کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

تحقیق درباره ریاضیدان خیام

اختصاصی از کوشا فایل تحقیق درباره ریاضیدان خیام دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

ریاضیدان خیام

غیاث الدین ابوالفتح، عمر بن ابراهیم خیام (خیامی) در سال 439 هجری (1048 میلادی) در شهر نیشابور و در زمانی به دنیا آمد که ترکان سلجوقی بر خراسان، ناحیه ای وسیع در شرق ایران، تسلط داشتند. وی در زادگاه خویش به آموختن علم پرداخت و نزد عالمان و استادان برجسته آن شهر از جمله امام موفق نیشابوری علوم زمانه خویش را فراگرفت و چنانکه گفته اند بسیار جوان بود که در فلسفه و ریاضیات تبحر یافت. خیام در سال 461 هجری به قصد سمرقند، نیشابور را ترک کرد و در آنجا تحت حمایت ابوطاهر عبدالرحمن بن احمد , قاضی القضات سمرقند اثربرجسته خودرادر جبرتألیف کرد. خیام سپس به اصفهان رفت و مدت 18 سال در آنجا اقامت گزید و با حمایت ملک شاه سلجوقی و وزیرش نظام الملک، به همراه جمعی از دانشمندان و ریاضیدانان معروف زمانه خود، در رصد خانه ای که به دستور ملکشاه تأسیس شده بود، به انجام تحقیقات نجومی پرداخت. حاصل این تحقیقات اصلاح تقویم رایج در آن زمان و تنظیم تقویم جلالی (لقب سلطان ملکشاه سلجوقی) بود. در تقویم جلالی، سال شمسی تقریباً برابر با 365 روز و 5 ساعت و 48 دقیقه و 45 ثانیه است. سال دوازده ماه دارد 6 ماه نخست هر ماه 31 روز و 5 ماه بعد هر ماه 30 روز و ماه آخر 29 روز است هر چهارسال، یکسال را کبیسه می خوانند که ماه آخر آن 30 روز است و آن سال 366 روز است هر چهار سال، یکسال را کبیسه می خوانند که ماه آخر آن 30 روز است و آن سال 366 روز می شود در تقویم جلالی هر پنج هزار سال یک روز اختلاف زمان وجود دارد در صورتیکه در تقویم گریگوری هر ده هزار سال سه روز اشتباه دارد. بعد از کشته شدن نظام الملک و سپس ملکشاه، در میان فرزندان ملکشاه بر سر تصاحب سلطنت اختلاف افتاد. به دلیل آشوب ها و درگیری های ناشی از این امر، مسائل علمی و فرهنگی که قبلا از اهمیت خاصی برخوردار بود به فراموشی سپرده شد. عدم توجه به امور علمی و دانشمندان و رصدخانه، خیام را بر آن داشت که اصفهان را به قصد خراسان ترک کند. وی باقی عمر خویش را در شهرهای مهم خراسان به ویژه نیشابور و مرو که پایتخت فرمانروائی سنجر (پسر سوم ملکشاه) بود، گذراند. در آن زمان مرو یکی از مراکز مهم علمی و فرهنگی دنیا به شمار می رفت و دانشمندان زیادی در آن حضور داشتند. بیشتر کارهای علمی خیام پس از مراجعت از اصفهان در این شهر جامه عمل به خود گرفت. دستاوردهای علمی خیام برای جامعه بشری متعدد و بسیار درخور توجه بوده است. وی برای نخستین بار در تاریخ ریاضی به نحو تحسین برانگیزی معادله های درجه اول تا سوم را دسته بندی کرد، و سپس با استفاده از ترسیمات هندسی مبتنی بر مقاطع مخروطی توانست برای تمامی آنها راه حلی کلی ارائه کند. وی برای معادله های درجه دوم هم از راه حلی هندسی و هم از راه حل عددی استفاده کرد، اما برای معادلات درجه سوم تنها ترسیمات هندسی را به کار برد؛ و بدین ترتیب توانست برای اغلب آنها راه حلی بیابد و در مواردی امکان وجود دو جواب را بررسی کند. اشکال کار در این بود که به دلیل تعریف نشدن اعداد منفی در آن زمان، خیام به جوابهای منفی معادله توجه نمی کرد و به سادگی از کنار امکان وجود سه جواب برای معادله درجه سوم رد می شد. با این همه تقریبا چهار قرن قبل از دکارت توانست به یکی از مهمترین دستاوردهای بشری در تاریخ جبر بلکه علوم دست یابد و راه حلی را که دکارت بعدها (به صورت کاملتر) بیان کرد، پیش نهد. خیام همچنین توانست با موفقیت تعریف عدد را به عنوان کمیتی پیوسته به دست دهد و در واقع برای نخستین بار عدد مثبت حقیقی را تعریف کند و سرانجام به این حکم برسد که هیچ کمیتی، مرکب از جزء های تقسیم ناپذیر نیست و از نظر ریاضی، می توان هر مقداری را به بی نهایت بخش تقسیم کرد. همچنین خیام ضمن جستجوی راهی برای اثبات "اصل توازی" (اصل پنجم مقاله اول اصول اقلیدس) در کتاب شرح ما اشکل من مصادرات کتاب اقلیدس (شرح اصول مشکل آفرین کتاب اقلیدس)، مبتکر مفهوم عمیقی در هندسه شد. در تلاش برای اثبات این اصل، خیام گزاره هایی را بیان کرد که کاملا مطابق گزاره هایی بود که چند قرن بعد توسط والیس و ساکری ریاضیدانان اروپایی بیان شد و راه را برای ظهور هندسه های نااقلیدسی در قرن نوزدهم هموار کرد. بسیاری را عقیده بر این است که مثلث حسابی پاسکال را باید مثلث حسابی خیام نامید و برخی پا را از این هم فراتر گذاشتند و معتقدند، دو جمله ای نیوتن را باید دو جمله ای خیام نامید. البته گفته می شودبیشتر از این دستور نیوتن و قانون تشکیل ضریب بسط دو جمله ای را چه جمشید کاشانی و چه نصیرالدین توسی ضمن بررسی قانون های مربوط به ریشه گرفتن از عددها آورده اند. استعداد شگرف خیام سبب شد که وی در زمینه های دیگری از دانش بشری نیز دستاوردهایی داشته باشد. از وی رساله های کوتاهی در زمینه هایی چون مکانیک، هیدرواستاتیک، هواشناسی، نظریه موسیقی و غیره نیز بر جای مانده است. اخیراً نیز تحقیقاتی در مورد فعالیت خیام در زمینه هندسه تزئینی انجام شده است که ارتباط او را با ساخت گنبد شمالی مسجد جامع اصفهان تأئید می کند. تاریخنگاران و دانشمندان هم عصر خیام و کسانی که پس از او آمدند جملگی بر استادی وی در فلسفه اذعان داشته اند، تا آنجا که گاه وی را حکیم دوران و ابن سینای زمان شمرده اند. آثار فلسفی موجود خیام به چند رساله کوتاه اما عمیق و پربار محدود می شود. آخرین رساله فلسفی خیام مبین گرایش های عرفانی اوست. اما گذشته از همه اینها، بیشترین شهرت خیام در طی دو قرن اخیر در جهان به دلیل رباعیات اوست که نخستین بار توسط فیتزجرالد به انگلیسی ترجمه و در دسترس جهانیان قرار گرفت و نام او را در ردیف چهار شاعر بزرگ جهان یعنی هومر، شکسپیر، دانته و گوته قرار داد. رباعیات خیام به دلیل ترجمه بسیار آزاد (و گاه اشتباه) از شعر او موجب سوء تعبیرهای بعضاً غیر قابل قبولی از شخصیت وی شده است. این رباعیات بحث و اختلاف نظر میان تحلیلگران اندیشه خیام را شدت بخشیده است. برخی برای بیان اندیشه او تنها به ظاهر رباعیات او بسنده می کنند، در حالی که برخی دیگر بر این اعتقادند که اندیشه های واقعی خیام عمیق تر از آن است که صرفا با تفسیر ظاهری شعر او قابل بیان باشد. خیام پس از عمری پربار سرانجام در سال 517 هجری (طبق گفته اغلب منابع) در موطن خویش نیشابور درگذشت و با مرگ او یکی از درخشان ترین صفحات تاریخ اندیشه در ایران بسته شد.

خیام ریاضی دان:خیام در دوران حیاتش بیشتر به نام ریاضی دان مشهور بود. او رساله مشهور رسالة فی البراهین علی مسائل الجبر و المقابله (۱۰۷۰ م.) را نوشت که اصول جبر را تبیین می کرد و از راه این رساله به اروپا راه یافت. او به ویژه روشی برای حل معادلات درجه ۳ و بالاتر ابداع کرد. روش او برای حل معادلات درجه ۳، تقاطع دادن یک مقطع مخروطی با دایره بود. علاوه بر آن، او بسط دوجمله ای را نیز کشف کرد. روش او برای حل معادلات درجه ۴ هنوز هم به کار می رود.او در رساله اش درباره مثلث ضرایب دوجمله ای نوشت که بعدها به مثلث خیام / پاسکال مشهور شد. در سال ۱۰۷۷، او رساله رسالة فی شرح مااشکل من مصادرات کتاب اقلیدس را در مورد خطوط موازی و نظریهٔ نسبت‌ها نوشت که توجه ثابت بن قرا را جلب کرد و احتمالا مبنای هندسه غیراقلیدسی شد.

با این وجود جورج سارتن با نام بردن از خیام به عنوان یکی از بزرگترین ریاضیدانان قرون وسطی چنین می‌نویسد:خیام اول کسی است که به تحقیق منظم علمی در معادلات درجات اول و دوم و سوم پرداخته، و طبقه‌بندی تحسین‌آوری از این معادلات آورده است، و در حل تمام صور معادلات درجه سوم منظماً تحقیق کرده، و به حل (در اغلب موارد ناقص) هندسی آنها توفیق یافته، و رساله وی در علم جبر، که مشتمل بر این تحقیقات است، معرف یک فکر منظم علمی است؛ و این رساله یکی از برجسته‌ترین آثار قرون وسطائی و احتمالاً برجسته‌ترین آنها در این علم است.


دانلود با لینک مستقیم


تحقیق درباره ریاضیدان خیام

دانلود مقاله ISI ریاضیدان جوان به خوبی طراحی شده

اختصاصی از کوشا فایل دانلود مقاله ISI ریاضیدان جوان به خوبی طراحی شده دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله ISI ریاضیدان جوان به خوبی طراحی شده


موضوع فارسی :ریاضیدان جوان به خوبی طراحی شده

موضوع انگلیسی :The well-designed young mathematician

تعداد صفحه :20

فرمت فایل :PDF

سال انتشار :2008

زبان مقاله : انگلیسی

 

 

در این مقاله مکمل "کودک به خوبی طراحی شده" مک کارتی، در بخشی از قرار دادن آن
در چارچوب گسترده تر، یک فضای مجموعه از الزامات و یک فضای از طرح، و در
بخشی از ویژگی های طراحی مربوط به توسعه از تواناییها و ظرفیتهای ریاضی. من جابجا شدم
به AI امید به خودم درک، به ویژه امید به درک چگونه من می توانم
انجام ریاضیات. در طول چهار دهه بعد، تعامل من با AI و دیگر
رشته منجر به:، تحقیقات بین رشتهای مبتنی بر طراحی مورد نیاز، به خصوص
کسانی که ناشی از تعامل با یک محیط پیچیده؛ پیش نویس هستی شناسی جزئی
برای توصیف فضاهای معماری ممکن است، معماری دستگاه به ویژه مجازی؛
تحقیقات که چگونه اشکال نمایندگی های مختلف مربوط به توابع مختلف؛
تجزیه و تحلیل ماهیت بیولوژیکی / تعادل پرورش و ارتباط آنها به ماشین آلات. مطالعات
مسائل مربوط به کنترل در یک معماری پیچیده؛ و نشان میدهد که چگونه آنچه می تواند در چنین رخ می دهد
معماری مربوط به مفاهیم بصری ما از انگیزه، احساس، تنظیمات، احساسات،
نگرش ها، ارزش ها، خلق و خو، آگاهی، و غیره من حدس میزنم که مدل کار انسان
چشم انداز می تواند به مدل های استدلال فضایی منجر شود کمک خواهد کرد که برای حمایت از دیدگاه کانت
ریاضیات با نشان دادن اینکه توانایی های ریاضی انسان به عنوان گسترش طبیعی
از توانایی های تولید شده توسط تکامل بیولوژیکی است که هنوز به درستی درک نشده و
به سختی شده توسط روانشناسان و دانشمندان علوم اعصاب متوجه شده است. برخی الزامات مورد نیاز برای
مانند مدل، توصیف، از جمله جنبه های توانایی ما برای تعامل با پیچیده
ساختار 3-D و فرآیندهای است که گسترش ایده های گیبسون در مورد کارایی عمل،
شامل پروتو کارایی، کارایی معرفتی و کارایی مشورتی بعضی از
آنچه که یک کودک در مورد ساختارها و فرایندهای یاد می گیرد که تجربی شروع می شود پس از آن، به عنوان یک نتیجه
فرایندهای بازتابنده، می تواند به عنوان لازم حقایق (به عنوان مثال، ریاضی) شناخته شده است. اینها
فرآیندهای طور معمول خسته شده اید توسعه در کودکان جوان، اما برای بسیاری ارائه مبنایی
خلاقیت در رفتار، و همچنین پیشرو در برخی، به توسعه علاقه به
ریاضیات. ما هنوز نیاز به درک چه نوع نظارت بر خود و خود گسترش
معماری، و چه فرم های نمایندگی، نیاز به ایجاد این امکان پذیر است. این
کاغذ پیش فرض نیست که همه زبان آموزان ریاضی را می منطق انجام دهید، هر چند برخی از نسبتا
شکل کلی استدلال به نظر می رسد لازم است

 


دانلود با لینک مستقیم