرای الگوریتم ژنتیک

 انواع الگوریتم های ژنتیکی

 الگوریتم ژنتیکی سری

 الگوریتم ژنتیکی موازی

 مقایسه الگوریتم ژنتیک با سیستم های طبیعی

 نقاط قوت الگوریتم های ژنتیک

 استراتژی برخورد با محدودیت ها

 استراتژی اصلاح عملگرهای ژنتیک

 استراتژی اصلاحی

 استراتژی جریمه ای

 بهبود الگوریتم ژنتیک

 چند نمونه از کاربردهای الگوریتم های ژنتیک

فصل سوم

 مقدمه

حلّ معمای هشت وزیر

 جمعیت آغازین

 تابع برازندگی

 آمیزش

 جهش ژنتیکی

 الگوریتم ژنتیک و حلّ مسألۀ فروشندة دوره گرد

به وسیله الگوریتم ژنتیک   TS P  حل مسأله

 TS P  مقایسه روشهای مختلف الگوریتم و ژنتیک برای

 نتیجه گیر ی

 حلّ مسأله معمای سودوکو

 حل مسأله

 تعیین کروموزم

 ساختن جمعیت آغازین یا نسل اول

 ساختن تابع از ارزش

 ترکیب نمونه ها و ساختن جواب جدید

 ارزشیابی مجموعه جواب

 ساختن نسل بعد

مرتب سازی به کمک  G A

 صورت مسأله

 جمعیت آغازین

 تابع برازندگی

 انتخاب

 ترکیب

 جهش

فهرست منابع و مراجع

پیوست

واژه نامه

نقاط بهینه محلی و بهینه کلی

 چارت الگوریتم ژنتیک

 ترکیب تک نقطه

 ترکیب جایگشتی

 جهش کدینگ جایگشتی

 جهش کدینگ مقدار

 کدینگ درختی

 نمونه کروموزوم الگوریتم ژنتیکی

 روش سری

 روش محاطی

  چرخه رولت

  جابجایی چند نقطه

  ترکیب تک نقطه ای

  ترکیب دو نقطه ای

  ترکیب یکنواخت

  شبیه سازی جهش به کمک نمودار

  جهش باینری

  جهش:وارونه سازی بیت

  جهش:تغییر ترتیب قرارگیری

  جهش: وارون ساز ی

  جهش: تغییر مقدار

  نمودار بررسی رابطه های جمعیت، کیفیت جواب و معیار توقف بایکدیگر

 چینش هشت مهره وزیر در صفحه شطرنج بدون تهدید یکدیگر

جدول سودوکو


دانلود با لینک مستقیم

الگوریتم

اختصاصی از کوشا فایل الگوریتم دانلود با لینک مستقیم و پرسرعت .

الگوریتم


الگوریتم

فرمت فایل : WORD ( قابل ویرایش ) تعداد صفحات:16  

 

چکیده : در این گزارش ما به بررسی ویژگی های الگوریتمهای کنترل همروندی توزیعی که بر پایه مکانیزم قفل دو مرحله ای(2 Phase Locking)   ایجاد شده اند خواهیم پرداخت. محور اصلی این بررسی بر مبنای تجزیه مساله کنترل همروندی به دو حالت read-wirte و write-write می‌باشد. در این مقال، تعدادی از تکنیکهای همزمان سازی برای حل هر یک از قسمتهای مساله بیان شده و سپس این تکنیکها برای حل کلی مساله با یکدیگر ترکیب می‌شوند.

در این گزارش بر روی درستی و ساختار الگوریتمها متمرکز خواهیم شد. در این راستا برای ساختار پایگاه داده توزیعی یک سطحی از انتزاع را در نظر می‌گیریم تا مساله تا حد ممکن ساده سازی شود.

 

  1. مقدمه : کنترل همروندی فرآیندی است که طی آن بین دسترسی های همزمان به یک پایگاه داده در یک سیستم مدیریت پایگاه داده چند کاربره هماهنگی بوجود می‌آید. کنترل همروندی به کاربران اجازه می‌دهد تا در یک حالت چند برنامگی با سیستم تعامل داشته باشند در حالیکه رفتار سیستم از دیدگاه کاربر به نحو خواهد بود که کاربر تصور می‌کند در یک محیط تک برنامه در حال فعالیت است. سخت ترین حالت در این سیستم مقابله با بروز آوری های آزار دهنده ای است که یک کاربر هنگام استخراج داده توسط کاربر دیگر انجام می‌دهد. به دو دلیل ذیل کنترل همروندی در پایگاه داده های توزیعی از اهمیت بالایی برخوردار است:
  2. کاربراان ممکن است به داده هایی که در کامپیوترهای مختلف در سیستم قرار دارند دسترسی پیدا کنند.
  3. یک مکانیزم کنترل همروندی در یک کامپیوتر از وضعیت دسترسی در سایر کامپیوترها اطلاعی ندارد.

مساله کنترل همروندی در چندین سال قبل کاملا مورد بررسی قرار گفته است و در خصوص پایگاه‌داده‌های متمرکز کاملا شناخته شده است. در خصوص این مسال در پایگاه داده  توزیعی با توجه به اینکه مساله در حوزه مساله توزیعی قرار می‌گیرد بصورت مداوم راهکارهای بهبود مختلف عرضه می‌شود. یک تئوری ریاضی وسیع برای تحلیل این مساله ارائه شده و یک راهکار قفل دو مرحله ای به عنوان راه حل استاندارد در این خصوص ارائه شده است. بیش از 20 الگوریتم کنترل همروندی توزیعی ارائه شده است که بسیاری از آنها پیاده سازی شده و در حال استفاده می‌باشند.این الگوریتمها معمولا پیچیده هستند و اثبات درستی آنها بسیار سخت می‌باشد. یکی از دلایل اینکه این پیچیدگی وجود دارد این است که آنها در اصطلاحات مختلف بیان می‌شوند و بیان های مختلفی برای آنها وجود دارد. یکی از دلایل اینکه این پیچدگی وجود دارد این است که مساله از زیر قسمتهای مختلف تشکیل شده است و برای هر یک از این زیر قسمتها یک زیر الگوریتم ارائه می‌شود. بهترین راه برای فائق آمدن بر این پیچدگی این است که زیر مساله ها و الگوریتمهای ارائه شده برای هر یک را در ی.ک سطح از انتزاع نگاه داریم.

با بررسی الگوریتمهای مختلف می‌توان به این حقیقت رسید که این الگوریتمها همگی ترکیبی از زیر الگوریتمهای محدودی هستند. در حقیقت این زیر الگوریتمها نسخه‌های متفاوتی از دو تکنیک اصلی در کنترل همروندی توزیعی به نامهای قفل دو مرحله ای و ترتیب برچسب زمانی می‌باشند.

همانطور که گفته شد، هدف کنترل همروندی مقابله با تزاحمهایی است که در اثر استفاده چند کاربر از یک سری داده واحد برای کاربران بوجود می‌آید است. حال ما با ارائه دو مثال در خصوص این مسائل بحث خواهیم نمود. این دو مثال از محک معروف TPC_A مقتبس شده اند. در این مثالها، یک سیستم اطلاعات را از پایگاه داده ها استخراج کرده و محاسبات لازم را انجام داده و در نهایت اطلاعات را در پایگاه داده ذخیره می‌نماید.


دانلود با لینک مستقیم

الگوریتم (پایگاه داده ها)

اختصاصی از کوشا فایل الگوریتم (پایگاه داده ها) دانلود با لینک مستقیم و پرسرعت .

الگوریتم (پایگاه داده ها)


الگوریتم (پایگاه داده ها)

فرمت فایل : WORD ( قابل ویرایش ) تعداد صفحات:28  

 

چکیده : در این گزارش ما به بررسی ویژگی های الگوریتمهای کنترل همروندی توزیعی که بر پایه مکانیزم قفل دو مرحله ای(2 Phase Locking)   ایجاد شده اند خواهیم پرداخت. محور اصلی این بررسی بر مبنای تجزیه مساله کنترل همروندی به دو حالت read-wirte و write-write می‌باشد. در این مقال، تعدادی از تکنیکهای همزمان سازی برای حل هر یک از قسمتهای مساله بیان شده و سپس این تکنیکها برای حل کلی مساله با یکدیگر ترکیب می‌شوند.

در این گزارش بر روی درستی و ساختار الگوریتمها متمرکز خواهیم شد. در این راستا برای ساختار پایگاه داده توزیعی یک سطحی از انتزاع را در نظر می‌گیریم تا مساله تا حد ممکن ساده سازی شود.

 

  1. مقدمه : کنترل همروندی فرآیندی است که طی آن بین دسترسی های همزمان به یک پایگاه داده در یک سیستم مدیریت پایگاه داده چند کاربره هماهنگی بوجود می‌آید. کنترل همروندی به کاربران اجازه می‌دهد تا در یک حالت چند برنامگی با سیستم تعامل داشته باشند در حالیکه رفتار سیستم از دیدگاه کاربر به نحو خواهد بود که کاربر تصور می‌کند در یک محیط تک برنامه در حال فعالیت است. سخت ترین حالت در این سیستم مقابله با بروز آوری های آزار دهنده ای است که یک کاربر هنگام استخراج داده توسط کاربر دیگر انجام می‌دهد. به دو دلیل ذیل کنترل همروندی در پایگاه داده های توزیعی از اهمیت بالایی برخوردار است:
  2. کاربراان ممکن است به داده هایی که در کامپیوترهای مختلف در سیستم قرار دارند دسترسی پیدا کنند.
  3. یک مکانیزم کنترل همروندی در یک کامپیوتر از وضعیت دسترسی در سایر کامپیوترها اطلاعی ندارد.

مساله کنترل همروندی در چندین سال قبل کاملا مورد بررسی قرار گفته است و در خصوص پایگاه‌داده‌های متمرکز کاملا شناخته شده است. در خصوص این مسال در پایگاه داده  توزیعی با توجه به اینکه مساله در حوزه مساله توزیعی قرار می‌گیرد بصورت مداوم راهکارهای بهبود مختلف عرضه می‌شود. یک تئوری ریاضی وسیع برای تحلیل این مساله ارائه شده و یک راهکار قفل دو مرحله ای به عنوان راه حل استاندارد در این خصوص ارائه شده است. بیش از 20 الگوریتم کنترل همروندی توزیعی ارائه شده است که بسیاری از آنها پیاده سازی شده و در حال استفاده می‌باشند.این الگوریتمها معمولا پیچیده هستند و اثبات درستی آنها بسیار سخت می‌باشد. یکی از دلایل اینکه این پیچیدگی وجود دارد این است که آنها در اصطلاحات مختلف بیان می‌شوند و بیان های مختلفی برای آنها وجود دارد. یکی از دلایل اینکه این پیچدگی وجود دارد این است که مساله از زیر قسمتهای مختلف تشکیل شده است و برای هر یک از این زیر قسمتها یک زیر الگوریتم ارائه می‌شود. بهترین راه برای فائق آمدن بر این پیچدگی این است که زیر مساله ها و الگوریتمهای ارائه شده برای هر یک را در ی.ک سطح از انتزاع نگاه داریم.


دانلود با لینک مستقیم