کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت

اختصاصی از کوشا فایل پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت دانلود با لینک مستقیم و پر سرعت .

پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت


پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:176

پایان‌نامه برای دریافت درجه کارشناسی ارشد ((M.Sc))
گرایش: کاربردی

عنوان : سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت (II) و روی II)) از محلولهای آبی و اندازه¬گیری با اسپکترومتری جذب اتمی شعله

فهرست مطالب:
عنوان     صفحه
خلاصه فارسی    1
مقدمه    2

فصل اول: کلیات    
1-1- ضرورت انجام تحقیق    5
1-2- بیان مسئله    5
1-3- اهداف پژوهش    8
1-4-  فناوری نانو    8
1-4-1-  نانو ذرات    9
1-4-2- نانوذرات مغناطیسی    11
1-4-2-1- طبقه بندی مواد از لحاظ مغناطیسی    12
1-4-2-1-1- مواد فرو مغناطیس    12
1-4-2-1-2- مواد فری مغناطیس    15
1-4-2-2- نانوذرات مغناطیسی اکسید آهن    15
1-4-2-2-1- مگنتیت    15
1-4-2-2-2- مگهمایت    16
1-5- روشهای تهیه ی مگنتیت    17
1-5-1- تهیه ی مگنتیت در محیط های همگن مایع    18
1-5-1-1- تهیه ی مگنتیت در روش همرسوبی محلول نمک آهن (III) و آهن (II)    18
1-5-2- تهیه مگنتیت به روش بیوسنتز    22
1-6- کاربرد های اکسید های مغناطیسی آهن    23
1-7- اصلاح سطح نانو ذرات مغناطیسی     25
1-8- آپاتیت    26
1-9- هیدروکسی آپاتیت    27
1-10- تاریخچه ی شناسایی هیدروکسی آپاتیت    28
1-11- خواص هیدروکسی آپاتیت    28
1-11-1- بلورینگی    28
1-11-2- خواص زیست سازگاری    29
1-11-3- رفتار حرارتی    29
1-11-4- خواص مکانیکی    30
1-11-5- چگالی    31
1-11-6- حلالیت در آب    31
1-12- روش های سنتز هیدروکسی آپاتیت    33
1-13- تاریخچه ای از کاربرد های هیدروکسی آپاتیت    35
1-14-کاربرد های هیدروکسی آپاتیت    35
فصل دوم : مروری برمتون گذشته     
2-1- فلزات سنگین و اثرات آن ها    40
2-1-1-کبالت    40
2-1-1-1-اثرات کبالت بر روی سلامتی انسان    41
2-1-1-2-تاثیرات زیست محیطی کبالت    43
2-1-2- روی    45
2-1-2-1- اثرات روی بر روی سلامتی انسان    46
2-1-2-2- اثرات روی بر روی محیط زیست    47
2-2- ضرورت جداسازی فلزات سنگین از آب    49
2-3- کاربرد های فناوری نانو در عرصه صنعت آب    49
2-4- روش های جداسازی فلزات سنگین    52
2-4-1- رسوب دهی شیمیایی    52
2-4-2- انعقاد و ته نشینی    54
2-4-3- انعقاد الکترودی    56
2-4-4- روش تبادل یون    58
2-4-5- کاتالیزورهای نانوئی    62
2-4-6- جذب بیولوژیکی    63
2-4-7- روش های غشایی    66
2-4-7-1- الکترودیالیز    67
2-4-7-2- اسمز معکوس    69
2-4-7-3- نانو فیلتراسیون    70
2-4-7-4- اولترافیلتراسیون توسط پلیمر های دندریمر افزایشی    72
2-4-8- شناور سازی    74
2-4-9- جذب سطحی    77
2-4-9-1- جذب توسط کربن فعال    80
2-4-10- جداسازی مغناطیسی    81
2-4-11- ترکیب جداسازی مغناطیسی با فرایند جذب سطحی با جاذب γ-Fe2O3@HAP    85
2-5- مروری بر مطالعات گذشته    89
2-5-1- مطالعات انجام شده برای حذف فلزات سنگین با نانو ذرات مغناطیسی    89
2-5-2- مطالعات انجام شده برای حذف فلزات سنگین با هیدروکسی آپاتیت    92
2-5-3- مطالعات انجام شده برای حذف فلزات سنگین با γ-Fe2O3@HAP     95
فصل سوم : مواد و روش ها
3-1- مواد    98
3-2- تجهیزات دستگاهی    99
3-3- روش کار    99
3-3-1- سنتز جاذب    99
3-3-2- تعیین ساختار نانو ذرات γ-Fe2O3@HAP سنتز شده    101
3-3-3- تهیه ی محلول های نیترات روی و نیترات کبالت    102
3-3-4- بهینه سازی و بررسی عوامل موثر بر جذب Zn2+  و Co2+     102
3-3-5- بررسی میزان جذب کبالت (II) و روی (II) از محلول های آبی در شرایط بهینه    104
3-3-6- آزمایش واجذبی    105
3-3-7- بررسی میزان جذب Zn2+  و Co2+ موجود در پساب با جاذب γ-Fe2O3@HAP     106
3-3-8- بررسی تخریب یا عدم تخریب نانو ذرات γ-Fe2O3@HAP پس از فرایند جذب    106
فصل چهارم : نتایج
4-1- بررسی ساختار جاذب نانو ذرات  γ-Fe2O3@HAP     108
4-1-1- SEM  و TEM مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    108
4-1-2- طیف FTIR  مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    109
4-1-3- طیف XRD مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    110
4-2- نتایج تست انجام شده    110
4-3- رسم منحنی استاندارد    111
4-4- بهینه سازی فاکتور های موثر بر جذب توسط طراحی باکسن- بهکن    112
4-5- بررسی درصد جذب و واجذبی Zn2+  و Co2+ در محلول ها    122
4-6- بررسی درصد جذب Zn2+  و Co2+  موجود در پساب    124
4-7- بررسی تخریب یا عدم تخریب جاذب نانو ذرات γ-Fe2O3@HAP پس از واجذبی    124
4-7-1- طیف FTIR نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    125
4-7-2- طیف XRD نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    126
فصل پنجم: بحث و پیشنهادات
5-1- نتیجه گیری    128
5-2- پیشنهادات    129

منابع    131
خلاصه ی انگلیسی    162


فهرست جداول
عنوان                                                                                                                          صفحه

جدول 1-1- خواص فیزیکی Fe3O4 و γ-Fe2O3    17   
جدول 1-2- خواص فیزیکی هیدروکسی آپاتیت    32
جدول 1-3- مقایسه ی روش های مختلف سنتز پودر هیدروکسی آپاتیت    34
جدول 2-1- خواص عمومی و اتمی کبالت    44
جدول 2-2- خواص فیزیکی کبالت    44
جدول 2-3- خواص عمومی و اتمی روی    48
جدول 2-4- خواص فیزیکی روی    48
جدول 2-5- شرایط رسوب دهی فلزات سنگین در عملیات رسوب دهی شیمیایی    53
جدول 3-1- آزمایشهای طراحی شده جهت بهینه سازی فاکتورها با نرم افزار باکس- بهکن     104
جدول 4-1- میزان و درصد جذب Co2+ موجود در محلول ppm 100  Co(NO3)2. 6 H2O     110  
جدول4-2- میزان و درصد جذب Zn2+ موجود در محلول ppm 100  Zn(NO3)2. 6 H2O       111
جدول4-3- نتایج جذب آزمایشهای طراحی باکس- بهکن برای 3 فاکتور انتخابی      113
جدول 4-4- مقادیر بهینه pH،γ-Fe2O3@HAP   و زمان برای Zn2+و  Co2+    121
جدول 4-5- مقادیر جذب یون های  Zn2+و‍‍ Co2+بعد از اعمال شرایط بهینه    122
جدول 4-6- ترکیبات مورد استفاده  و میزان و درصد جذب Zn2+  و Co2+ در فرایند واجذبی    123
جدول 4-7- میزان جذب Zn2+  و Co2+ موجود در پساب قبل و بعد از انجام فرایند جذب    124

فهرست اشکال
عنوان    صفحه

شکل 1-1- نمونه ای از حلقه پسماند در مواد فرومغناطیس    14
شکل 1-2- نمونه ای از حلقه پسماند در مواد فرومغناطیس    14
شکل 1-3- تاثیر بلوکهای میدانی در ایجاد پسماند مغناطیسی    14
شکل 1-4- ساختار کریستالی مگنتیت    16
شکل 1-5- ساختار کریستالی مگهمیت    17
شکل 1-6- مراحل سنتز Fe3O4 درون میکروارگانیسم    22
شکل 1-7- ساختار کریستالی هیدروکسی آپاتیت    29
شکل 2-1- نانوذرات اکسیدهای فلزی،  نانو لوله های کربن دار،  زئولیتها و دندریمرها    50
شکل 2-2- دسته بندی انواع فیلتر ها    67
شکل 2-3- نحوه ی عملکرد نانوفیلتراسیون    71
شکل 2-4- بازیابی یون های فلزی از محلول های آبی توسط فیلتراسیون با پلیمر دندریمر    73
شکل 4- 1- SEM مربوط به نانوذرات γ-Fe2O3@HAPن  قبل از فرایند جذب    108
شکل 4-2- TEM مربوط به نانوذرات γ-Fe2O3@HAP  قبل از فرایند جذب    108
شکل 4-3- طیف FTIR  ناذرات γ-Fe2O3@HAP  قبل از فرایند جذب    109
شکل 4-4- طیف XRD مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    110
شکل 4-5- منحنی استاندارد جذب Co2+    111
شکل 4- 6- منحنی استاندارد جذب Zn2+    112
شکل 4-7- میزان تاثیر فاکتورهای مختلف موثر بر جذب Zn2+  و Co2+    114
شکل 4-8- رابطه مقادیر مختلف PH و γ-Fe2O3@HAP و زمان با درصد جذب    114
شکل 4-9- تغییرات مقدار PH و γ-Fe2O3@HAP با ثابت در نظر گرفتن زمان    115
شکل 4-10- تغییرات مقدار میلی گرم γ-Fe2O3@HAP و زمان با ثابت در نظر گرفتن PH    115
شکل 4-11- تغییرا مقدار PH و زمان با ثابت در نظر گرفتن مقدار میلی گرم γ-Fe2O3@HAP    116
شکل 4-12- مقدار نسبی کاتیون Co2+ بر حسب PH    118
شکل 4-13- مقدار نسبی کاتیون Zn2+ بر حسب PH    119
شکل 4-14- طیف FTIR نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    125
شکل 4-15- طیف XRD نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    126

خلاصه فارسی:
در این تحقیق ابتدا نانو ذرات  γ-Fe2O3@HAPسنتز شده و با اطمینان از سنتز موفق این نانو ذرات با توجه به طیف های XRD، FTIR و تصاویر  SEMو TEM آن ها، این نانو ذرات به عنوان جاذب برای جداسازی یون های فلزی Zn2+ و Co2+ از محلول های آبی حاویcc  20 کبالت (II) و روی (II)ppm  10 به کار برده شدند و برای اندازه گیری جذب این فلزات از اسپکترومتری جذب اتمی شعله استفاده شد. علاوه بر این به منظور دستیابی به بالاترین بازده جذب فلزات سنگین توسط نانوذرات γ-Fe2O3@HAP، اثر عوامل مختلف از جمله مقدار گرم نانوذرات γ-Fe2O3@HAP، زمان استخراج و pH بررسی و توسط طراحی های کمومتری بهینه سازی شد. شرایط بهینه عبارت بودند از: 10 pH=،g 015/0γ-Fe2O3@HAP =  و45Time =  دقیقه که موارد گفته شده توسط نرم افزار 1/5Statgraphics  با استفاده از طراحی باکس- بهکن بهینه سازی و سطوح بهینه این فاکتورها تعیین شد. در شرایط بهینه نزدیک به 100% کاتیونهای مذکور جذب نانوذرات شده و از محیط آبی حذف شدند. همچنین بر روی پساب حاویppm Zn2+  3/22 وppm Co2+   5 فرایند جذب با جاذب MNHAP را در شرایط بهینه انجام داده و به جذب 99% روی (II) و 96% کبالت (II) دست یافتیم. فرایند جذب سطحی Zn2+ و Co2+ بر روی جاذب MNHAP با مکانیسم های جاذبه ی الکترواستاتیک، تشکیل کمپلکس سطحی، تبادل یون صورت گرفته است. علاوه بر موارد بیان شده آزمایشات واجذبی را توسط 3 شوینده ی HNO3 یک نرمال، EDTA   سه صدم مولار،  CaNO3. 4H2Oیک دهم مولار بعد از اعمال فرایند جذب در شرایط بهینه انجام دادیم و به نتایج رضایت بخشی دست یافتیم . سپس به منظور بررسی تخریب یا عدم تخریب جاذب، طیفهای FTIR و XRD از جاذب گرفته شد و تفسیر طیفهای بدست آمده بیانگر عدم تخریب جاذب  γ-Fe2O3@HAPبود.
کلید واژه : نانو ذرات مغناطیسی، جاذب های مغناطیسی قابل بازیافت، نانو ذرات مغناطیسی گاما اکسید آهن با پوشش هیدروکسی آپاتیت، فلزات سنگین، دستگاه اسپکترومتری جذب اتمی شعله

مقدمه
امروزه در جهان بسیاری از مردم به دلایل بلاهای طبیعی، جنگ و زیر ساختهای ضعیف خالص سازی آب، به آبی بهداشتی دسترسی ندارند. بر طبق آمارهای موجود و به نقل از سازمان جهانی بهداشت، حدود یک میلیارد نفر به منابع آبی سالم و بهداشتی دسترسی نداشته و این میزان چیزی حدود یک ششم جمعیت کره زمین را در بر می گیرد.
فلزات سنگین به دلیل تجمع زیستی شان، عدم زیست تخریب پذیریشان، سمیتشان به عنوان تهدیدی جدی برای بشر محسوب می شوند. رشد صنعت و کاربرد فلزات سنگین در فرایند های صنعتی زیاد، منجر به افزایش غلظت فلزات سنگین در فاضلاب ها و محیط شده، بنابراین جداسازی و حذف آن ها از آب های آلوده، پساب ها و آب آشامیدنی بسیار ضروری می باشد.
روش های مختلفی برای حذف فلزات سنگین از آبهای صنعتی به کار می¬روند از جمله : رسوب دهی شیمیایی، انعقادو ته نشینی، انعقاد الکتریکی، کاربرد رزین های تبادل یون، فرایند های جداسازی غشایی (اسمز معکوس، نانو فیلتراسیون، الکترو دیالیز)، جذب سطحی(جاذب های متداول اصولاً شامل کربن فعال، زئولیت، خاک رس، موادپلیمری و زیست توده می باشد.) وجداسازی مغناطیسی.
آنچه در این مبحث، بیش از بیش دنبال آن هستیم، ایجاد بستری مناسب، برای دستیابی به آبی سالم، با کیفیت و مقرون به صرفه است. به یمن استفاده از شیوه های جدید مخصوصاٌ نانوتکنولوژی در تصفیه آب، شرایط ذکر شده برای ما میسر گردیده است، بطوریکه با توجه به حذف موثر آلاینده ها و کاهش هزینه های تمام شده تولید آب سالم، استفاده از این فناوری ها، نسبت به روشهای قدیمی بیشتر مورد توجه و استقبال قرار گرفته است. از میان تکنولوژی های متداول به منظور جداسازی یون های فلزی سنگین از محلول های آبی، برای برطرف کردن نواقص و کاستی های این روش ها، جاذب نانو ذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت که در آن تکنولوژی جداسازی مغناطیسی با فرایند جذب سطحی ترکیب شده به کار رفته است.
  هیدروکسی آپاتیت به دلیل ظرفیت جذب بالای فلزات سنگین، جذب سریع، حلالیت کم در آب، زیست- سازگاری، در دسترس بودن، سهولت تهیه، هزینه ی پایین و پایداری در مقابل ترکیبات اکسنده و کاهنده یک ماده ی  ایده ال برای جداسازی فلزات سنگین می باشد.
 تثبیت HAP بر سطح نانو ذرات مغناطیسی منجر به رفع مشکل برگشت ناپذیری، افزایش بازده فرایند جذب و بازیافت جاذب،  جذب انتخاب پذیر و اختصاصی، بالا رفتن سرعت جذب، جلوگیری از اکسیداسیون سریع هسته اکسید آهن در محیط آبی شده وامکان جداسازی سریع و ساده ی جاذب با اعمال یک میدان مغناطیسی را فراهم می کند. بنابراین می توان انبوهی از فاضلاب را در دوره ی زمانی خیلی کوتاه بدون تولید هیچ آلودگی، با عملیات ساده، اقتصادی و راندمان بالا تصفیه نمود.
در این پایان نامه در فصل اول به توضیح  نانو فناوری، نانو ذرات، نانو ذرات مغناطیسی، طبقه بندی مواد از لحاظ مغناطیسی، نانو ذرات اکسید آهن، روش های سنتز  و کاربرد نانو ذرات اکسید های آهن، اصلاح سطح، هیدروکسی آپاتیت،  خواص هیدروکسی آپاتیت، روش های سنتز و کاربرد هیدروکسی آپاتیت، پرداخته شده است. در فصل دوم اثرات فلزات سنگین بر روی انسان و محیط زیست، ضرورت جداسازی فلزات سنگین از آب، کاربرد فناوری نانو در صنعت آب، روش های جداسازی فلزات سنگین، جاذب γ-Fe2O3@HAP، مروری بر مطالعات قبلی مورد بررسی قرار گرفته است. در فصل سوم مواد، تجهیزات مورد استفاده و روش کارهای انجام شده بیان شده. در فصل چهارم به تجزیه و تحلیل و بیان نتایج حاصل از تحقیق و پیشنهادات پرداخته شده است.


دانلود با لینک مستقیم


پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت

اختصاصی از کوشا فایل پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت دانلود با لینک مستقیم و پرسرعت .

پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت


پایان نامه سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:176

پایان‌نامه برای دریافت درجه کارشناسی ارشد ((M.Sc))
گرایش: کاربردی

عنوان : سنتز نانوذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت و بررسی عملکرد آنها برای جذب کبالت (II) و روی II)) از محلولهای آبی و اندازه¬گیری با اسپکترومتری جذب اتمی شعله

فهرست مطالب:
عنوان     صفحه
خلاصه فارسی    1
مقدمه    2

فصل اول: کلیات    
1-1- ضرورت انجام تحقیق    5
1-2- بیان مسئله    5
1-3- اهداف پژوهش    8
1-4-  فناوری نانو    8
1-4-1-  نانو ذرات    9
1-4-2- نانوذرات مغناطیسی    11
1-4-2-1- طبقه بندی مواد از لحاظ مغناطیسی    12
1-4-2-1-1- مواد فرو مغناطیس    12
1-4-2-1-2- مواد فری مغناطیس    15
1-4-2-2- نانوذرات مغناطیسی اکسید آهن    15
1-4-2-2-1- مگنتیت    15
1-4-2-2-2- مگهمایت    16
1-5- روشهای تهیه ی مگنتیت    17
1-5-1- تهیه ی مگنتیت در محیط های همگن مایع    18
1-5-1-1- تهیه ی مگنتیت در روش همرسوبی محلول نمک آهن (III) و آهن (II)    18
1-5-2- تهیه مگنتیت به روش بیوسنتز    22
1-6- کاربرد های اکسید های مغناطیسی آهن    23
1-7- اصلاح سطح نانو ذرات مغناطیسی     25
1-8- آپاتیت    26
1-9- هیدروکسی آپاتیت    27
1-10- تاریخچه ی شناسایی هیدروکسی آپاتیت    28
1-11- خواص هیدروکسی آپاتیت    28
1-11-1- بلورینگی    28
1-11-2- خواص زیست سازگاری    29
1-11-3- رفتار حرارتی    29
1-11-4- خواص مکانیکی    30
1-11-5- چگالی    31
1-11-6- حلالیت در آب    31
1-12- روش های سنتز هیدروکسی آپاتیت    33
1-13- تاریخچه ای از کاربرد های هیدروکسی آپاتیت    35
1-14-کاربرد های هیدروکسی آپاتیت    35
فصل دوم : مروری برمتون گذشته     
2-1- فلزات سنگین و اثرات آن ها    40
2-1-1-کبالت    40
2-1-1-1-اثرات کبالت بر روی سلامتی انسان    41
2-1-1-2-تاثیرات زیست محیطی کبالت    43
2-1-2- روی    45
2-1-2-1- اثرات روی بر روی سلامتی انسان    46
2-1-2-2- اثرات روی بر روی محیط زیست    47
2-2- ضرورت جداسازی فلزات سنگین از آب    49
2-3- کاربرد های فناوری نانو در عرصه صنعت آب    49
2-4- روش های جداسازی فلزات سنگین    52
2-4-1- رسوب دهی شیمیایی    52
2-4-2- انعقاد و ته نشینی    54
2-4-3- انعقاد الکترودی    56
2-4-4- روش تبادل یون    58
2-4-5- کاتالیزورهای نانوئی    62
2-4-6- جذب بیولوژیکی    63
2-4-7- روش های غشایی    66
2-4-7-1- الکترودیالیز    67
2-4-7-2- اسمز معکوس    69
2-4-7-3- نانو فیلتراسیون    70
2-4-7-4- اولترافیلتراسیون توسط پلیمر های دندریمر افزایشی    72
2-4-8- شناور سازی    74
2-4-9- جذب سطحی    77
2-4-9-1- جذب توسط کربن فعال    80
2-4-10- جداسازی مغناطیسی    81
2-4-11- ترکیب جداسازی مغناطیسی با فرایند جذب سطحی با جاذب γ-Fe2O3@HAP    85
2-5- مروری بر مطالعات گذشته    89
2-5-1- مطالعات انجام شده برای حذف فلزات سنگین با نانو ذرات مغناطیسی    89
2-5-2- مطالعات انجام شده برای حذف فلزات سنگین با هیدروکسی آپاتیت    92
2-5-3- مطالعات انجام شده برای حذف فلزات سنگین با γ-Fe2O3@HAP     95
فصل سوم : مواد و روش ها
3-1- مواد    98
3-2- تجهیزات دستگاهی    99
3-3- روش کار    99
3-3-1- سنتز جاذب    99
3-3-2- تعیین ساختار نانو ذرات γ-Fe2O3@HAP سنتز شده    101
3-3-3- تهیه ی محلول های نیترات روی و نیترات کبالت    102
3-3-4- بهینه سازی و بررسی عوامل موثر بر جذب Zn2+  و Co2+     102
3-3-5- بررسی میزان جذب کبالت (II) و روی (II) از محلول های آبی در شرایط بهینه    104
3-3-6- آزمایش واجذبی    105
3-3-7- بررسی میزان جذب Zn2+  و Co2+ موجود در پساب با جاذب γ-Fe2O3@HAP     106
3-3-8- بررسی تخریب یا عدم تخریب نانو ذرات γ-Fe2O3@HAP پس از فرایند جذب    106
فصل چهارم : نتایج
4-1- بررسی ساختار جاذب نانو ذرات  γ-Fe2O3@HAP     108
4-1-1- SEM  و TEM مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    108
4-1-2- طیف FTIR  مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    109
4-1-3- طیف XRD مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    110
4-2- نتایج تست انجام شده    110
4-3- رسم منحنی استاندارد    111
4-4- بهینه سازی فاکتور های موثر بر جذب توسط طراحی باکسن- بهکن    112
4-5- بررسی درصد جذب و واجذبی Zn2+  و Co2+ در محلول ها    122
4-6- بررسی درصد جذب Zn2+  و Co2+  موجود در پساب    124
4-7- بررسی تخریب یا عدم تخریب جاذب نانو ذرات γ-Fe2O3@HAP پس از واجذبی    124
4-7-1- طیف FTIR نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    125
4-7-2- طیف XRD نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    126
فصل پنجم: بحث و پیشنهادات
5-1- نتیجه گیری    128
5-2- پیشنهادات    129

منابع    131
خلاصه ی انگلیسی    162


فهرست جداول
عنوان                                                                                                                          صفحه

جدول 1-1- خواص فیزیکی Fe3O4 و γ-Fe2O3    17   
جدول 1-2- خواص فیزیکی هیدروکسی آپاتیت    32
جدول 1-3- مقایسه ی روش های مختلف سنتز پودر هیدروکسی آپاتیت    34
جدول 2-1- خواص عمومی و اتمی کبالت    44
جدول 2-2- خواص فیزیکی کبالت    44
جدول 2-3- خواص عمومی و اتمی روی    48
جدول 2-4- خواص فیزیکی روی    48
جدول 2-5- شرایط رسوب دهی فلزات سنگین در عملیات رسوب دهی شیمیایی    53
جدول 3-1- آزمایشهای طراحی شده جهت بهینه سازی فاکتورها با نرم افزار باکس- بهکن     104
جدول 4-1- میزان و درصد جذب Co2+ موجود در محلول ppm 100  Co(NO3)2. 6 H2O     110  
جدول4-2- میزان و درصد جذب Zn2+ موجود در محلول ppm 100  Zn(NO3)2. 6 H2O       111
جدول4-3- نتایج جذب آزمایشهای طراحی باکس- بهکن برای 3 فاکتور انتخابی      113
جدول 4-4- مقادیر بهینه pH،γ-Fe2O3@HAP   و زمان برای Zn2+و  Co2+    121
جدول 4-5- مقادیر جذب یون های  Zn2+و‍‍ Co2+بعد از اعمال شرایط بهینه    122
جدول 4-6- ترکیبات مورد استفاده  و میزان و درصد جذب Zn2+  و Co2+ در فرایند واجذبی    123
جدول 4-7- میزان جذب Zn2+  و Co2+ موجود در پساب قبل و بعد از انجام فرایند جذب    124

فهرست اشکال
عنوان    صفحه

شکل 1-1- نمونه ای از حلقه پسماند در مواد فرومغناطیس    14
شکل 1-2- نمونه ای از حلقه پسماند در مواد فرومغناطیس    14
شکل 1-3- تاثیر بلوکهای میدانی در ایجاد پسماند مغناطیسی    14
شکل 1-4- ساختار کریستالی مگنتیت    16
شکل 1-5- ساختار کریستالی مگهمیت    17
شکل 1-6- مراحل سنتز Fe3O4 درون میکروارگانیسم    22
شکل 1-7- ساختار کریستالی هیدروکسی آپاتیت    29
شکل 2-1- نانوذرات اکسیدهای فلزی،  نانو لوله های کربن دار،  زئولیتها و دندریمرها    50
شکل 2-2- دسته بندی انواع فیلتر ها    67
شکل 2-3- نحوه ی عملکرد نانوفیلتراسیون    71
شکل 2-4- بازیابی یون های فلزی از محلول های آبی توسط فیلتراسیون با پلیمر دندریمر    73
شکل 4- 1- SEM مربوط به نانوذرات γ-Fe2O3@HAPن  قبل از فرایند جذب    108
شکل 4-2- TEM مربوط به نانوذرات γ-Fe2O3@HAP  قبل از فرایند جذب    108
شکل 4-3- طیف FTIR  ناذرات γ-Fe2O3@HAP  قبل از فرایند جذب    109
شکل 4-4- طیف XRD مربوط به γ-Fe2O3@HAP  قبل از فرایند جذب    110
شکل 4-5- منحنی استاندارد جذب Co2+    111
شکل 4- 6- منحنی استاندارد جذب Zn2+    112
شکل 4-7- میزان تاثیر فاکتورهای مختلف موثر بر جذب Zn2+  و Co2+    114
شکل 4-8- رابطه مقادیر مختلف PH و γ-Fe2O3@HAP و زمان با درصد جذب    114
شکل 4-9- تغییرات مقدار PH و γ-Fe2O3@HAP با ثابت در نظر گرفتن زمان    115
شکل 4-10- تغییرات مقدار میلی گرم γ-Fe2O3@HAP و زمان با ثابت در نظر گرفتن PH    115
شکل 4-11- تغییرا مقدار PH و زمان با ثابت در نظر گرفتن مقدار میلی گرم γ-Fe2O3@HAP    116
شکل 4-12- مقدار نسبی کاتیون Co2+ بر حسب PH    118
شکل 4-13- مقدار نسبی کاتیون Zn2+ بر حسب PH    119
شکل 4-14- طیف FTIR نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    125
شکل 4-15- طیف XRD نانو جاذب γ-Fe2O3@HAP مربوط به فرایند واجذب    126

خلاصه فارسی:
در این تحقیق ابتدا نانو ذرات  γ-Fe2O3@HAPسنتز شده و با اطمینان از سنتز موفق این نانو ذرات با توجه به طیف های XRD، FTIR و تصاویر  SEMو TEM آن ها، این نانو ذرات به عنوان جاذب برای جداسازی یون های فلزی Zn2+ و Co2+ از محلول های آبی حاویcc  20 کبالت (II) و روی (II)ppm  10 به کار برده شدند و برای اندازه گیری جذب این فلزات از اسپکترومتری جذب اتمی شعله استفاده شد. علاوه بر این به منظور دستیابی به بالاترین بازده جذب فلزات سنگین توسط نانوذرات γ-Fe2O3@HAP، اثر عوامل مختلف از جمله مقدار گرم نانوذرات γ-Fe2O3@HAP، زمان استخراج و pH بررسی و توسط طراحی های کمومتری بهینه سازی شد. شرایط بهینه عبارت بودند از: 10 pH=،g 015/0γ-Fe2O3@HAP =  و45Time =  دقیقه که موارد گفته شده توسط نرم افزار 1/5Statgraphics  با استفاده از طراحی باکس- بهکن بهینه سازی و سطوح بهینه این فاکتورها تعیین شد. در شرایط بهینه نزدیک به 100% کاتیونهای مذکور جذب نانوذرات شده و از محیط آبی حذف شدند. همچنین بر روی پساب حاویppm Zn2+  3/22 وppm Co2+   5 فرایند جذب با جاذب MNHAP را در شرایط بهینه انجام داده و به جذب 99% روی (II) و 96% کبالت (II) دست یافتیم. فرایند جذب سطحی Zn2+ و Co2+ بر روی جاذب MNHAP با مکانیسم های جاذبه ی الکترواستاتیک، تشکیل کمپلکس سطحی، تبادل یون صورت گرفته است. علاوه بر موارد بیان شده آزمایشات واجذبی را توسط 3 شوینده ی HNO3 یک نرمال، EDTA   سه صدم مولار،  CaNO3. 4H2Oیک دهم مولار بعد از اعمال فرایند جذب در شرایط بهینه انجام دادیم و به نتایج رضایت بخشی دست یافتیم . سپس به منظور بررسی تخریب یا عدم تخریب جاذب، طیفهای FTIR و XRD از جاذب گرفته شد و تفسیر طیفهای بدست آمده بیانگر عدم تخریب جاذب  γ-Fe2O3@HAPبود.
کلید واژه : نانو ذرات مغناطیسی، جاذب های مغناطیسی قابل بازیافت، نانو ذرات مغناطیسی گاما اکسید آهن با پوشش هیدروکسی آپاتیت، فلزات سنگین، دستگاه اسپکترومتری جذب اتمی شعله

مقدمه
امروزه در جهان بسیاری از مردم به دلایل بلاهای طبیعی، جنگ و زیر ساختهای ضعیف خالص سازی آب، به آبی بهداشتی دسترسی ندارند. بر طبق آمارهای موجود و به نقل از سازمان جهانی بهداشت، حدود یک میلیارد نفر به منابع آبی سالم و بهداشتی دسترسی نداشته و این میزان چیزی حدود یک ششم جمعیت کره زمین را در بر می گیرد.
فلزات سنگین به دلیل تجمع زیستی شان، عدم زیست تخریب پذیریشان، سمیتشان به عنوان تهدیدی جدی برای بشر محسوب می شوند. رشد صنعت و کاربرد فلزات سنگین در فرایند های صنعتی زیاد، منجر به افزایش غلظت فلزات سنگین در فاضلاب ها و محیط شده، بنابراین جداسازی و حذف آن ها از آب های آلوده، پساب ها و آب آشامیدنی بسیار ضروری می باشد.
روش های مختلفی برای حذف فلزات سنگین از آبهای صنعتی به کار می¬روند از جمله : رسوب دهی شیمیایی، انعقادو ته نشینی، انعقاد الکتریکی، کاربرد رزین های تبادل یون، فرایند های جداسازی غشایی (اسمز معکوس، نانو فیلتراسیون، الکترو دیالیز)، جذب سطحی(جاذب های متداول اصولاً شامل کربن فعال، زئولیت، خاک رس، موادپلیمری و زیست توده می باشد.) وجداسازی مغناطیسی.
آنچه در این مبحث، بیش از بیش دنبال آن هستیم، ایجاد بستری مناسب، برای دستیابی به آبی سالم، با کیفیت و مقرون به صرفه است. به یمن استفاده از شیوه های جدید مخصوصاٌ نانوتکنولوژی در تصفیه آب، شرایط ذکر شده برای ما میسر گردیده است، بطوریکه با توجه به حذف موثر آلاینده ها و کاهش هزینه های تمام شده تولید آب سالم، استفاده از این فناوری ها، نسبت به روشهای قدیمی بیشتر مورد توجه و استقبال قرار گرفته است. از میان تکنولوژی های متداول به منظور جداسازی یون های فلزی سنگین از محلول های آبی، برای برطرف کردن نواقص و کاستی های این روش ها، جاذب نانو ذرات مغناطیسی آهن پوشیده شده با هیدروکسی آپاتیت که در آن تکنولوژی جداسازی مغناطیسی با فرایند جذب سطحی ترکیب شده به کار رفته است.
  هیدروکسی آپاتیت به دلیل ظرفیت جذب بالای فلزات سنگین، جذب سریع، حلالیت کم در آب، زیست- سازگاری، در دسترس بودن، سهولت تهیه، هزینه ی پایین و پایداری در مقابل ترکیبات اکسنده و کاهنده یک ماده ی  ایده ال برای جداسازی فلزات سنگین می باشد.
 تثبیت HAP بر سطح نانو ذرات مغناطیسی منجر به رفع مشکل برگشت ناپذیری، افزایش بازده فرایند جذب و بازیافت جاذب،  جذب انتخاب پذیر و اختصاصی، بالا رفتن سرعت جذب، جلوگیری از اکسیداسیون سریع هسته اکسید آهن در محیط آبی شده وامکان جداسازی سریع و ساده ی جاذب با اعمال یک میدان مغناطیسی را فراهم می کند. بنابراین می توان انبوهی از فاضلاب را در دوره ی زمانی خیلی کوتاه بدون تولید هیچ آلودگی، با عملیات ساده، اقتصادی و راندمان بالا تصفیه نمود.
در این پایان نامه در فصل اول به توضیح  نانو فناوری، نانو ذرات، نانو ذرات مغناطیسی، طبقه بندی مواد از لحاظ مغناطیسی، نانو ذرات اکسید آهن، روش های سنتز  و کاربرد نانو ذرات اکسید های آهن، اصلاح سطح، هیدروکسی آپاتیت،  خواص هیدروکسی آپاتیت، روش های سنتز و کاربرد هیدروکسی آپاتیت، پرداخته شده است. در فصل دوم اثرات فلزات سنگین بر روی انسان و محیط زیست، ضرورت جداسازی فلزات سنگین از آب، کاربرد فناوری نانو در صنعت آب، روش های جداسازی فلزات سنگین، جاذب γ-Fe2O3@HAP، مروری بر مطالعات قبلی مورد بررسی قرار گرفته است. در فصل سوم مواد، تجهیزات مورد استفاده و روش کارهای انجام شده بیان شده. در فصل چهارم به تجزیه و تحلیل و بیان نتایج حاصل از تحقیق و پیشنهادات پرداخته شده است.


دانلود با لینک مستقیم

پروژه کارآفرینی وطرح توجیهی احداث استخر ، سونا و جکوزی سر پوشیده

اختصاصی از کوشا فایل پروژه کارآفرینی وطرح توجیهی احداث استخر ، سونا و جکوزی سر پوشیده دانلود با لینک مستقیم و پرسرعت .

پروژه کارآفرینی وطرح توجیهی احداث استخر ، سونا و جکوزی سر پوشیده


پروژه کارآفرینی  وطرح توجیهی احداث استخر ، سونا و جکوزی  سر پوشیده

دانلود پروژه کارآفرینی  وطرح توجیهی احداث استخر ، سونا و جکوزی  سر پوشیده بافرمت ورد وقابل ویرایش تعدادصفحات 38

این پروژه کار آفرینی هم در قالب درس کار آفرینی دانشجویان عزیز قابل ارائه میباشد و هم میتوان به عنوان طرح توجیهی برای دریافت وام های اشتغالزایی به سازمان مورد تقاضا ارائه نمود

- 1 مقدمه : 

شواهد باستان شناسی نشان می دهند که قدمت شنا و شنا کردن به 2500 سال قبل از میلاد در تمدن مصر و بعد از آن در تمدن های آشور و یونان و روم باستان باز می گردد. آنچه از گذشته  آموزش شنا می دانیم بر اساس یافته هایی است که از « حروف تصویری » هیروگلیف مصریان به دست آورده ایم. یونانی های باستان و رومی ها شنا را جزو برنامه های مهم آموزش نظامی خود قرار داده بودند ، و مانند الفبا یکی از مواد درسی در آموزش مردان بوده است. شنا در شرق به قرن اول قبل از میلاد باز می گردد. ژاپن جایی است که شواهد و مدارکی از مسابقات شنا در آن وجود دارد. در قرن هفدهم به دستور رسمی حکومتی شنا به صورت اجباری در مدارس تدریس می شد .        مسابقات سازمان یافته شنا در قرن 19 میلادی قبل از ورود ژاپن به دنیای غرب شکل گرفت. از قرار معلوم مردم ساحل نشین اقیانوس آرام، به کودکان هنگامی که به راه می افتادند یا حتی پیش تر شنا می آموختند. نشانه هایی از مسابقات گاه و بی گاه میان مردم یونان باستان وجود دارد و همچنین یکی از بوکسورهای معروف یونان شنا را به عنوان تمرین در برنامه ورزشی خود گنجانیده بود. رومی ها اولین استخرهای شنا را بنا کردند و گفته می شود که در قرن اول پیش از میلاد « گی یس می سی ینس »Gaiusmaecenas اولین استخر آب گرم را ساخت. برخی عدم تمایل اروپائیان به شنا را در قرون وسطی ترس از گسترش و سرایت عفونت و بیماری های مسری می دانند از طرفی شواهدی وجود دارد که نشان می دهد در سواحل بریتانیای کبیر در اواخر قرن 17 میلادی از شنا در آب به عنوان وسیله ای برای درمان استفاده می شود. البته تا پیش از قرن نوزدهم شنا به عنوان تفریح و ورزش در میان مردم جایگاهی پیدا نکرد. زمانی که نخستین سازمان شنا در سال 1837 تأسیس شد در پایتخت بریتانیا یعنی لندن ، 6 استخر سر پوشیده وجود داشت که مجهز به تخته شیرجه بودند. در سال 1846 اولین مسابقه  شنا در مسافت 440 یارد در استرالیا بر پا شد که بعد از آن هر ساله نیز به اجرا در آمد. باشگاه شنای « متروپولیتین »Metropolitan لندن در سال 1869 تأسیس شد که بعدها به انجمن شنای غیر حرفه ای تغییر نام پیدا کردکه در واقع هیئت رئیسه شنای غیر حرفه ای بریتانیا بود. فدراسیون های ملی شنا در چندین کشور اروپایی در سال 1882 تا 1889 شکل گرفتند.  1 – 2 نام کامل طرح و محل اجرای آن : احداث استخر سرپوشیده  محل اجزا :    1 – 3 – مشخصات متقاضیان : نام    نام خانوادگی    مدرک تحصیلی     تلفن                 1 – 4 – دلایل انتخاب طرح : این طرح یکی از طرح های جدید و دارای بازده بالا در شهر میباشد ، در حال حاضر استخر هایی در سطح شهر ایجاد شده است ولی با توجه به نیاز شهر و همچنین تقاضای بالای ورزشکاران و همچنین ارزش رشته شنا از نظر سلامتی و توصیه های اسلام این طرح انتخاب گردیده است.  1 – 5 میزان مفید بودن طرح برای جامعه : علاوه بر اشتغالزایی مناسبی که این طرح می تواند ایجاد نماید ، سودآوری اقتصادی آن نیز می تواند قابل توجه باشد و همچنین می تواند کمک شایانی به ورزش های آبی شهر نماید و با افزایش امکانات موجبات پیشرفت در رشته های ورزشی و همچنین افزایش سلامت عمومی را به همراه داشته باشد.  1 – 6  - وضعیت و میزان اشتغالزایی : تعداد اشتغالزایی این طرح  9 نفر میباشد .    تاریخچه و سابقه مختصر طرح : تاریخچه شنا به عنوان یک ورزش ، در ایران ، بسیار کوتاه است و به طور کلی هم این رشته از ورزش به نسبت دیگر رشته ها در کشور ما چندان پیشرفتی حاصل نکرده است. در حالی که به جهت موقعیت جغرافیایی ایران که در شمال و جنوب کشور به دریا متصل است و هم به جهت تأکیدات مذهبی، می بایستی این ورزش را مورد توجه قرار می دادند.  در قدیم ، مکان هایی شبیه استخر سرپوشیده در حمام ها می ساختند ، به نام چال حوض. این چال حوض ها ، که حداکثر از 10 متر تجاوز نمی کرد، برای شنا کردن و آب بازی بود. در اطراف چال حوض ها، سکوهایی به ارتفاع 2 یا 3 متر وجود داشت که از بالای آن به درون آب می پریدند و عملیاتی مانند پشتک و وارو انجام می دادند. روشنایی چال حوض ها از سوراخ کوچکی که در سقف بود، تأمین می شد. در این گونه آبگیرهای غیر بهداشتی ، هیچ گونه مقرراتی وجود نداشت و هر کس می توانست قبل از استحمام یا پس از آن وارد چال حوض شود و به آب بازی و شنا ( که به معنای واقعی هم شنا نبود) بپردازد. تا سال 1314 در سراسر ایران حتی یک استخر شنا هم نبود و فقط در اردوگاه  نظامی اقدسیه تهران یک استخر برای آموزش شنا به دانشجویان دانشکده افسری ساخته بودند. در سال 1314 ، استخر دیگری در باغ فردوس شمیران احداث شد که به وزارت فرهنگ تعلق  داشت. نخستین استخری که برای استفاده ورزشکاران و تعلیم اصول جدید شنا به آنها به وجود آمد، در سال 1314در منظریه تهران بود که یک مربی ورزش خارجی به نام « گیبسون » بر آن نظارت می کرد. پایه های ورزش شنای نوین در ایران از همان استخر منظریه گذاشته شد. در حال حاضر ، استخرهای خصوصی ، آزاد یا دولتی بسیاری در تهران و شهرهای مختلف ایران هست و  نوجوانان و جوانان ، به ویژه در فصل تابستان ، استقبال زیادی از ورزش شنا می کنند.


دانلود با لینک مستقیم