کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود تحقیق کامل درباره نیروهای الکتریکی و مغناطیسی 52ص

اختصاصی از کوشا فایل دانلود تحقیق کامل درباره نیروهای الکتریکی و مغناطیسی 52ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 52

 

مقدمه

 

در این نوشته هدف اصلی توجیه اثر متقابل فوتون و گراویتون با توجه به نظریه سی. پی. اچ است. نخستین برخورد ها با اثر فوتوالکتریک از دیدگاه الکترومغناطیس کلاسیک صورت گرفت که توانایی توجیه آن را نداشت. سپس انیشتین این پدیده را با توجه به دیدگاه کوانتومی توجیه کرد. بنابراین نخست میدانها و امواج الکترومغناطیسی کلاسیک را بطور فشرده بیان کرده، آنگاه با ذکر نارسایی آن به تشریح پدیده فوتوالکتریک از دیدگاه انیشتین می پردازم و سرانجام هر سه اثر فوتوالکتریک، اثر کامپتون و تولید و واپاشی زوج ماده - پاد ماده را با توجه به نظریه سی. پی. اچ. بررسی خواهم کرد. و سرانجام تلاش خواهد شد تا وحدت نیروهای الکترومغناطیس و گرانش را نتیجه گیری کنیم.

 

نیروهای الکتریکی و مغناطیسی

 

نیروهای بین بارهای الکتریکی را می توان به دو نوع تقسیم کرد. دو بار نقطه ای ساکن یا متحرک به یکدیگر نیروی الکتریکی وارد می کنند که از رابطه ی زیر به دست می آید:

 

Fe=kqQ/r2

 

که در آن

 

وقتی دو بار الکتریکی نسبت به ناظری در حرکت باشند، علاوه بر نیروی الکتریکی، نیروی مغناطیسی نیز بر یکدیگر وارد می کنند.

از آنجاییکه بررسی نیروها با استفاده از مفاهیم میدان عمیق تر و ساده تر است، می توان گفت که هر بار الکتریکی در اطراف خود یک میدان الکتریکی ایجاد می کند که شدت آن در فاصله r از آن، از رابطه ی زیر به دست می آید:

 

E=kq/r2

 

حال اگر ذره ی باردار حرکت کند، در اطراف آن علاوه بر میدان الکتریکی، یک میدان مغناطیسی نیز ایجاد می شود که وجود چنین میدان مغناطیسی بصورت تجربی قابل اثبات است اگر ذره ای با بار الکتریکی q در یک میدان مغناطیسی B و با سرعت vحرکت کند، نیرویی بر آن وارد می شود که بر صفحه ی B, v عمود است که از رابطه ی زیر به دست می آید:

 

F=qvxB

 

از این رو، بار q که به فاصله ی rازQقرار دارد و با سرعتvحرکت می کند، یک میدان مغناطیسی در محلQتولید می کند که از رابطه ی زیر به دست می آید :

 

 بطور خلاصه، در نقطه ای که میدان الکتریکی و مغناطیسی E , Bوجود دارد، نیروی الکترومغناطیسی وارد بر ذره باردار، با بار qکه با سرعت vحرکت می کند برابر است با

 

میدانهای الکترومغناطیسی

 

در یک میدان الکتریکی موجود در فضا، به عنوان مثال در بین صفحات یک خازن باردار، انرژی الکتریکی وجود دارد. چگالی انرژی یا انرژی الکتریکی در واحد حجم از رابطه ی زیر به دست می آید :

 

 

 

بطور مشابه چگالی انرژی مغناطیسی مثلاً انرژی مغناطیسی در ناحیه بین قطب های یک آهنربا برابر است با

 

 

 

امواج الکترومغناطیسی

 

بار الکتریکی ساکن میدان الکتریکی می آفریند. اما بار الکتریکی متحرک علاوه بر میدان الکتریکی، میدان مغناطیسی نیز ایجاد می کند که در قانون آمپر بخوبی نشان داده شده است. بنابراین در اطراف یک بار الکتریکی متحرک دو میدان الکتریکی و مغناطیسی وجود دارد. یعنی با تغییر میدان الکتریکی، میدان مغناطیسی تولید می


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره نیروهای الکتریکی و مغناطیسی 52ص

تصویر برداری تشدید مغناطیسی (MRI) 20 ص

اختصاصی از کوشا فایل تصویر برداری تشدید مغناطیسی (MRI) 20 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

تصویر برداری تشدید مغناطیسی(MRI)

 

 

در تیر ماه ١٣٥٦، اتفاقی روی داد که برای همیشه پزشکی نوین را متحول کرد. بجز در انجمن تحقیقات پزشکی، این واقعه در آغاز تنها یک موج کوچک در جهان بیرون بوجود آورد؛ و آن چیزی نبود بجز نخستین آزمایش MRI بر روی بشر.

در آن آزمایش، در حدود ٥ ساعت زمان جهت ایجاد تنها یک تصویر لازم بود. از منظر استانداردهای امروزی، تصویر اولیه تقریبا زشت بود. دکتر ریموند دامادین، یک دانشمند فیزیک دان، به همراه همکارانش دکتر لاری مینکف و دکتر مایکل گلداسمیت، تلاش خستگی ناپذیری در ٧ سال متمادی برای رسیدن به این نقطه، انجام دادند. آنان نخستین ماشین خود را برای رد گفته های کسانی که آن کار را انجام نشدنی می‌دانستند، شکست ناپذیر نام دادند.

این ماشین اکنون در مؤسسه اسمیت سونیان قرار دارد. تا حدود ١٣٦١، MRI هایی با پویشگر کاملا دستی در سراسر ایالات متحده وجود داشت. امروزه هزاران عدد از MRI‌ ها در چند ثانیه کاری که به ساعتها زمان نیاز داشت انجام می دهند.MRI یک فن آوری بسیار پیچیده که توسط بسیاری قابل درک نیست، می باشد. در زیر، به توصیف مختصری از آن می پردازیم.

اساس کار

اگر شما یک دستگاه MRI را دیده باشید، دانسته اید که طرح اصلی آن به صورت یک استوانه بزرگ می باشد. یک استوانه عادی MRI ، به رغم آنکه مدلهای جدید به سرعت در حال کوچکتر شدن می باشند، در حدود ٣ متر طول،‌ ٢ متر عرض و ٢ متر ارتفاع دارد. یک حفره  افقی سرتاسری  در داخل آهنربا وجود دارد. این حفره، تونل آهنربا نام دارد. بیمار که به پشت خوابیده است، توسط یک تخت مخصوص به داخل تونل کشیده می شود. اینکه بیمار تا چه مقدار باید به داخل تونل کشیده شود، بدون توجه به این که از سر یا از پا وارد آن می شود، توسط نوعی تست مشخص می شود. پویشگر های MRI‌ در ابعاد و اشکال گوناگونی یافت می شوند و مدلهای جدیدتر آنها، دارای چندین درجه آزادی در اطراف می باشند؛ که البته طرح اصلی آنها مشابه است. پویش زمانی می تواند آغاز شود که قسمتی از بدن که باید مورد تصویر برداری قرار گیرد، دقیقا هم‌مرکز با میدان مغناطیسی قرار گیرد.در هنگام اعمال تپ هایی از انرژی امواج رادیویی، پویشگر MRI توانایی تفکیک یک نقطه بسیار ریز در بدن بیمار را دارد و در حقیقت این سؤال اساسی را از بافت مورد نظر می پرسد : «شما از کدام نوع بافت هستید؟». این نقطه ممکن است مکعبی به اضلاع نیم میلی متر باشد. سیتم MRI نقطه به نقطه بدن بیمار را پویش می کند و یک نقشه ٢ یا ٣ بعدی از انواع بافت ها را بوجود می آورد و تمام این داده ها را در یک تصویر ٢ بعدی یا مدل ٣ بعدی جمع آوری می نماید.MRI می تواند یک تصویر مایل  از داخل بدن بردارد. میزان دقت تصویر برداشته شده بطور خارق العاده ای با دیگر روشهای تصویر برداری رقابت می نماید. MRI روشی مرسوم در تشخیص جراحات و حالات مختلف، به دلیل توانایی باورنکردنی تطابق ویژگیهای تصویر با مجهولات مورد نظر پزشک می باشد. با تغییر در مؤلفه های تصویر برداری، سیستم MRI می توان بافت های بدن را به فرم دیگری نشان داد که در تشخیص اینکه بافت مورد نظر سالم یا معیوب است، نقش مثبت بسزایی دارد- ما می دانیم که اگر روش A را انجام دهیم، بافت عادی به صورت B ظاهر می شود؛ و اگر به این صورت ظاهر نشد، ممکن است ناهنجاری وجود داشته باشد- . سیستم های MRI همچنین قادر به تصویر برداری زنده از جریان خون گذرنده از داخل هر قسمت بدن می باشند که این امر به ما اجازه می دهد بررسی هایی از سیستم سرخرگی بدن بدون مزاحمت بافتهای مجاور در تصویر برداشته شده، انجام دهیم. در بسیاری موارد، سیستم MRI می تواند بدون تزریق ماده معرف کنتراست که در رادیولوژی سیستم گردش خون مورد نیاز است، تصویر برداری فوق را انجام دهد.

 

در این تصویر، می توانید قطعات خرد شده مچ دستی که در سقوط از ارتفاع شکسته را ببینید.

شدت میدان مغناطیسی

برای اینکه بفهمیم MRI چگونه کار می کند، اجازه دهید از واژه مغناطیسی در «تصویر برداری تشدید مغناطیسی» آغاز نماییم. بزرگترین و مهمترین بخش در در سیستم MRI  آهنربا می باشد. قدرت آهنربا در یک سیستم MRI با واحد تسلا اندازه گیری می شود. واحد دیگر معمول اندازه گیری قدرت آهنربا گاوس (١ تسلا برابر ١٠٠٠٠ گاوس می باشد.) است. آهنرباهایی که امروزه در MRI استفاده می شود، در محدوده ٥/٠ تا ٠/٢ تسلا (٥٠٠٠ تا ٢٠٠٠٠ گاوس) قدرت دارند. شدتهای بزرگتر از ٠/٢ تسلا در تصویر برداری پزشکی کاربرد ندارند؛ در حالی که آهنربا های بسیار قدرتمند تر – تا حدود ٦٠ تسلا- در مصارف تحقیقاتی به کار می روند. در مقایسه با میدان مغناطیسی ٥/٠ گاوسی زمین می توانید ببینید این آهنرباها چقدر قوی هستند.


دانلود با لینک مستقیم


تصویر برداری تشدید مغناطیسی (MRI) 20 ص

پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت

اختصاصی از کوشا فایل پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت دانلود با لینک مستقیم و پر سرعت .

پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت


پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:176

پایان‌نامه برای دریافت درجه کارشناسی ارشد ((M.Sc))
گرایش: کاربردی

عنوان : سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت (II) و روی II)) از محلولهای آبی و اندازه¬گیری با اسپکترومتری جذب اتمی شعله

فهرست مطالب:
عنوان     صفحه
خلاصه فارسی    1
مقدمه    2

فصل اول: کلیات    
1-1- ضرورت انجام تحقیق    5
1-2- بیان مسئله    5
1-3- اهداف پژوهش    8
1-4-  فناوری نانو    8
1-4-1-  نانو ذرات    9
1-4-2- نانوذرات مغناطیسی    11
1-4-2-1- طبقه بندی مواد از لحاظ مغناطیسی    12
1-4-2-1-1- مواد فرو مغناطیس    12
1-4-2-1-2- مواد فری مغناطیس    15
1-4-2-2- نانوذرات مغناطیسی اکسید آهن    15
1-4-2-2-1- مگنتیت    15
1-4-2-2-2- مگهمایت    16
1-5- روشهای تهیه ی مگنتیت    17
1-5-1- تهیه ی مگنتیت در محیط های همگن مایع    18
1-5-1-1- تهیه ی مگنتیت در روش همرسوبی محلول نمک آهن (III) و آهن (II)    18
1-5-2- تهیه مگنتیت به روش بیوسنتز    22
1-6- کاربرد های اکسید های مغناطیسی آهن    23
1-7- اصلاح سطح نانو ذرات مغناطیسی     25
1-8- آپاتیت    26
1-9- هیدروکسی آپاتیت    27
1-10- تاریخچه ی شناسایی هیدروکسی آپاتیت    28
1-11- خواص هیدروکسی آپاتیت    28
1-11-1- بلورینگی    28
1-11-2- خواص زیست سازگاری    29
1-11-3- رفتار حرارتی    29
1-11-4- خواص مکانیکی    30
1-11-5- چگالی    31
1-11-6- حلالیت در آب    31
1-12- روش های سنتز هیدروکسی آپاتیت    33
1-13- تاریخچه ای از کاربرد های هیدروکسی آپاتیت    35
1-14-کاربرد های هیدروکسی آپاتیت    35
فصل دوم : مروری برمتون گذشته     
2-1- فلزات سنگین و اثرات آن ها    40
2-1-1-کبالت    40
2-1-1-1-اثرات کبالت بر روی سلامتی انسان    41
2-1-1-2-تاثیرات زیست محیطی کبالت    43
2-1-2- روی    45
2-1-2-1- اثرات روی بر روی سلامتی انسان    46
2-1-2-2- اثرات روی بر روی محیط زیست    47
2-2- ضرورت جداسازی فلزات سنگین از آب    49
2-3- کاربرد های فناوری نانو در عرصه صنعت آب    49
2-4- روش های جداسازی فلزات سنگین    52
2-4-1- رسوب دهی شیمیایی    52
2-4-2- انعقاد و ته نشینی    54
2-4-3- انعقاد الکترودی    56
2-4-4- روش تبادل یون    58
2-4-5- کاتالیزورهای نانوئی    62
2-4-6- جذب بیولوژیکی    63
2-4-7- روش های غشایی    66
2-4-7-1- الکترودیالیز    67
2-4-7-2- اسمز معکوس    69
2-4-7-3- نانو فیلتراسیون    70
2-4-7-4- اولترافیلتراسیون توسط پلیمر های دندریمر افزایشی    72
2-4-8- شناور سازی    74
2-4-9- جذب سطحی    77
2-4-9-1- جذب توسط کربن فعال    80
2-4-10- جداسازی مغناطیسی    81
2-4-11- ترکیب جداسازی مغناطیسی با فرایند جذب سطحی با جاذب γ-Fe2O3@HAP    85
2-5- مروری بر مطالعات گذشته    89
2-5-1- مطالعات انجام شده برای حذف فلزات سنگین با نانو ذرات مغناطیسی    89
2-5-2- مطالعات انجام شده برای حذف فلزات سنگین با هیدروکسی آپاتیت    92
2-5-3- مطالعات انجام شده برای حذف فلزات سنگین با γ-Fe2O3@HAP     95
فصل سوم : مواد و روش ها
3-1- مواد    98
3-2- تجهیزات دستگاهی    99
3-3- روش کار    99
3-3-1- سنتز جاذب    99
3-3-2- تعیین ساختار نانو ذرات γ-Fe2O3@HAP سنتز شده    101
3-3-3- تهیه ی محلول های نیترات روی و نیترات کبالت    102
3-3-4- بهینه سازی و بررسی عوامل موثر بر جذب Zn2+  و Co2+     102
3-3-5- بررسی میزان جذب کبالت (II) و روی (II) از محلول های آبی در شرایط بهینه    104
3-3-6- آزمایش واجذبی    105
3-3-7- بررسی میزان جذب Zn2+  و Co2+ موجود در پساب با جاذب γ-Fe2O3@HAP     106
3-3-8- بررسی تخریب یا عدم تخریب نانو ذرات γ-Fe2O3@HAP پس از فرایند جذب    106
فصل چهارم : نتایج
4-1- بررسی ساختار جاذب نانو ذرات  γ-Fe2O3@HAP     108
4-1-1- SEM  و TEM مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    108
4-1-2- طیف FTIR  مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    109
4-1-3- طیف XRD مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    110
4-2- نتایج تست انجام شده    110
4-3- رسم منحنی استاندارد    111
4-4- بهینه سازی فاکتور های موثر بر جذب توسط طراحی باکسن- بهکن    112
4-5- بررسی درصد جذب و واجذبی Zn2+  و Co2+ در محلول ها    122
4-6- بررسی درصد جذب Zn2+  و Co2+  موجود در پساب    124
4-7- بررسی تخریب یا عدم تخریب جاذب نانو ذرات γ-Fe2O3@HAP پس از واجذبی    124
4-7-1- طیف FTIR نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    125
4-7-2- طیف XRD نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    126
فصل پنجم: بحث و پیشنهادات
5-1- نتیجه گیری    128
5-2- پیشنهادات    129

منابع    131
خلاصه ی انگلیسی    162


فهرست جداول
عنوان                                                                                                                          صفحه

جدول 1-1- خواص فیزیکی Fe3O4 و γ-Fe2O3    17   
جدول 1-2- خواص فیزیکی هیدروکسی آپاتیت    32
جدول 1-3- مقایسه ی روش های مختلف سنتز پودر هیدروکسی آپاتیت    34
جدول 2-1- خواص عمومی و اتمی کبالت    44
جدول 2-2- خواص فیزیکی کبالت    44
جدول 2-3- خواص عمومی و اتمی روی    48
جدول 2-4- خواص فیزیکی روی    48
جدول 2-5- شرایط رسوب دهی فلزات سنگین در عملیات رسوب دهی شیمیایی    53
جدول 3-1- آزمایشهای طراحی شده جهت بهینه سازی فاکتورها با نرم افزار باکس- بهکن     104
جدول 4-1- میزان و درصد جذب Co2+ موجود در محلول ppm 100  Co(NO3)2. 6 H2O     110  
جدول4-2- میزان و درصد جذب Zn2+ موجود در محلول ppm 100  Zn(NO3)2. 6 H2O       111
جدول4-3- نتایج جذب آزمایشهای طراحی باکس- بهکن برای 3 فاکتور انتخابی      113
جدول 4-4- مقادیر بهینه pH،γ-Fe2O3@HAP   و زمان برای Zn2+و  Co2+    121
جدول 4-5- مقادیر جذب یون های  Zn2+و‍‍ Co2+بعد از اعمال شرایط بهینه    122
جدول 4-6- ترکیبات مورد استفاده  و میزان و درصد جذب Zn2+  و Co2+ در فرایند واجذبی    123
جدول 4-7- میزان جذب Zn2+  و Co2+ موجود در پساب قبل و بعد از انجام فرایند جذب    124

فهرست اشکال
عنوان    صفحه

شکل 1-1- نمونه ای از حلقه پسماند در مواد فرومغناطیس    14
شکل 1-2- نمونه ای از حلقه پسماند در مواد فرومغناطیس    14
شکل 1-3- تاثیر بلوکهای میدانی در ایجاد پسماند مغناطیسی    14
شکل 1-4- ساختار کریستالی مگنتیت    16
شکل 1-5- ساختار کریستالی مگهمیت    17
شکل 1-6- مراحل سنتز Fe3O4 درون میکروارگانیسم    22
شکل 1-7- ساختار کریستالی هیدروکسی آپاتیت    29
شکل 2-1- نانوذرات اکسیدهای فلزی،  نانو لوله های کربن دار،  زئولیتها و دندریمرها    50
شکل 2-2- دسته بندی انواع فیلتر ها    67
شکل 2-3- نحوه ی عملکرد نانوفیلتراسیون    71
شکل 2-4- بازیابی یون های فلزی از محلول های آبی توسط فیلتراسیون با پلیمر دندریمر    73
شکل 4- 1- SEM مربوط به نانوذرات γ-Fe2O3@HAPن  قبل از فرایند جذب    108
شکل 4-2- TEM مربوط به نانوذرات γ-Fe2O3@HAP  قبل از فرایند جذب    108
شکل 4-3- طیف FTIR  ناذرات γ-Fe2O3@HAP  قبل از فرایند جذب    109
شکل 4-4- طیف XRD مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    110
شکل 4-5- منحنی استاندارد جذب Co2+    111
شکل 4- 6- منحنی استاندارد جذب Zn2+    112
شکل 4-7- میزان تاثیر فاکتورهای مختلف موثر بر جذب Zn2+  و Co2+    114
شکل 4-8- رابطه مقادیر مختلف PH و γ-Fe2O3@HAP و زمان با درصد جذب    114
شکل 4-9- تغییرات مقدار PH و γ-Fe2O3@HAP با ثابت در نظر گرفتن زمان    115
شکل 4-10- تغییرات مقدار میلی گرم γ-Fe2O3@HAP و زمان با ثابت در نظر گرفتن PH    115
شکل 4-11- تغییرا مقدار PH و زمان با ثابت در نظر گرفتن مقدار میلی گرم γ-Fe2O3@HAP    116
شکل 4-12- مقدار نسبی کاتیون Co2+ بر حسب PH    118
شکل 4-13- مقدار نسبی کاتیون Zn2+ بر حسب PH    119
شکل 4-14- طیف FTIR نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    125
شکل 4-15- طیف XRD نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    126

خلاصه فارسی:
در این تحقیق ابتدا نانو ذرات  γ-Fe2O3@HAPسنتز شده و با اطمینان از سنتز موفق این نانو ذرات با توجه به طیف های XRD، FTIR و تصاویر  SEMو TEM آن ها، این نانو ذرات به عنوان جاذب برای جداسازی یون های فلزی Zn2+ و Co2+ از محلول های آبی حاویcc  20 کبالت (II) و روی (II)ppm  10 به کار برده شدند و برای اندازه گیری جذب این فلزات از اسپکترومتری جذب اتمی شعله استفاده شد. علاوه بر این به منظور دستیابی به بالاترین بازده جذب فلزات سنگین توسط نانوذرات γ-Fe2O3@HAP، اثر عوامل مختلف از جمله مقدار گرم نانوذرات γ-Fe2O3@HAP، زمان استخراج و pH بررسی و توسط طراحی های کمومتری بهینه سازی شد. شرایط بهینه عبارت بودند از: 10 pH=،g 015/0γ-Fe2O3@HAP =  و45Time =  دقیقه که موارد گفته شده توسط نرم افزار 1/5Statgraphics  با استفاده از طراحی باکس- بهکن بهینه سازی و سطوح بهینه این فاکتورها تعیین شد. در شرایط بهینه نزدیک به 100% کاتیونهای مذکور جذب نانوذرات شده و از محیط آبی حذف شدند. همچنین بر روی پساب حاویppm Zn2+  3/22 وppm Co2+   5 فرایند جذب با جاذب MNHAP را در شرایط بهینه انجام داده و به جذب 99% روی (II) و 96% کبالت (II) دست یافتیم. فرایند جذب سطحی Zn2+ و Co2+ بر روی جاذب MNHAP با مکانیسم های جاذبه ی الکترواستاتیک، تشکیل کمپلکس سطحی، تبادل یون صورت گرفته است. علاوه بر موارد بیان شده آزمایشات واجذبی را توسط 3 شوینده ی HNO3 یک نرمال، EDTA   سه صدم مولار،  CaNO3. 4H2Oیک دهم مولار بعد از اعمال فرایند جذب در شرایط بهینه انجام دادیم و به نتایج رضایت بخشی دست یافتیم . سپس به منظور بررسی تخریب یا عدم تخریب جاذب، طیفهای FTIR و XRD از جاذب گرفته شد و تفسیر طیفهای بدست آمده بیانگر عدم تخریب جاذب  γ-Fe2O3@HAPبود.
کلید واژه : نانو ذرات مغناطیسی، جاذب های مغناطیسی قابل بازیافت، نانو ذرات مغناطیسی گاما اکسید آهن با پوشش هیدروکسی آپاتیت، فلزات سنگین، دستگاه اسپکترومتری جذب اتمی شعله

مقدمه
امروزه در جهان بسیاری از مردم به دلایل بلاهای طبیعی، جنگ و زیر ساختهای ضعیف خالص سازی آب، به آبی بهداشتی دسترسی ندارند. بر طبق آمارهای موجود و به نقل از سازمان جهانی بهداشت، حدود یک میلیارد نفر به منابع آبی سالم و بهداشتی دسترسی نداشته و این میزان چیزی حدود یک ششم جمعیت کره زمین را در بر می گیرد.
فلزات سنگین به دلیل تجمع زیستی شان، عدم زیست تخریب پذیریشان، سمیتشان به عنوان تهدیدی جدی برای بشر محسوب می شوند. رشد صنعت و کاربرد فلزات سنگین در فرایند های صنعتی زیاد، منجر به افزایش غلظت فلزات سنگین در فاضلاب ها و محیط شده، بنابراین جداسازی و حذف آن ها از آب های آلوده، پساب ها و آب آشامیدنی بسیار ضروری می باشد.
روش های مختلفی برای حذف فلزات سنگین از آبهای صنعتی به کار می¬روند از جمله : رسوب دهی شیمیایی، انعقادو ته نشینی، انعقاد الکتریکی، کاربرد رزین های تبادل یون، فرایند های جداسازی غشایی (اسمز معکوس، نانو فیلتراسیون، الکترو دیالیز)، جذب سطحی(جاذب های متداول اصولاً شامل کربن فعال، زئولیت، خاک رس، موادپلیمری و زیست توده می باشد.) وجداسازی مغناطیسی.
آنچه در این مبحث، بیش از بیش دنبال آن هستیم، ایجاد بستری مناسب، برای دستیابی به آبی سالم، با کیفیت و مقرون به صرفه است. به یمن استفاده از شیوه های جدید مخصوصاٌ نانوتکنولوژی در تصفیه آب، شرایط ذکر شده برای ما میسر گردیده است، بطوریکه با توجه به حذف موثر آلاینده ها و کاهش هزینه های تمام شده تولید آب سالم، استفاده از این فناوری ها، نسبت به روشهای قدیمی بیشتر مورد توجه و استقبال قرار گرفته است. از میان تکنولوژی های متداول به منظور جداسازی یون های فلزی سنگین از محلول های آبی، برای برطرف کردن نواقص و کاستی های این روش ها، جاذب نانو ذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت که در آن تکنولوژی جداسازی مغناطیسی با فرایند جذب سطحی ترکیب شده به کار رفته است.
  هیدروکسی آپاتیت به دلیل ظرفیت جذب بالای فلزات سنگین، جذب سریع، حلالیت کم در آب، زیست- سازگاری، در دسترس بودن، سهولت تهیه، هزینه ی پایین و پایداری در مقابل ترکیبات اکسنده و کاهنده یک ماده ی  ایده ال برای جداسازی فلزات سنگین می باشد.
 تثبیت HAP بر سطح نانو ذرات مغناطیسی منجر به رفع مشکل برگشت ناپذیری، افزایش بازده فرایند جذب و بازیافت جاذب،  جذب انتخاب پذیر و اختصاصی، بالا رفتن سرعت جذب، جلوگیری از اکسیداسیون سریع هسته اکسید آهن در محیط آبی شده وامکان جداسازی سریع و ساده ی جاذب با اعمال یک میدان مغناطیسی را فراهم می کند. بنابراین می توان انبوهی از فاضلاب را در دوره ی زمانی خیلی کوتاه بدون تولید هیچ آلودگی، با عملیات ساده، اقتصادی و راندمان بالا تصفیه نمود.
در این پایان نامه در فصل اول به توضیح  نانو فناوری، نانو ذرات، نانو ذرات مغناطیسی، طبقه بندی مواد از لحاظ مغناطیسی، نانو ذرات اکسید آهن، روش های سنتز  و کاربرد نانو ذرات اکسید های آهن، اصلاح سطح، هیدروکسی آپاتیت،  خواص هیدروکسی آپاتیت، روش های سنتز و کاربرد هیدروکسی آپاتیت، پرداخته شده است. در فصل دوم اثرات فلزات سنگین بر روی انسان و محیط زیست، ضرورت جداسازی فلزات سنگین از آب، کاربرد فناوری نانو در صنعت آب، روش های جداسازی فلزات سنگین، جاذب γ-Fe2O3@HAP، مروری بر مطالعات قبلی مورد بررسی قرار گرفته است. در فصل سوم مواد، تجهیزات مورد استفاده و روش کارهای انجام شده بیان شده. در فصل چهارم به تجزیه و تحلیل و بیان نتایج حاصل از تحقیق و پیشنهادات پرداخته شده است.


دانلود با لینک مستقیم


محاسبه متوسط ممان مغناطیسی هسته 14 صفحه ورد

اختصاصی از کوشا فایل محاسبه متوسط ممان مغناطیسی هسته 14 صفحه ورد دانلود با لینک مستقیم و پرسرعت .

محاسبه متوسط ممان مغناطیسی هسته 14 صفحه ورد


محاسبه متوسط ممان مغناطیسی هسته 14 صفحه ورد

Application of canonical distribution in (Nuclear Magnetism)

ماده را در نظر می گیریم که دارای N0 هسته در واحد حجم باشد. و در یک میدان مغناطیسی H قرار گرفته باشد.

هر هسته دارای اسپین  و ممان مغناطیسی  است.

ممان متوسط مغناطیسی ماده  (در جهت H) در درجه حرارت T چقدر است؟

فرض می کنیم که هر هسته دارای برهم کنش ضعیف با سایر هسته ها و سایر درجات آزادی است. همچنین یک هسته را بعنوان سیستم کوچک در نظر می گیریم و بقیه هسته ها و سایر درجات آزادی را بعنوان منبع حرارتی می گیریم.

هرهسته می‌تواند دارای دوحالت باشد+یا هم‌جهت بامیدان واقع در تراز انرژی پائین

یا در خلاف جهت میدان واقع در تراز انرژی بالا

                (Cثابت تناسب است     )

چون این حالت دارای انرژی متر است پس احتمال یافتن هسته در آن بیشتر است.

از طرفی احتمال یافتن هسته در حالت تراز بالای انرژی برابر است با

 

و چون این حالت دارای انرژی بیشتری است پس احتمال یافتن هسته در آن کمتر است. (چون تعداد حالات بیشتر است با افزایشE،  افزایش می یابد و ذره شکل پیدا می شد در حالت بخصوص)

و چون احتمال یافتن هسته در حالت + بیشتر است پس ممان مغناطیسی هسته نیز باید در این جهت باشد.


دانلود با لینک مستقیم

انواع یاتاقان های مغناطیسی

اختصاصی از کوشا فایل انواع یاتاقان های مغناطیسی دانلود با لینک مستقیم و پرسرعت .

انواع یاتاقان های مغناطیسی


انواع یاتاقان های مغناطیسی

ظهور یاتاقان های مغناطیسی

مزیت بلبرینگ های مغناطیسی

اصول و مبانی یاتاقان های مغناطیسی

یاتاقان های مغناطیسی

اجزا یاتاقان مغناطیسی و عملکرد هر یک

یاتاقان های و سنیورها

سیستم کنترل

الگوریتم کنترل

مزایا و محدودیت ها

طراحی، ارتقا و آزمایش دستگاه ها

 


دانلود با لینک مستقیم