کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود پاورپوینت ارتباط سنگ کلیه با سختی آب

اختصاصی از کوشا فایل دانلود پاورپوینت ارتباط سنگ کلیه با سختی آب دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ارتباط سنگ کلیه با سختی آب


دانلود پاورپوینت ارتباط سنگ کلیه با سختی آب

دسته بندی : پاورپوینت _ پزشکی _ بهداشت

نوع فایل:  ppt _ pptx ( قابلیت ویرایش متن )

فروشگاه فایل » مرجع فایل


 قسمتی از اسلاید متن ppt : 

 

تعداد اسلاید : 8 صفحه

به نام خدا رابطه آب سخت با سنگ کلیه بیان مسئله طبق باور عمومی نوشیدن آب سخت باعث بروز بیماری سنگ کلیه می شود. می خواهیم صحت این موضوع را بررسی کنیم.
بیان مسئله آب سخت به آبی گفته می‌شود که دارای یون کلسیم و منیزیم است. برخی بیان می‌کنند نوشیدن آب سخت موجب سنگ کلیه می‌شود. آخرین تحقیقات نشان داده که آب سخت منجر به سنگ کلیه نمی‌شود و حتی این آب اثرات مفیدی نیز دارد! اثرات آب سخت عدم کف کردن صابون رسوب در کتری و دیگ های بخار حالت خشن و نامساعد در پوست جرم گرفتگی در سرویس های بهداشتی از دست دادن طعم و مزه نوشیدنی‌ها می‌شود دیر پخته شدن و سفتی حبوبات اثرات آب سخت نوشیدن بیش از حد آب سخت موجب رسوب در افراد سنگ ساز می شود و همچنین موجب بیماری های گوارشی به خصوص سنگ کلیه است. توصیه می شود از آب سبک برای شرب استفاده کرد و منیزیم و کلسیم مورد نیاز بدن را از غذاها و یا سبزیجات و میوه جات تهیه نمود.
و اما ...! با توجه به وجود یون کلسیم و منیزیم در آب سخت، افرادی که از این آب می‌نوشند، کمتر دچار بیماری‌های قلبی و عروقی می‌شوند چرا که این یون‌ها از ایجاد رسوب و مسدود شدن رگ‌ها جلوگیری می‌کند. معمولاً شکستگی استخوانهای آنهایی که آب سخت می‌آشامند زودتر بهبود می‌یابد.
از طرفی ...
تحقیقات پزشکی نشان داده است ایجاد سنگ کلیه در افراد هیچ ارتباطی با میزان سختی یا سبکی آب ندارد. دکتر محمد هاتف خرمی اظهار داشت: آب سالم و تصفیه شده دارای املاح مفید است و دستگاه های تصفیه آب خانگی نیز تاثیری در جلوگیری از بروز سنگ کلیه ندارد. عضو انجمن جراحان کلیه و مجاری ادرار تاکید کرد: عوامل ژنتیک، مسائل اقلیمی و تغذیه نقش موثری در بروز سنگ کلیه دارد.
منبع دوره بازآموزی بهداشت یاران واحدهای صنعتی، مرداد 1388، شیرین نادری، کارشناس بهداشت محیط مرکز بهداشت استان قزوین .

  متن بالا فقط تکه هایی از محتوی متن پاورپوینت میباشد که به صورت نمونه در این صفحه درج شدهاست.شما بعد از پرداخت آنلاین فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف اصلی فروشگاه فایل، مرجع فایل کمک به سیستم آموزشی و جمع آوری اطلاعات برای علم آموزان عزیز میباشد .
  • بانک ها از جمله بانک ملی اجازه خرید اینترنتی با مبلغ کمتر از 5000 تومان را نمی دهند، پس تحقیق ها و مقاله ها و ...  قیمت 5000 تومان به بالا میباشد.درصورتی که نیاز به تخفیف داشتید با پشتیبانی فروشگاه درارتباط باشید.

دانلود فایل   پرداخت آنلاین 


دانلود با لینک مستقیم


دانلود پاورپوینت ارتباط سنگ کلیه با سختی آب

دانلود تحقیق درمورد دی اکسید کربن محلول ، PH ، قلیائیت ، سختی

اختصاصی از کوشا فایل دانلود تحقیق درمورد دی اکسید کربن محلول ، PH ، قلیائیت ، سختی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

دی اکسید کربن محلول ، PH ، قلیائیت ، سختی

اگر چه Co2 بسیار محلول در آب می باشد در اتمسفر جزء کوچکی بحساب می آید . کمتر از 1% دی اکسید کربن در آب به شکل اسید کربنیک می باشد و این اجزاء به سختی از هم تفکیک می شوند .

H2o + co2 = H2co3 H2co3 = (H+) + (Co3 - - )

در آب خالص در دمای c25 غلظت کل دی اکسید کربن حدود mgil 48% می باشد . در غلظتهای بالای co2 ، PH کاهش می یابد . در غلظت دی اکسید کربنی معادل mgil 30 ، ph حدود 8/4 می باشد . دی اکسید کربن نباید سبب کاهش PH به زیر 5/4 شود .

PH استخرهای پرورش ماهی بدلیل فتوسنتز و تنفس در طی روز متغیر است . از آنجا که بعد از غروب خورشید فتوسنتز متوقف می شود و نیز اینکه همه گیاهان و جانوران موجود در استخر پرورش ماهی مصرف کننده اکسیژن هستند لذا مقدار اکسیژن محلول در آب کاهش می یابد . در استخرهایی که تراکم ماهی زیاد است ممکن است مقدار co2 حاصل از تنفس افزایش یابد . این co2 با آب ترکیب شده و اسیدکربنیک بوجود می آید و در نتیجه PH کم می شود ( 3 ) .

اثر PH روی استخر ماهیان

نقاط مرگ آور اسید و باز برای ماهیان در حدود PH 4 و 11 می باشد . هر چند ، اگر آبها بیشتر از 5/6 اسیدی شوند و یا قلیایت آنها بیشتر از 5/9 _ 9 شود و این برای مدتهای طولانی صورت گیرد تولید مثل و رشد متوقف خواهد شد . ( 1973 , swingle , 1961 , mount )

مشکلات ناشی از PH دراستخرهای ماهیان غیرمعمول نیستند . در نواحی که معدن وجود دارد تراوشهای ناشی از معدن که اسیدی هستند باعث اسیدی شدن جویبارها و دریاچه ها می شود . اسیدی شدن طولانی مدت دریاچه ها و جویبارها باعث ایجاد بارانهای اسیدی خواهد شد که اثرات خطرناکی روی جمعیت ماهیان در نواحی اروپا و امریکای شمالی داشته است ( 1975 و همکاران , Beamish ) ( 6 ) .

یکی از عوامل عمده و مهم تغییر PH در استخرها ، وجود یا عدم وجود ترکیبات کلسیم در آب آنها می باشد . کربنات کلسیم یکی از فراوانترین مواد معدنی طبیعی است که بصورت نسبتاً خالص و یا بصورت ذراتی در سنگها و خاک وجود دارد . این ماده در آب خالص نسبتاً غیر محلول است و تنها به میزان 13 قسمت در میلیون در آب حل می شود . آبیکه از کربنات کلسیم اشباع شده است دارای PH حدود 3/9 است ( 3 ) .

کربناتها و بیکربناتها می توانند با اسید ها و نیز بازها واکنش نشان داده و منجر به تغییر PH گردند . زی شناوران گیاهی با تثبیت PH در قلیائیت 5/6 یا بیشتر توان تولید خود را بدلیل افزایش دسترسی به مواد معدنی ( مقدار فسفات محلول ) بهبود می دهند . قلیائیت به مقدار لیتر / میلی گرم 20 یا بیشتر co2 را به دام می اندازد و به این ترتیب مقادیر co2 موجود برای فتوسنتز را افزایش می دهد ( 7 ) .

* تغییر در سیستم کربنات بر اساس دما و PH و شوری 34.325 % . ( 7 ) .

درصد اجراء به صورت مولار

آب شور

Co3- -

Hco3 -

H2 co3

Temp . C

PH

2.1

94.0

3.9

8

7.5

6.6

92.2

1.2

8

8

3.2

93.9

2.9

24

7.5

8.4

90.7

0.9

24

8

آب شیرین

0.0

91.2

8.8

8

7.5

0.3

96.7

3.0

8

8

0.2

92.9

6.9

24

7.5

0.4

97.3

2.3

24

8

بدلیل استفاده زی شناوران گیاهی از Co2 در فتوسنتز ، PH آب استخر افزایش می یابد . زیرا اسید کربنیک از بین می رود . هم چنین ، زی شناوران گیاهی و سایر گیاهان می توانند جهت تشکیل Co2 برای فتوسنتز ، بیکربناتها را جذب کنند که در نتیجه کربناتها آزاد می شود . آزاد سازی کربنات از بیکربناتها توسط اعمال حیاتی گیاهان می توانند PH را شدیداً افزایش داده و نیز از طریق شکوفائی زی شناوران در طول دوره فتوسنتز ، موجب افزایش بارز PH می گردد . ( بیش از 9 )

این افزایش PH می تواند در آبی با قلیائیت کم ( 20 تا 50 لیتر/میلی گرم ) و یا قلیائیت متوسط به بالا ( 75 تا200 میلی / لیتر ) که سختی آن از لیتر/ میلی گرم 25 کمتر است روی دهد ( 2 ) .

دی اکسید کربن به طور قابل ملاحظه ای ، برای ماهیان سمیتی ندارد . بیشتر گونه ها در آبهای با غلظت لیتر / میلی گرم 60 از Co2 برای چندین روز به بقا خود ادامه می دهند . هنگامیکه غلظت اکسیژن محلول پائین است درصد قابل قبولی از دی اکسید کربن از جذب اکسیژن بوسیله ماهی جلوگیری می کند . متاسفانه ، غلظتهای دی اکسید کربن بطور نرمال به حد کافی بالاست وقتی که اکسیژن محلول کم است ( 1979 و Boyd ) . هنگامیکه اکسیژن محلول پائین است فتوسنتز سریع صورت نمی گیرد . بعلت رابطه دی اکسید کربن با فتوسنتز تنفس غلظت دی اکسید کربن در طول شب افزایش و در طول روز کاهش می یابد غلظتهای بالای دی اکسید کربن در استخرها بعد از مرگ فیتوپلانکتونها و بعد از کاهش لایه بندی دما و در طول روزهای ابری رخ می دهد ( 6 ) .

سمیت چندین آلوده کننده معمولی مانند آمونیاک و سیانید اثر روی تغییرات PH می گذارند . سمیت PH هم چنین بستگی به محتوی مواد معدنی و ظرفیت باکتری آب دارد . وجود فلزاتی مانند آهن می تواند خطر کاهش PH را زیاد کند بعلت اینکه نفوذ هیدرواکسید فریک روی آبشش ها سبب چنین حالتی می شود . ( EIFAC, 1969)

برای مثال ، ماهیانی که 4/8 = PH را تحمل کردند در 5/6 = PH در وجود آهن معادل 09/0 گرم درلیتر همگی مردند .

آلومینیم در آبهای اسیدی به آبشش ماهیان آسیب می رساند و موکوس را پوشش می دهد . اثرات PH در رنج های مختلف آن و تاثیر آن بر روی ماهیان در جدول زیر آورده شده است : ( 7 ) .

رنج

اثر بر ماهی

3.5-3

مرگ بیشتر گونه های ماهی به سرعت صورت می گیرد .

4.5-4

احتمالاً به بیشتر گونه ها آسیب می رسد ولی باعث سازگار شدن آنها نمی شود . پایداری ماهی با سن و اندازه بیشتر می شود .

6-5

آسیبها متفاوت هستند گر اینکه Co2 آزاد بیشتر از لیتر/میلی گرم 20 باشد یا نمکهای آهن موجود باشند . تغذیه در بعضی از گونه های دریازی کاهش و ممکن است سبب مرگ و میر شود .

6.5-6

آبهای مربوط به ماهی متفاوت هستند گر اینکه Co2 آزاد بیشتر از میلی گرم / لیتر 100 شود .

8-6.5

آسیبی وجود ندارد . اگر چه تغییرات درون این رنج ممکن است اثر مستقیم داشته باشد . سمیت دیگر سم ها تغییر می یابد .

9-8

تعدیه ممکن است روی ماهیان دریا اثر کند بخصوص لارو آنها . اگر چه جوانها سازگار می شوند .

9.5-9

احتمالاً آسیبها روی لارو ماهیان دریایی است .

10.5-9.5

مرگ ماهیان دریایی در طولانی مدت صورت می گیرد ، اما ممکن است برای دوره ای کوتاه مقاومت ایجاد بشود .

11-10.5

تماس طولانی مدت در محدودیت های بالا در این رنج مرگ و میر ایجاد می کند بخصوص در کپور ماهیان .

11.5-11

مرگ و میر سریع در تمام گونه های ماهی صورت می گیرد .

مقدار باز موجود در آب تحت عنوان قلیائیت کل شناخته می شود . بازهائی که اغلب در استخرهای پرورش ماهی یافت می گردند شامل کربناتها ، بیکربناتها ، هیدرواکسیدها ، فسفات ، و بوراتها می باشند . قلیائیت کل بر حسب میلی گرم در لیتر یا قیمت در میلیون کربنات کلسیم بیان می گردد . در استخرهای حاصلخیز پرورش ماهی ، قلیائیت کل معادل لیتر/میلی گرم 20 یا بیشتر مورد نیاز است . دامنه مطلوب قلیائیت کل برای پرورش ماهی بین 75 تا 200 میلیگرم / لیتر کربنات کلسیم می باشد ( 2 ) . آبهای طبیعی که محتوی لیتر / میلی گرم 40 یا بیشتر از قلیائیت باشند بیشتر برای آبزی پروری و تولید مورد نیاز هستند ، نسبت به آبهائیکه قلیائیت کمتری دارند ( 1966 و Mairs و 1945 و Moyle ) . بر طبق ( 1946 ) Moyle تولیدات بیشتر در آبهای با قلیائیت بالا در نتیجه تاثیر مستقیم قلیائیت نیست بلکه بیشتر به علت فسفر و دیگر مواد غذایی است که با افزایش قلیائیت کل زیاد می شوند . رابطه بین قلیائیت کل و محصول vitereum stizostedion در استخرهای کود دهی نشده در Minnasota آورده نشده است :

محصول سالیانه ماهی فوق در استخرهائی که قلیایت ها کل آنها متفاوت است ( 1946 و Moyle ).

هکتار/کیلو متوسط محصول

شماره استخر

قلیائیت کل

19

7

20-8

32

7

40-21

71

20

80-41

70

15

120-81

54

20

120 <

در استرهای کود دهی شده مقدار قلیائیت کل در بخشی حدود 120-20 لیتر / میلی گرم می باشد که اثر کمی روی تولید می گذارد ( 1975 و Boyle , Walley ) .

هر چند در استخرهای کود دهی شده محتوی قلیائیت کلی معادل لیتر / میلی گرم 20-0 تولید ماهی با افزایش قلیائیت افزایش می یابد ، بنابراین در استخرهایی بارور قلیائیت کلی معادل لیتر / میلی گرم 20 مناسب و مطلوب می باشد ( 6 ) .


دانلود با لینک مستقیم


دانلود تحقیق درمورد دی اکسید کربن محلول ، PH ، قلیائیت ، سختی

اندازه گیری سختی آب

اختصاصی از کوشا فایل اندازه گیری سختی آب دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 116

 

مقدمه

بهداشت آب موضوعی بسیار مهم در بهداشت عمومی و مدیریت سلامت می‌باشد. قبل از پرداختن به راه کارهای عملی استحصال، انتقال، بهسازی و توزیع آن لازم است این عنصر حیاتی موثر بر سلامت و مرتبط با توسعه پایدار، شناخته شود.

شناخت آب از نظر کیفیت و کمیت و چگونگی حصول آن قدمی اساسی در جهت بهینه سازی مصرف آن می‌باشد. اگر چه بیش از سه چهارم کره زمین را آب فرا گرفته است، سهم قلیلی از آب‌های موجود، برای مصارف بهداشتی و کشاورزی، قابل استفاده است. زیرا حدود 3/97 درصد اقیانوس‌ها و 1/2 درصد یخ‌های قطبی و 6/0 درصد دریاچه ها و رودخانه و آب‌های زیرزمینی وجود دارد که حدود 36/0 درصد کل منابع آب می‌باشد. آب اقیانوس‌ها، دریاها و اغلب دریاچه ها و بسیاری از منابع آب زیرزمینی به علت شوری بیش از حد و داشتن املاح معدنی برای مقاصد بهداشتی، کشاورزی و صنعتی، غیرقابل استفاده می‌باشند.

آب ماده حیاتی است که بطور یکنواخت در سطح کره زمین موجود نمی‌باشد. در نتیجه بسیاری از نقاط کره زمین با کمبود آب مواجه است. حرکت مداوم بخار آب به هوا و برگشت آن به زمین را گردش آب در طبیعت می‌نامند.

انرژی خورشید باعث تبخیر آب اقیانوس‌ها، رودخانه ها، دریاچه ها و منابع آب سطحی می‌گردد. بخار آب فشرده شده همراه توده های هوا باعث نگهداری آب در هوا شده و موجب تشکیل ابر باردار یا ذخیره کننده آب می‌شود ریشه گیاهان، آب و رطوبت موجود در خاک را گرفته و از طریق روزنه های تنفسی برگ‌ها به هوا فرستاده و به بخار تجمع یافته در هوا اضافه می‌شود که در شرایط مناسب به صورت نزولات جوی به زمین برمی‌گردد.

آب یک عنصر حیاتی است با ویژگی‌های قابل توجه و کم نظیر، یکی از مهم ترین عناصر شیمیایی می‌باشد که قسمت اعظم موجودات زنده و محیط زیست راتشکیل می‌دهد. این ماده 70% گیاهان را تشکیل می‌دهد. آب فراوان‌ترین و بهترین حلال در طبیعت است. آب یک مایع زیست شناختی است که واکنش‌های فیزیکوشیمیایی سوخت و ساز در پیکره موجودات زنده را مقدور و تسهیل می‌نماید ومحیطی است برای نقل و انتقال مواد در بدن موجودات زنده که علاوه بر نقش موثرآن در متابولیسم، دفع مواد زائد حاصل از فعالیت‌های زیست شناختی موجود زنده را موجب می‌شود. آب ناشی از تعریق در گرما باعث خنک کردن بدن می‌گردد. آب و انیدرید کربنیک توسط انرژی خورشیدی در پیکره گیاهان سبز تبدیل به کربوهیدرات یا انرژی شیمیایی می‌شود.

اگر چه آب خالص در طبیعت یافت نمی‌شود. اما آب خالص مایعی بی‌رنگ، بی‌بو و بی مزه است که دارای نقطه انجماد صفر و نقطه جوش 100 درجه سانتی گراد می‌باشد ساختار شیمیایی آن به صورت H2O است که به احتمال کمتر از 3/0 درصد آب‌های موجود در طبیعت بر دارنده ایزوتوپ‌های H4O2 ، H6O3 نیز می‌باشند. آب در چرخه گردش خود قادر است املاح و گازهای موجود در طبیعت را به صورت محلول در آورده و بسیاری از آلودگی‌ها را همراه خود به حرکت در آورد. آب باران قبل از رسیدن به زمین ناخالصی‌های موجود در هوا نظیر ذرات، گازها، مواد رادیواکتیو و میکروب‌ها را به سطح زمین آورده و در حین حرکت در زمین نیز آلاینده ها را با خود حمل می‌کند. به علاوه آب‌های جاری اغلب دریافت کننده فاضلاب‌ها و مواد زائد ناشی از فعالیت‌های انسانی می‌باشند.

بسیاری از مشکلات بهداشتی کشورهای در حال پیشرفت، عدم برخورداری از آب آشامیدنی سالم است. از آنجایی که محور توسعه پایدار، انسان سالم است و سلامت انسان در گرو بهره مندی از آب آشامیدنی مطلوب می‌باشد بدون تامین آب سالم جایی برای سلامت مثبت و رفاه جامعه، وجود ندارد. آب از دو بعد بهداشتی واقتصادی حائز اهمیت است. از بعد اقتصادی به حرکت درآورنده چرخ صنعت و رونق بخش فعالیت کشاورزی است. از بعد بهداشتی آب با کیفیت، تضمین کننده سلامت انسان است. آب با شکل ظاهری و با وسعت محتوایی آن دنیای زنده دیگری است.

اگر چه از دید ما پنهان است، اما آب دارای آثار بسیار زیادی در حیات جانداران به ویژه انسان میباشد. آب آشامیدنی علاوه بر تامین مایع مورد نیاز بدن به مفهوم مطلق آن یعنی H2O ، در بردارنده املاح و عناصر ضروری برای موجود زنده و انسان می‌باشد. کمبود پاره ای از آن‌ها در آب ایجاد اختلال در بدن موجود زنده می‌کند و منجربه بروز برخی بیماری‌ها می‌شود.

فقدان ید و فلوئور و ارتباط آن‌ها با گواتر اندمیک و پوسیدگی دندان‌ها به ترتیب بیان کننده این اهمیت است. علاوه بر مواد شیمیایی، موجودات ذره بینی گوناگونی نیز در آب پیدا می‌شوند که بعضی از آنها بیماری زا بوده و ایجاد بیماری‌های عفونی خطرناکی می‌کنند. بهسازی آب رابطه مستقیمی با کاهش بیماری‌های عفونی دارد. بطوری که پس از تامین آب آشامیدنی سالم میزان مرگ از وبا 1/74 درصد،


دانلود با لینک مستقیم


اندازه گیری سختی آب

پایان نامه شناسایی ضرایب سختی و میرایی تکیهگاه تیر طره ای

اختصاصی از کوشا فایل پایان نامه شناسایی ضرایب سختی و میرایی تکیهگاه تیر طره ای دانلود با لینک مستقیم و پر سرعت .

پایان نامه شناسایی ضرایب سختی و میرایی تکیهگاه تیر طره ای


پایان نامه شناسایی ضرایب سختی و میرایی تکیهگاه تیر طره ای

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:52

پایان نامه کارشناسی ارشد
 رشته مهندسی مکانیک -گرایش طراحی کاربردی

فهرست مطالب:

عنوان            صفحه
1- فصل اول: مقدمه    2
1-1- اهمیت موضوع    2
1-2- هدف از انجام این پایان‌نامه و مراحل انجام آن    5
2- فصل دوم: مروری بر مطالعات پیشین    8
2-1- مقدمه    8
2-2-تاریخچه ارتعاشات تیرها    8
2-3-تاریخچه تحلیل معکوس    9
2-3-1-شناسایی معکوس بارهای ضربهای    10
2-3-2-شناسایی معکوس ثابتهای مواد    11
2-3-3-مسائل شناسایی ترک و عیوب    11
2-4-تاریخچه کاربرد فنرها و دمپرها    12
3- فصل سوم: مبانی تئوری    17
3-1- مقدمه    17
3-2-روند کلی حل یک مسأله معکوس    18
3-2-1-تعریف مسأله    20
3-2-2-ارائه مدل مستقیم    20
3-2-3-محاسبه حساسیت بین خروجیها و پارامترها    20
3-2-4-طراحی آزمایش    21
3-2-5-کمینه کردن خطای اندازهگیری    21
3-2-6-بکارگیری فرمولبندی معکوس    21
3-2-7-بازبینی پاسخ    22
3-3-مفاهیم اساسی مسائل معکوس    22
3-4-فرمولبندی معکوس    28
3-5-انتخاب خروجیها    30
3-6-هموارسازی برای مسائل بدنهاده    31
3-7- روشهای بهینهسازی    33
3-7-1- روشهای جستجوی مستقیم    36
3-7-2- روشهای جستجو بر پایه گرادیان    37
3-7-3-روش غیرخطی حداقل مربعات    37
3-7-4-روشهای پیدا کردن ریشه    38
3-7-5-الگوریتمهای ژنتیک    38
3-7-6-نکاتی در خصوص روشهای بهینهسازی    39
4- فصل چهارم: نحوه انجام تحقیق    Error! Bookmark not defined.
4-1-مقدمه    Error! Bookmark not defined.
4-2-تشریح مدل پیشنهادی    Error! Bookmark not defined.
4-3- فرمولبندی تحلیل معکوس    Error! Bookmark not defined.
4-3-1-محاسبه ماتریس حساسیت    Error! Bookmark not defined.
4-3-2-شبیهسازی دادههای اندازهگیری    Error! Bookmark not defined.
4-3-3-انجام محاسبات در نرم افزار    Error! Bookmark not defined.
4-5- بررسی تأثیر پارامترهای مختلف بر پاسخ زمانمند تیرطرهای    Error! Bookmark not defined.
4-5-1-بررسی تأثیر بازه اعمال نیرو بر پاسخ تیر طرهای    Error! Bookmark not defined.
4-5-2-بررسی تأثیر ضریب سفتی بر پاسخ تیر طرهای    Error! Bookmark not defined.
4-5-3-بررسی تأثیر ضریب میرایی بر پاسخ تیر طرهای    Error! Bookmark not defined.
5- فصل پنجم: مثالهای عددی    Error! Bookmark not defined.
5-1-مقدمه    Error! Bookmark not defined.
5-2-بررسی تیر یک سر درگیر (تیر طرهای)    Error! Bookmark not defined.
5-2-1-بررسی تأثیر خطای اندازهگیری بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-2-بررسی روند همگرایی پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-3-بررسی تأثیر محل قرارگیری حسگر بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-4-بررسی تأثیر تعداد دادههای اندازهگیری بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-5-بررسی تأثیر تعداد حسگر بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-6-بررسی تأثیر مقدار حدس اولیه بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-7-بررسی تأثیر زمان اعمال نیرو بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-8-بررسی تأثیر اختلاف زمانی بر پاسخ تیر طرهای    Error! Bookmark not defined.
5-2-9-بررسی تأثیر زمان دادهبرداری بر پاسخ معکوس در تیر طرهای بدون در نظر گرفتن اختلاف زمانی    Error! Bookmark not defined.
5-2-10-بررسی تأثیر زمان دادهبرداری بر پاسخ معکوس در تیر طرهای با در نظر گرفتن اختلاف زمانی    Error! Bookmark not defined.
5-2-11-بررسی تأثیر محل اعمال نیرو بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-12-بررسی تأثیر مقدار ضریب میرایی بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-2-13-بررسی تأثیر مقدار ضریب سفتی بر پاسخ معکوس در تیر طرهای    Error! Bookmark not defined.
5-3-بررسی تیر دو سر درگیر    Error! Bookmark not defined.
5-3-1-بررسی تأثیر خطای اندازهگیری بر پاسخ معکوس در تیر دو سر درگیر    Error! Bookmark not defined.
5-3-2-بررسی تأثیر تعداد دادههای اندازهگیری بر پاسخ معکوس در تیر دو سر درگیر    Error! Bookmark not defined.
5-3-3-بررسی تأثیر تعداد حسگرها بر پاسخ معکوس در تیر دو سر درگیر    Error! Bookmark not defined.
6- فصل ششم: نتیجه گیری و پیشنهادات    Error! Bookmark not defined.
6-1-مقدمه    Error! Bookmark not defined.
6-2-نتیجهگیری    Error! Bookmark not defined.
6-3-پیشنهادات    Error! Bookmark not defined.
مراجع و منابع    42


فهرست شکل‌ها
عنوان        صفحه
شکل (1-1): کاربردهایی از تیرهای طرهای .......................................................................................    4
شکل (3-1): روند کلی حل یک مسأله معکوس ................................................................................    19
شکل (3-2): میله مستقیم با سطح مقطعهای متفاوت، ساخته شده از دو ماده، تحت نیروهای f_1 و f_2 .......................................................................................................................................    23
شکل (3-3): میله مستقیم با سطح مقطع یکنواخت A تحت نیروی f .........................................    25
شکل (3-4): مقایسه بین جابجایی دقیق و اندازهگیری شده در یک میله مستقیم ....................    26
شکل (3-5): مقایسه مقدار نیروی تخمین زده شده بر حسب مقدار واحد نیروی دقیق ............    27
شکل (4-1): تیر طرهای معادل شده ...................................................................................................    44
شکل (4-2): شماتیک تیر طرهای تحت نیروی زمانمند ..................................................................    50
شکل (4-3): نمودار نیرو بر حسب زمان .............................................................................................    50
شکل (4-4): سیستم جرم-فنر معادل با تیر طرهای .........................................................................    51
شکل (4-5): نمودار کرنش-زمان تیر طرهای با تکیهگاه ایدآل تحت اثر ضربه برای مقادیر مختلف t^* .................................................................................................................................................    53
شکل (4-6): سیستم جرم-فنر معادل شده برای تیر طرهای معادل شده .....................................    54
شکل (4-7): نمودار کرنش-زمان تیر طرهای تحت اثر ضربه برای مقادیر مختلف پارامتر بیبعد شده k^* ..........................................................................................................................................    56
شکل (4-8): نمودار کرنش-زمان تیر طرهای تحت اثر ضربه برای مقادیر مختلف c^* .................    58
شکل (5-1): تیر طرهای معادل شده (تکرار شکل (4-1)) ..............................................................    62
شکل (5-2): شماتیکی از نقطه دادهبرداری (نقطه A) و محل اعمال نیرو در تیر طرهای ..........
63
شکل (5-3): نمودار کرنش-زمان نقطه A از تیر معادل شده تحت اثر ضربه در انتهای تیر در تیر طرهای ...........................................................................................................................................    63
شکل (5-4): نمودار شتاب-زمان نقطه A از تیر معادل شده تحت اثر ضربه در انتهای تیر در تیر طرهای .................................................................................................................................................    64
شکل (5-5): خطای پاسخ تحلیل معکوس به ازای خطاهای مختلف اندازهگیری با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ...................................................    65
شکل (5-6): خطای پاسخ تحلیل معکوس به ازای خطاهای مختلف اندازهگیری با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای ....................................................    66
شکل (5-7): روند همگرایی پاسخ تحلیل معکوس با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ..............................................................................................................    67
شکل (5-8): روند همگرایی پاسخ تحلیل معکوس با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای ..............................................................................................................    68
شکل (5-9): شماتیکی از نقاط قرارگیری حسگر در تیر طرهای .....................................................    69
شکل (5-10): خطای پاسخ تحلیل معکوس به ازای مکانهای مختلف اندازهگیری با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ...................................................    69
شکل (5-11): خطای پاسخ تحلیل معکوس به ازای مکانهای مختلف اندازهگیری با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای ....................................................    70
شکل (5-12): خطای پاسخ تحلیل معکوس به ازای تعداد دادههای اندازهگیری و با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ...................................................    71
شکل (5-13): خطای پاسخ تحلیل معکوس به ازای تعداد دادههای اندازهگیری و با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای ....................................................    71
شکل (5-14): شماتیکی از نقاط دادهبرداری (نقاط A و B) در تیر طرهای ...................................    72
شکل (5-15): خطای پاسخ تحلیل معکوس به ازای تعداد کرنشسنجها در تیر طرهای ............
73
شکل (5-16): خطای پاسخ تحلیل معکوس به ازای تعداد شتابسنجها در تیر طرهای .............
73
شکل (5-17): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف حدس اولیه و با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ...................................................    74
شکل (5-18): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف حدس اولیه و با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای ....................................................    75
شکل (5-19): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف زمان اعمال نیرو و با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ............................................    76
شکل (5-20): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف زمان اعمال نیرو و با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای .............................................    77
شکل (5-21): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف ∆t و با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ................................................................    78
شکل (5-22): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف ∆t و با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای .................................................................    78
شکل (5-23): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف t_3/t_2  و با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای، بدون در نظر گرفتن اختلاف زمانی      80
شکل (5-24): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف t_3/t_2  و با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای، بدون در نظر گرفتن اختلاف زمانی .      80
شکل (5-25): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف t_3/t_2  و با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای و با در نظر گرفتن اختلاف زمانی .    82
شکل (5-26): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف t_3/t_2  و با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای و با در نظر گرفتن اختلاف زمانی ..    82
شکل (5-27): شماتیکی از نقاط اعمال نیرو در تیر طرهای .............................................................    83
شکل (5-28): خطای پاسخ تحلیل معکوس به ازای مکانهای مختلف اعمال نیرو با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ...................................................    84
شکل (5-29): خطای پاسخ تحلیل معکوس به ازای مکانهای مختلف اعمال نیرو با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای ....................................................    84
شکل (5-30): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف c^* با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ................................................................    86
شکل (5-31): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف c^* با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای .................................................................    86
شکل (5-32): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف k^* با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر طرهای ................................................................    87
شکل (5-33): خطای پاسخ تحلیل معکوس به ازای مقادیر مختلف k^* با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر طرهای .................................................................    88
شکل (5-34): تیر دوسر درگیر معادل شده .......................................................................................    89
شکل (5-35): شماتیکی از نقطه دادهبرداری (نقطه A) و محل اعمال نیرو در تیر دو سر درگیر .........................................................................................................................................................    90
شکل (5-36): نمودار کرنش-زمان نقطه A از تیر معادل شده تحت اثر ضربه در وسط تیر در تیر دو سر درگیر .................................................................................................................................    90
شکل (5-37): نمودار شتاب-زمان نقطه A از تیر معادل شده تحت اثر ضربه در وسط تیر در تیر دو سر درگیر .................................................................................................................................    91
شکل (5-38): خطای پاسخ تحلیل معکوس به ازای خطاهای مختلف اندازهگیری با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر دو سر درگیر .........................................    92
شکل (5-39): خطای پاسخ تحلیل معکوس به ازای خطاهای مختلف اندازهگیری با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر دو سر درگیر ..........................................    92
شکل (5-40): خطای پاسخ تحلیل معکوس به ازای تعداد دادههای اندازهگیری و با در نظر گرفتن دادههای کرنش به عنوان داده اندازهگیری در تیر دو سر درگیر .........................................    94
شکل (5-41): خطای پاسخ تحلیل معکوس به ازای تعداد دادههای اندازهگیری و با در نظر گرفتن دادههای شتاب به عنوان داده اندازهگیری در تیر دو سر درگیر ..........................................    95
شکل (5-42): شماتیکی از نقاط دادهبرداری (نقاط A و B) در تیر دو سر درگیر .......................    96
شکل (5-43): خطای پاسخ تحلیل معکوس به ازای تعداد کرنشسنجها در تیر دو سر درگیر
96
شکل (5-44): خطای پاسخ تحلیل معکوس به ازای تعداد شتابسنجها در تیر دو سر درگیر
97

 

چکیده

   تکیه‌گاه‌ها و اتصالات نقش اساسی و مهمی را در سازه‌های مهندسی ایفا می‌کنند. شناسایی پارامترهای مختلف تکیه‌گاهی ضروری میباشد. پارامترهای سفتی و میرایی مهمترین پارامترهای یک تکیه‌گاه به شمار می‌روند. در این پایان‌نامه یک روش معکوس بر پایه داده‌های اندازهگیری دینامیکی کرنش و شتاب برای شناسایی و بررسی ضرایب سفتی و میرایی تکیه‌گاههای تیرهای طره‌ای و دو سر درگیر بکار برده شده است. به همین منظور، با استفاده از روش حداقل مربعات یک مسأله بهینهسازی تعریف شده است و سپس به حل آن پرداخته شده است. در تیر طرهای تأثیر پارامترهای مختلفی از قبیل مقدار خطای اندازهگیری، تعداد دادههای اندازهگیری، نوع دادهها (کرنش یا شتاب)، حدس اولیه، محل نصب حسگر، تعدا حسگرها، بازه زمانی اعمال نیرو، مقادیر پارامترهای سفتی و میرایی، زمان دادهبرداری بر پاسخ تحلیل معکوس مورد بررسی قرار گرفتهاند. در تیر دو سر درگیر تنها به بررسی تأثیر مقدار خطای اندازهگیری، تعداد دادههای اندازهگیری، نوع دادهها و تعداد حسگرها بر نتایج پرداخته شده است.
   نتایج نشان میدهند که مسأله تیر دو سر درگیر بسیار مشکلتر از مسأله تیر یک سر درگیر است. استفاده از دادههای شتاب در مسأله تیر طرهای منجر به نتایج بهتری میشود. با بررسی دقیق نتایج عددی بدست آمده، تلاش شده است تا به سؤالات و مشکلاتی که ممکن است در طول آزمون عملی رخ می دهد، پاسخ داده شود.

واژههای کلیدی: تحلیل معکوس، تکیهگاه تیر، ضریب سفتی، ضریب میرایی، دادههای اندازهگیری دینامیکی  


دانلود با لینک مستقیم


مقاله دی اکسید کربن محلول ، PH ، قلیائیت ، سختی

اختصاصی از کوشا فایل مقاله دی اکسید کربن محلول ، PH ، قلیائیت ، سختی دانلود با لینک مستقیم و پرسرعت .

مقاله دی اکسید کربن محلول ، PH ، قلیائیت ، سختی


...

دانلود با لینک مستقیم