کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

بررسی و شبیه سازی شتاب سنج MEMS با حساسیت زیاد و نویز کوانتیزاسیون پایین

اختصاصی از کوشا فایل بررسی و شبیه سازی شتاب سنج MEMS با حساسیت زیاد و نویز کوانتیزاسیون پایین دانلود با لینک مستقیم و پرسرعت .

بررسی و شبیه سازی شتاب سنج MEMS با حساسیت زیاد و نویز کوانتیزاسیون پایین


پایان نامه ارشد برق بررسی و شبیه سازی شتاب سنج MEMS با حساسیت زیاد و نویز کوانتیزاسیون پایین

چکیده:

یک شتاب سنج وسیله ای است که شتاب حرکت جسم جامد را اندازه گیری می کند. میکرو شتاب سنج ها برای آشکار کردن نیروهای دینامیکی در یک سیستم مکانیکی در حال حرکت بکار می روند. این شتاب سنج ها به طور وسیع در صنعت اتومبیل استفاده می شوند. از جمله در موارد: سیستم توقف ماشین و سیستم ترمز ضد قفل برای راه اندازی کیسه هوا به منظور امنیت راننده و مسافر و سایر کاربردهای دیگر.

انواع اصلی شتاب سنج ها به قرار زیر می باشد:

1) شتاب سنج پیزورزیستیو: اولین شتاب سنج با تکنولوژی میکرو ماشینی است که توسط ریلانس و آنگل در سال 1979 در دانشگاه استنفورد ساخته شد. مزیت این شتاب سنج ها این است که در سیلیکون به آسانی ساخته می شوند و مدارات مرتبط آنها نسبتا ساده است و سیگنال خروجی امپدانس پایین ایجاد می کنند. یک مانع جدی در استفاده از این سنسورها این است که سیگنال خروجی وابستگی حرارتی شدیدی دارد و سیگنال خروجی نسبتا کوچک است.

2) شتاب سنج های پیزوالکتریک: این شتاب سنج ها به طور معمول از مواد پیزوالکتریک برای آشکار کردن جرم حساسه استفاده می کنند. مزیت آنها این است که این سنسورها پهنای باند وسیع دارند و مانع اساسی این است که این نوع شتا ب سنج ها به سیگنال های شتاب فرکانس پایین و استاتیک پاسخ نمی دهند.

3) شتاب سنج های تونلی: در این شتاب سنج ها برای اندازه گیری موقعیت جرم حساسه از جریان تونلی که از یک نوک تیز به یک الکترود برقرار است استفاده می شود. این مکانیسم آشکارسازی جرم حساسه خیلی حساس است. چندین شتاب سنج بر پایه این اصول گزارش شده است اما هیچ افزاره تجارتی تاکنون ساخته نشده است. مشکل اساسی دیگر در این نوع شتاب سنج ها دریفت طولانی مدت جریان تونلی است و توسط میدان های الکتریکی بالا مواد از نوک برداشته می شوند.

4) شتاب سنج های خازنی: در این شتاب سنج ها برای اندازه گیری موقعیت جرم حساسه از خازنی که بین انگشت های متحرک (که به جرم متحرک متصل هستند) و انگشت های ثابت (که به قاب ثابت متصل هستند ) استفاده می شود. در این پروژه از شتاب سنج خازنی استفاده می کنیم و محدوده پارامترهای مختلف برای یک ش تاب سنج خازنی با حساسیت زیاد و سطح نویز پایین را بدست می آوریم.

مقدمه:

ابزارهای اندازه گیری اینرسی که برپایه سامانه های میکرو الکترو مکانیکی هستند در دهه اخیر پیشرفت چشمگیری داشته اند. شتاب سنج ها و ژیروسکوپ های جدید تجاری ابزارهای اندازه گیری اینرسی را با ابعاد کوچکتر و قیمت کمتر نسبت به نوع غیر MEMS ارائه کرده اند. این سنسورها با قیمت کم و توان مصرفی پایین باعث ایجاد بازارهایی در زمینه خودروسازی و سایر زمینه های صنعتی و تجاری شده اند.

یکی از فاکتورهای بسیار مهم در شتاب سنج های برپایه سامانه ها ی میکرو الکترو مکانیکی فاکتور حساسیت می باشد برای رسیدن به حساسیت بالا نیازمند فرکانس طبیعی پایین هستیم و برای داشتن فرکانس طبیعی پایین باید ثابت فنر کوچک داشته باشیم. بنابراین در فصل اول این پروژه می خواهیم ساختار مکانیکی را طوری طراحی کنیم که در نهایت به فرکانس طبیعی پایین دست یابیم.

داشتن حساسیت بالا باعث می شود که جرم حساسه به ازای شتاب ورودی جابجایی زیادی داشته باشد بنابراین واسط الکتریکی می تواند حتی برای ورودی های کوچک شتاب هم اشباع شود. بنابراین باید جابجایی جرم حساسه را توسط قرار دادن آن در حلقه فی دبک منفی کنترل کنیم. در فصل دوم این پروژه روابط حلقه فیدبک منفی را بدست خواهیم آورد و به بررسی پایداری آن خواهیم پرداخت.

از آنجا که در شتاب سنج MEMS مورد نظر ما شتاب خروجی به صورت دیجیتال است لذا در حلقه فیدبک از یک کوانتایزر استفاده شده است. به همین دلیل وجود نویز کوانتیزاسیون در سیگنال خروجی اجتناب ناپذیر است. در فصل سوم به بررسی راهکارهایی برای کاهش توان نویز کوانتیزاسیون و افزایش SNR و SNDR خواهیم پرداخت و نهایتا در انتهای همین فصل تاثیر پارامترهای سیستم را بر روی پاسخ پله سامانه بررسی خواهیم کرد.

تعداد صفحه : 80

 

 

فهرست مطالب:

چکیده 1
مقدمه 2
فصل اول : کلیات 3
1) هدف 4 -1 °
2) پیشینه تحقیق 4 -1 °
3) روش کار و تحقیق 4 -1 °
فصل دوم : طراحی اجزای مکا نیکی 6
1) مقدمه 7 -2 °
2) تحلیل و طراحی مکانیکی 7 -2 °
3-2 ) طراحی فنر 10
1)فنر پا خرچنگی تا شده 11 -3 -2
2-3-2 )فنر ته بسته 12
4)نیروی الکتروستاتیکی 15 -2
5)نرم شدگی فنر الکتروستاتیک 16 -2
فصل سوم:حلقه سیگما-دلتا 18
1) مقدمه 19 -3
2) حلقه فیدبک 19 -3
3) تبدیل سیگما-دلتا 21 -3
4) تحلیل سامانه سیگما-دلتا 23 -3
5) پایداری 27 -3
29 G(z) بر روی پایداری Tc 1) بررسی تاثیر پارامتر -5 -3
31 G(z) بر روی پایداری Tf 2) بررسی تاثیر پارامتر -5 -3
ب
فهرست مطالب
عنوان مطالب شماره صفحه
32 G(z) بر روی پایداری α 3-5-3 )بررسی تاثیر پارامتر
35 SNDR و SNR فصل چهارم:نویز کوانتیزاسیون و
1-4 ) مقدمه 36
2-4 ) نویز کوانتیزاسیون 36
39 SNR 3- ) بررسی اثر افزایش نرخ نمونه برداری بر روی 4
4-4 ) شکل دهی نویز 41
50 SNDR (5-4
6-4 ) بررسی پاسخ پله سامانه سیگما- دلتا 58
فصل پنجم:نتیجه گیری و پیشنهادات 64
نتیجه گیری 65
پیشنهادات 65
فهرست منابع فارسی 66
فهرست منابع لاتین 67
چکیده انگلیسی 80

 


دانلود با لینک مستقیم

ساخت VCO با L و C ساخته شده با RF MEMS

اختصاصی از کوشا فایل ساخت VCO با L و C ساخته شده با RF MEMS دانلود با لینک مستقیم و پرسرعت .

ساخت VCO با L و C ساخته شده با RF MEMS


پایان نامه ارشد برق ساخت VCO با L و C ساخته شده با RF MEMS

چکیده

در این پایان نامه مزایای عناصر RF MEMS در طراحی یک VCO با توپولوژی مکمل به کار گرفته می شود تا یک نوسان ساز با توان مصرفی کم، بازه تنظیم زیاد، نویز فاز کم و دامنه مناسب ولتاژ خروجی طراحی شود. معمولا رسیدن به همه این اهداف به طور همزمان مشکل است اما سلف و خازن RF MEMS که طی عملیات میکرو ماشین کاری بعد از ساخت مدارات CMOS ساخته می شوند، ضریب کیفیت مناسبی در فرکانس های بالا دارند که رسیدن به همه اهداف فوق را میسر می کنند.

در طراحی اول بازه تنظیم 1/71~2/17 GHz است. توان مصرفی 4/82mW است. نویز فاز در فرکانس مرکزی برابر با – 125/1dBc  /Hz@1MHz است.

در طراحی دوم بازه تنظیم 2/04~2/54 است. توان مصرفی 4/57mW است. نویز فاز در فرکانس مرکزی برابر با -125/6dBc /Hz@1MHz است.

ضمنا به جهت آنکه فرآیند ساخت خازن MEMS در فرآیند استاندارد CMOS عملی باشد از نوع ساخته شده ای استفاده می گردد که در منبع [12] آمده است. این کار به جهت اطمینان خاطر از عملی بودن ساخت تمامی عناصر این VCO است. ترانزیستورهای MOS به کار رفته منطبق با تکنولوژ 18 میکرومتر بوده و همه از نوع RF هستند.

مقدمه

VCO یکی از بخش های مهم مدارات RF در بخش گیرنده و فرستنده است. با ورود فرکانس های بالاتر از چند گیگاهرتز در ارتباطات و شبکه های بی سیم، اهمیت این عنصر بیش از پیش شده است. از طرف دیگر برای کوچک سازی وسایل ارتباطی، طراحان مدارات RF به سوی یک پارچه سازی همه عناصر در یک تراشه گام برداشته اند. محدودیت های توان و کیفیت بالا از ضروریاتی است که در یک پارچه سازی مدارات باید در نظر داشت. RF MEMS یکی از راه های جدید و مناسب برای یکپارچه سازی و توان مصرفی کم است که مدنظر طراحان قرار گرفته است و توان بالقوه و بالفعل برای بالاتر بردن کیفیت ارتباطات بی سیم را دارد. در این راستا به یکی از کاربردهای RF MEMS برای طراحی VCO در این پایان نامه خواهیم پرداخت.

در فصل اول به مبانی نوسان و نوسان سازها خواهیم پرداخت و آنچه که برای درک و تحلیل VCO است را بیان خواهیم کرد. در فصل دوم به نویز فاز می پردازیم و به واسطه اهمیت نویز فاز در VCO مبانی تئوری آن را بیان خواهیم کرد تا شناخت کافی از آن پیدا کنیم. در فصل سوم عملکرد یک خازن MEMS را تشریح خواهیم کرد و یک مدل الکتریکی از آن را بیان می کنیم. در همین فصل سلف MEMS را نیز بررسی می کنیم. در فصل چهارم به طراحی دو VCO که در بازه فرکانسی پرکاربرد ارتباطات بی سیم هستند می پردازیم. در فصل آخر ضمن مقایسه این طراحی ها با سایر کارهای انجام شده در سال های اخیر، پیشنهاداتی را برای ادامه کار مطرح خواهیم کرد.

در دو ضمیمه جداگانه مطالبی در مورد CMOS MEMS و مفهوم ضریب کیفیت در عناصر الکتریکی بیان خواهیم کرد.

فصل اول: مبانی نوسان و نوسان سازها

1-1- اهمیت نوسان سازها در سیستم های ارتباطی

نوسان سازها، نقش مهمی در تمامی سیستم های ارتباطی فرستنده – گیرنده (بدون سیم یا باسیم) ایفا می کنند. عموما در تمام گیرنده ها از ساختاری استفاده می شود که در شکل 1-1 نشان داده شده است.

در این شکل مخلوط کننده از نوسان ساز استفاده می کند تا باند سیگنال RF ورودی را به باند فرکانسی میانی IF تبدیل نماید یعنی: fIF=fRF-fLO که fLO فرکانس نوسان، نوسان ساز است. به منظور حرکت روی کانال های مخالف، فرکانس نوسان ساز باید قابل تنظیم کردن باشد. اغلب این کار با تغییر ولتاژ صورت می گیرد. به همین جهت آن را VCO می نامند.

از کاربردهای دیگر نوسان سازها می توان به: حلقه های قفل شده فاز؛ کلاک ها؛ سامانه های بازیافت داده ها و… اشاره کرد که به جهت اختصار از توضیح آنها صرف نظر می کنیم.

تعداد صفحه : 96


دانلود با لینک مستقیم

احساس و کنترل الکترونیک شتاب سنج mems

اختصاصی از کوشا فایل احساس و کنترل الکترونیک شتاب سنج mems دانلود با لینک مستقیم و پرسرعت .

احساس و کنترل الکترونیک شتاب سنج mems


سمینار ارشد برق احساس و کنترل الکترونیک شتاب سنج mems

چکیده:

  در این کار تکنیک های طراحی سیستم برای حس و کنترل جنبش ساختاری MEMS با جرم خیلی کوچک و ظرفیت خازنی خیلی پایین تحقیق گردیده و برای ساخت شتا سنج COMS MEMS مجتمع نویز پایین بکار گرفته شده است. ساختارهای COMS MEMS  با میکرو ماشین کاری سطحی ساخته شده اند که جرم کلی به اندازه خیلی کوچکتر از10kgو ظرفیت خازنی کمتر از fF 100 دارند. شتاب COMS MEMS  به طور معمول حساسیتی پایی در حدود 1mv/g و تغییرات خازنی در اثر تغییر شتاب حدود 0/4fF/g را دارا می باشند بنابراین نویز و دیگر اثرات مخرب بایستی حداقل گردند. برای شتاب سنج MEMS سه نوع منبع نویز وجود دارد: نویز الکترونیکی حاصل از واسط مدار و سنسور، نویز براونی حرارتی – مکانیکی ناشی از مصرف انرژی برای دمپ و نویز چندی کننده وقتی که سیستم شامل مبدل آنالوگ به دیجیتال هم باشد. غیر خطی های دیگری هم شامل آفست موقعیت سنسور، آفست مدار و شارژ نامطلوب در گرههای امپدانس بالای سانسور وجود دارند. در قسمت طراحی مدار حسگر مدل نویز مداری را مطرح کرده ایم که توسط آزمایش تایید شده و دید کلی برای آلی های دیگر اضافه شده اند که شامل ساختار کم نویز حس ولتاژ پیوسته – زمانی براساس پایدار چاپر، حداقل کردن نویز وابسته ورودی براساس تطبیق خازنی در اتصال سنسور به مدار، بایاس dc قوی در گره احساس که بصورت پریودیک شارژ ناخواسته را ریست (reset) می کند و حذف آفست توسط تقویت کننده تمام تفاضلی، نمونه اولیه که با این تکنولوژی ساخته شده دارای کف نویز 50mg/rtHZ می باشد که نویز براونی را پوشش داده و آفست سنسور را بیش از 40dB کاهش می دهد.

مقدمه:

   در طول بیست سال گذشته پیشرفت میکروتکنولوژی قادر ساخته که سنسورهای کوچک و محرک های آن بصورت یکپارچه در یک بسته بندی ایجاد شوند. این فناوری باعث ایجاد سیستم های میکرو الکترونیک و مکانیک MEMS شده است. در این گزارش دو مورد احساس و کنترل سیستم های MEMS مورد توجه قرار میگرد. در این گزارش مدارات الکترونیک برای سنسورهای خازن کم نویز و سیستم های کنترل با فیدبک قوی ارائه شده است.

 

تعداد صفحه :84


دانلود با لینک مستقیم