مقاله با عنوان اثر مغناطیسی جریان الکتریکی در فرمت ورد در 10 صفحه و شامل مطالب زیر می باشد:
تاریخچه
محقق برجسته
سیر تحولی و رشد
منشا میدان مغناطیسی
اولین سوال اورستد
اثر مغناطیسی جریان الکترولیتی
اثر مغناطیسی جریان و خواص الکتریکی رسانا
این فایل در قالب ورد و قابل ویرایش در 130 صفحه می باشد.
فهرست مطالب :
فصل اول :
تقویت کننده های چرخشی (دورانی)
۱٫۱٫اطلاعات عمومی و طبقه بندی
۲٫۱- تقویت کننده های چرخشی تحریک سرخود
۳٫۱- تقویت کننده دورانی مغناطیسی متقاطع
۴٫۱- مشخصه های دینامیکی و استاتیکی تقویت کننده های الکترومغناطیسی
۵٫۱- کاربرد تقویت کننده های چرخشی
فصل دوم :
۲- موتورهای الکتریکی کسری اسب بخار
۱٫۲- اطلاعات عمومی و طبقه بندی
.۲٫۲- سرو و موتورهای DC ، مکانیزم طراحی و اصول راه اندازی
۳٫۲- موتورهای بدون ارتباط کسری اسب بخار به همراه کموتاتور ترانزیستوری
۴٫۲- روش های کنترل سروموتورهای DC شکسته
۱٫۴٫۲- کنترل میدان
۲٫۴٫۲- کنترل پالس
۵٫۲- حرکت پیوسته موتورهای سنکرون اسب بخار کسری
۱٫۵٫۲- موتورهای آهن ربای دائم
۲٫۵٫۲٫ موتورهای رلوکتانس
۶٫۲ – موتورهای سنکرون حرکت دائم سرعت پایین
۱٫۶٫۲- موتورهای کاهنده
۷٫۲- موتورهای پله ای
۱٫۷٫۲- موتورهای نوع فعال
۲٫۷٫۲- موتورهای نوع القایی و رلوکتانس
- تقویت کننده های چرخشی (دورانی)
1-1 اطلاعات عمومی و طبقه بندی
یک تقویت کننده واحدی است که تجهیزات با قدرت بالا را توسط سیگنالهای با قدرت پایین کنترل می نماید. میزان خروجی تابعی از سیگنال ورودی می باشد و عمل تقویت توسط یک منبع نیروی خارجی ایجاد میگردد. بر اساس نوع کنترل انرژی، تقویت کننده ها به صورت الکتریکی، پنوماتیکی، هیدرولیکی و
تقویت کننده های مکانیکی طبقه بندی شده اند.
تقویت کننده های الکتریکی تقویت کننده هایی هستندکه خود به صورت الکترونیکی، ترانزیستوری، مغناطیسی، و چرخشی تقسیم بندی شده اند. 5 تای اولی به صورت ماشین استاتیک می باشند و آخری یک تقویت کننده به همراه یک آرمیچر می باشد. توان خروجی تقویت کننده چرخشی توسط یک موتور محرک تأمین می شود. تقویت کننده های چرخشی ذاتاً یک ماشین کموتاتوری جریان مستقیم می باشند.
بسته به نوع تحریک ،تقویت کننده ها به انواع: تقویت کننده های مغناطیسی شونده مستقیم، تقویت کننده های مغناطیسی شونده متقاطع یا تقویت کننده های الکترومغناطیسی دسته بندی شده اند.
تقویت کننده های مغناطیسی شونده مستقیم که در آنها شار میدان در راستای محور طولی ماشین می باشد به صورت زیر می باشند:
تقویت کننده های مغناطیسی شونده متقاطع که در آنهار شار در امتداد محور طولی ماشین ایجاد می شود بصورت زیر می باشند.
کمترین توان تقویت کننده کنترلی، بستگی به کنترل دنده ها دارد.
به همین دلیل مهمترین مشخصه ماشین، تقویت کنندگی یا فاکتور بهره ماشین می باشد.
نوع یک تقویت کننده را می توان بوسیله بهره توان ،جریان بهره، و ولتاژ بهره مشخص نمود.
بهره تقویت کننده الکترومغناطیسی kp نسبت توان ورودی به توان کنترل کننده می باشد.
(1-1)
بهره جریان تقویت کننده الکترومغناطیسی نسبت ولتاژ سرتاسر مدارخروجی به ولتاژ کنترل کننده می باشد. در نتیجه
(1-2)
از این رو ممکن است، تقویت کننده های چرخشی دارای بهره توان بیشتری باشند. ( 103 To 105 ) یکی از مشخصه های مهم تقویت کننده ها (مشخصه زمان پاسخ) آنها می باشدکه بوسیله ثابت زمانی مدار مقدار آن مشخص می شود.
ثابت زمانی باتوجه به تغییرات حوزه انرژی در کورس رگلاسیون مشخص می شود.
ثابت زمانی یک مدارالکتریکی برابر است با :
(1-3)
که در آن L اندوکتانس و R مقاومت مدار می باشند.
ثابت زمانی تقویت کننده مابین T= 0.02 to 0.2 s. می باشد. بهترین تقویت کننده، تقویت کننده ای است که بالاترین بهره توان و سریع ترین زمان پاسخ را دارا باشد. که این به معنی دارا بودن کمترین ثابت زمانی می باشد. بخاطر اینکه ثابت زمان تقویت کننده متناسب با بهره توان است تقویت کننده با بیش از یک مشخصه قیاس می شود (فاکتور کیفیت).
فاکتور کیفیت kg نسبت بهره توان به مجموع ثابت زمانی یک تقویت کننده است.
(1-4)
یک خصیصه مهم در راه اندازی تقویت کننده هادر سیستم های کنترل اتوماتیک خطی بودن مشخصه خروجی است.
زمانیکه امکان بوجود آمدن اضافه بار و جریان می باشد، تقویت کننده های چرخشی به عنوان راه انداز اولیه تقویت کننده ها در حالت زودگذر در سیستم های کنترل اتوماتیک مود استفاده قرار می گیرند. به همین دلیل یکی از مهمترین مشخصه های تقویت کننده های چرخشی قابلیت (ظرفیت) پذیرش اضافه بار در آنها می باشد.
هم چنین از دیگر مشخصه های مهم و ضروری که می بایست تقویت کننده های چرخشی دارا باشند داشتن قابلیت اطمینان و پایداری بالا در لحظه راه اندازی می باشد. (پس از پایان مرحله زودگذر و گذرا به حالت پایدار برگردند.)
مشخصه های مورد نیاز تقویت کننده های چرخشی تحت شرایط راه اندازی مختلف به چهار گروه تقسیم می شوند.
در جائیکه قدرت کم مورد نیاز باشد. تقویت کننده الکترومغناطیسی آهن ربای متقاطع بکار گرفته می شود، جائیکه بخواهیم چند سیستم یا به عبارتی چند هدف مخصوص را یکپارچه بکنیم از تقویت کننده های خود تحریک استفاده می کنیم.
تقویت کننده های تحریک مستقل تا جائیکه سیستم طراحی و چیدمان مدار مد نظر باشد مشابه ژنراتورهای تحریک مستقل جریان مستقیم می باشند. در سیستم های Ward Leonard، در جائیکه یک محدوده بالای کنترل سرعت موتور مورد نیاز باشد، ژنراتور به عنوان یک تقویت کننده تحریک مستقل عمل می کند.
تقویت کننده های چند مرحله ای آهن ربای مستقیم در قدرت های پایین مورد استفاده قرار نمی گیرند.
موتور الکتریکی
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:199
چکیده :
یک موتورالکتریکی، الکتریسیته را به حرکت مکانیکی تبدیل می کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است توسط ژنراتور انجام می شود. این دو وسیله بجز در عملکرد، مشابه یکدیگر هستند .اکثر موتورهای الکتریکی توسط الکترو مغناطیس کار می کنند، اما موتورهایی که براساس پدیده های دیگری نظیر نیروی الکتروستاتیک و اثر بیزوالکتریک کاری کنند هم وجود دارند.
ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می گیرد، نیرویی برآن ماده از سوی میدان اعمال می شود. دریک موتور استوانه ای، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله ای معین از محور روتور به روتور اعمال می شود می گردد.
اغلب موتورهای الکتریکی دوارند، اما موتور خطی مهم وجود دارند. در یک موتور دوار بخش متحرک روتور و بخش ثابت استاتور خوانده می شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است.
انواع موتورهای الکتریکی عبارتند از:
1- موتورهایDC
2- موتورهایAC
3- موتورهای پله ای
4- موتورهای خطی
موتورهای AC شامل موتورهای AC تک فاز و موتورهای AC سه فاز می شوند.
موتورهای AC تک فاز:
معمولترین موتور AC تک فاز موتور سنکرون قطب چاکدار است که اغلب در دستگاه هایی به کار می رود که گشتاور پایین نیاز دارند نظیر پنکه های برقی، اجاق های ماکروویو ودیگر لوازم خانگی کوچک، نوع دیگر موتور AC تک فاز موتورالقایی است که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس به کار می رود.
موتورهای AC سه فاز:
برای کاربردهای نیازمند به توان های بالاتر ،از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان استفاده می کنند.اغلب روتور شامل تعدادی هادی های مسی است ، که در فولاد قرار داده شده اند. از طریق القای الکترو مغناطیسی میدان مغناطیسی دوار در این هادی هاالقای جریان می کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده وموجب می شود که موتور در جهت گردش میدان به حرکت در آید. این نوع از موتور با نام موتور القایی معروف است. ماشین های القائی سه فاز ، ماشین هایی با سرعت آسنکردن هستند که در حالت موتوری زیرسرعت سنکرون ودر حالت ژنراتوری بالای سرعت سنکرون کار می کنند. این ماشین ها که مستحکم بوده و به نگهداری کمی نیاز دارند در مقایسه با ماشین های سنکرون و DC در اندازه ای مشابه ، ارزان تر می باشند و در محدوده چند وات تا 1000HP ساخته شده و به کار گرفته می شوند. همچنین در مواردی نظیر قابلیت اطمینان بالاتر، وزن،حجم وانریسی کمتر، راندمان بیشتر، قابلیت عملکرد در محیط های باگرد و غبار و در محیط های قابل انفجار نسبت به موتورهای DC برتر هستند.
مشکل اصلی موتورهای dc وجود کموتاتور و جاروبک است، که نگهداری زیاد و پرهزینه و نامناسب بودن عملکرد موتور در محیط های باگرد وغبار بالا و قابل انفجار را بدنبال دارد با توجه به مزایای فوق در تمامی کاربردها موتورهای القایی بطور وسیع بر سایر موتورهای الکتریکی ترجیح داده می شوند با این حال تا چندی پیش از موتورهای القایی فقط در کاربردهای سرعت ثابت استفاده شده است و در کاربردهای سرعت متغیر موتورهای DC ترجیح داده شده اند این امر ناشی از آنست که روش های مرسوم در کنترل سرعت موتورهای القایی هم غیراقتصادی وهم دارای راندمان کم بوده است. اما با بهبود در قابلیت ها و کاهش در هزینه تریستورها و اخیراً در تراتریستورهای قدرت و GTO ها ( که در کنترل سرعت این موتورها استفاده می شوند) امکان ساخت محرکه های سرعت متغیر با استفاده از موتورهای القایی بوجود آمده است که در برخی موارد حتی از نظر هزینه و عملکرد با موتور dc نیز پیشی گرفته اند در واقع چرخ صنایع امروز را این ماشین ها می گردانند هرچند که سرعت آنها به آسانی سرعتDC قابل کنترل نبوده و جریان راه اندازی زیادی که تقریباً 6 تا 8 برابر جریان بار کامل آنهاست نیاز دارند. در ضمن این موتورها وقتی با بارکم کار می کنند ، ضریب قدرت پایین دارند.سرعت موتورAC در ابتدا به فرکانس تغذیه بستگی دارد ومقدار لغزش، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور، گشتاور تولیدی موتور را تعیین می کند تغییر سرعت دراین نوع از موتورها را می توان با داشتن دسته سیم پیچی ها یا قطب هایی در موتور که با روشن و خاموش کرد نشان سرعت میدان دوار مغناطیسی تغییر می کند ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییردادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم . به طور کلی روشهای مرسوم کنترل سرعت موتور AC(القائی) به صورت زیر است:
1- کنترل با منبع ولتاژ متغیر فرکانس ثابت
2- کنترل با منبع ولتاژ فرکانس متغیر
3- کنترل مقاومت رتور
4- کنترل از روش تزریق ولتاژ در مدار رتور
در این جا ما فقط به کنترل سرعت موتور AC سه فاز(القایی) از طریق کنترل ولت بر هرتز (روش دوم) می پردازیم.
فصل 2 : مقدمه ای بر سیمولینک
2-1سیمولینک چیست؟
سیمولینک یکی از ابزارهای گسترش یافته Matlab است که امکان ایجاد سریع و دقیق مدل کامپیوتری سیستم های دینامیکی با استفاده از نماد نمودار بلوکی را برای مهندسان فراهم می کند. سیستم های غیرخطی پیچیده را می توان با سیمولینک به سادگی مدل نمود. مدل سیمولینک می تواند شامل اجزا پیوسته و گسسته باشد. به علاوه ، مدل سیمولینک قادر به ایجاد انیمیشن گرافیکی است که میزان پیشرفت شبیه سازی را به صورت بصری نمایش داده و فهم رفتار سیستم را به میزان چشمگیری بهبود می بخشد.
به طور خلاصه قدم هایی که برای استفاده از سیمولینک برداشته می شود شامل یافتن یک مدل یا نمایش ریاضی همراه پارامترهای سیستم مورد نظر، انتخاب روش مناسب انتگرال گیری و درآخر تبیین شرایط اجرای شبیه سازی نظیر شرایط اولیه و زمان اجرا می باشد مدل سازی در سیمولینک یا استفاده از رابطه های گرافیکی و کتابخانه الگوها یا بلوک های توابعی که عموماً در تشریح خصوصیات ریاضی سیستم های دینامیکی کاربرد دارند، تسهیل شده است.
2-2 ورود به سیمولینک
سیمولینک یک بسط نرم افزاری در محیط Matlab است و برای ورود به آن می باید ابتدا Matlab را اجرا کنید سپس از درون Matlab با کلیک آیکون سیمولینک در نوار ابزار Matlab همان طور که در شکل (2-1) نشان داده شده یا با وارد کردن فرمان simulink در اعلان Matlab سیمولینک را فراخوانی کنید در نتیجه صفحه ی simulink library Browser که شامل کتابخانه سیمولینک است باز می شود.
2-3 ایجاد فایل شبیه سازی باسیمولینک.
کلیک آیکونnew window،یک پنجره مدل خالی مطابق شکل (2-2)باز می کند دراین پنجره مدل خالی کهuntitled نام گذاری شده است مدل سیمولینک را ایجاد خواهید نمود
مجموعه متنوعی از الگوها یا بلوک های توابع، تحت کتابخانه های مختلف گردآوری شده است یک الگو را به طریق زیر می توان از کتابخانه کپی نموده و در صفحه ی مورد نظر قرار داد: الگوی مورد نظر را انتخاب نموده و سپس آن را به محل مطلوب در صفحه ی سیمولینک بکشید و یا روی الگو کلیک راست کنید و گزینهAdd to untitled را انتخاب کنید.
بسیاری از الگوها دارای مقادیر اولیه هستند که قبل از استفاده از آنها، می باید مقادیر اولیه را تعریف کنید.برای مشاهده یا تغییر این مقادیر باید روی الگوی مورد نظر دوبار کلیک نمود که در این صورت پنجره ی گفت وگویی باز خواهد شد که شامل مستطیل هایی است که برای وارد نمودن پارامترهاست. اطلاعات درخواستی می تواند به شکل متغیر حرفی یا عدد ثابت وارد شود متغیرهای حرفی را قبل از شروع شبیه سازی می توان در فضای Matlab تعریف کرد هنگامی که شبیه سازی چندین بار تکرار شود،برای مثال مطالعه ی حساسیت نسبت به پارامترها، استفاده از متغیرهای حرفی ارجح است.
پارامترها و مقادیر اولیه متغیرهای حرفی را می توان با تایپ کردن آنها در محیط Maltab وارد نمود این کار با سیستم نوشته شده ، امکان پذیر است. چنین m فایلی همچنین می تواند در صفحه ی سیمولینک و یا استفاده از بلوک الگو شده اجرا گردد. برای شبیه سازی گسترده ، بهره گیری ازm فایل ها توصیه می شود. ایجاد m فایل و اشکال زدایی از آن را می توان توسط ادیتور مربوط از toolbar در متلب انجام داد.
2-4 پیکربندی شبیه سازی:
مدل سیمولینک در اصل برنامه ای کامپیوتری است که مجموعه ای از معادلات دیفرانسیل وتفاضلی را تعریف می کند.هنگامی که از نوار منوی پنجره ی مدل simulation: start را انتخاب می کنید (شروع شبیه سازی) سیمونیک آن مجموعه معادلات دیفرانسیل و تفاضلی را ، توسط یکی از حل کننده های معادله دیفرانسیل خود، به صورت عددی حل می کند. قبل از اجرای شبیه سازی می توانید پارامتری های شبیه سازی متنوعی نظیرشروع وپایان شبیه سازی، اندازه گام شبیه سازی وچند تلورانس مختلف را تنظیم کنید و از میان چندین الگوریتم انتگرال گیری کیفیت بالا یکی را برگزینید. همچنین می توانید سیمولینک را برای دریافت داده های شخصی از فضای کاری MATLAB و ارسال نتایج شبیه سازی به آن پیکربندی نمایید.
برای تنظیم پارامترهای شبیه سازی، از نوار منوی پنجره ی مدلsimulation : parameters را انتخاب کنید تا کادر مکالمه پارامترهای شبیه سازی مطابق شکل (2-3) باز شود کادر مکالمه پارامترهای شبیه سازی دارای چهار صفحه ی جدول بندی شده ی Advanced , Diagnostics, workspace I/O می باشد صفحه ی solver ، حل کننده معادله ی دیفرانسیل را انتخاب وپیکربندی می کند. از این قسمت حل کنندهها در دو رده دسته بندی شده اند: گام متغیر(variable-step) و گام ثابت (fixed –step) برای هر رده چندین الگوریتم انتگرال گیری مختلف وجود دارد. اگر حل کننده گام متغیر انتخاب شود، دارای فیلدهایی برای انتخاب ماکزیمم اندازه گام انتگرال گیری ، اندازه گام انتگرال گیری اولیه و تولرانس های نسبی و مطلق می باشد. اگر حل کنندة گام ثابت انتخاب شود تنها یک فیلد که برای وارد کردن اندازه گام می باشد، دارد.
2-5 آنماز واجرای یک شبیه سازی:
قبل از آغاز شبیه سازی،حتماً باید آغاز و انتهای شبیه سازی را در حین پیکربندی شبیه سازی تعریف کنید. شبیه سازی را می توان با کلیک کردن روی کلمهstart تحت منوی simulation صفحه ای سیمولینک یا صفحه ی مدل آغاز نمود. در صورت تمایل می توانید قبل ازآغاز شبیه سازی، اسکوپ و ساعت را تنظیم کنید تا پیشرفت شبیه سازی را روی نمایشگر مشاهده نمایید.
2-5-1 مشاهده متغیرها در حین اجرا
می توانید بوسیله ی scope که در کتابخانه سیمولینک در قسمت sinks قرار دارد متغیرها را در بین اجرای شبیه سازی مشاهده کرد فقط کافی است scope را به متغیری که می خواهیم آن را در حین اجرا ببینیم وصل کنیم.
کلاً برای مشاهده خروجی هادر سیمولینک چند وسیله خارجی تحت کتابخانهsinks فراهم آمده است. اسکوپ فراهم شده ، یک ورودی دارد که سیگنال های مالتی پلکس شده را نیز می پذیرد.
2-6- ذخیرة داده ها
شکل(2-4) دو روش متفاوت برای مشاهده متغیرها را نشان می دهد. خروجی ژنراتور موج (سیگنال ژنراتور) را می توان مستقیماً طی مدت اجرای شبیه سازی ، توسط اسکوپ مشاهده کرد، یا اگر قرار است داده ها رسم شده یا بعداً مورد استفاده قرار گیرند می توان خروجی مطلوب به همراه زمان اجرای شبیه سازی از طریق ساعت را به فایل داده Matlab و با استفاده از الگویTo File در sinks ذخیره نمود. به جای این که نتایج مستقیماً در یک فایل نوشته شود، خروجی را می توان به شکل موقتی تحت یک آرایه (yout) در محیط Matlab و بااستفاده از الگوی to workspace که تحت sinks می باشد ذخیره کرد.
و...
خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف
مقدمه ای کامل و جامع و بسیار مناسب برای نوشتن پایان نامه 37 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی و با مراجع معتبر ISI
اگر فایل خاصی مد نظر شماست بفرمائید تا در صورت امکان در سایت قرار گیرد.
payannameht@gmail.com
فایلهای مرتبط:
خواص و کاربردهای نانوکامپوزیت های آلی- معدنی
-1- خواص اپتیکی نانو کامپوزیتهای آلی– معدنی
ویژگیهای مفید اپتیکی و کاربردهای نانوکامپوزیتهای آلی-معدنی (PINC ها)[1]، شامل جذب نور (نور مرئی و UV)، فوتولومینسانس، ضریب شکست اپتیکی زیاد و دورنگ نمایی[2]، قرنهاست که آنها را تبدیل به طبقه مهمی از مواد کاربردی کرده است. خواص اپتیکی کامپوزیتهای PINC وابسته به اندازه و توزیع فضایی ذرات معدنی در ماتریس پلیمر است [1].
PINC هایی که شامل پلیمر و جذب کنندههای UV معدنی مانند TiO2 و ZnO هستند، با افزودن مستقیم نانوفیلرها به ماتریسهای پلیمر ترکیب شدهاند. برای مثال شکل (2-1) از طیف UV-VIS نانوکامپوزیتهای پلی متیل متا آکریلات/اکسید روی (PMMA/ZnO) سنتز شده توسط پلیمریزاسیون سل ژل در محل (شکل 2-2) نشان میدهد که نانوکامپوزیتهای PMMA/ZnO حتی در غلظتهای پایین فیلرZnO (wt% 017/0) به طور قطع دارای اثر سدکنندگی UV است، اما شفافیت بالایی را در ناحیه مرئی حتی در اندازههای بزرگ (ضخامت cm1) حفظ میکند. علاوه بر این، نانوکامپوزیتهای PMMA-ZnO بازدهی بسیار بالاتری در دفع UV نسبت به لنزهای تجاری که تماسی و سدکننده UV هستند دارد، زیرا قدرت انتقال این لنزها در دامنه 290 تا nm 340 تقریباً صفر است [2،3].
.
.
نانوکامپوزیت با نانوذرات غیر رسانای اکسید/پلیمر به دلیل حضور گروههای کربوکسیلات در فاصله بین سرامیک و PMMA از خود گسیل نور[2] نشان میدهند، در حالیکه نانوذرات نیمرسانا همچون ZnO، دارای نور گسیل ذاتی هستند. نانوکامپوزیتهای فوتولومینسان دارای پتانسیل بالایی برای کاربرد در زمینههای مختلف هستند. برای مثال، نانوکامپوزیتهای اپوکسی با پایه ZnO را میتوان برای نوردهی در قطعات حالت جامد استفاده کرد.
در همین راستا، دو [3] و همکارانش [4] نیز نانوذرات ZnO تعبیه شده در ماتریس پلیمر چربی دوست PMMA را به روش سل ژل غیر متعادل سنتز کرده و خواص فوتولومینسانس (تابندگی) آن را مطالعه کردند. آنها دریافتند که نانوذرات ZnO (nm 6-5) که در PMMA جایگذاری شدهاند، نشان دهنده عبور UV در طول موج nm334، به دلیل اثرات کوانتومی در اندازه نانوذرات و همچنین نشان دهنده فوتولومینسانس در طول موج nm 346، به دلیل حضور اکساتیونهای مقید [4] در کمپلکسهای R-(Coo)- ZnO است (شکل 2-3). همچنین آنها عکس TEM از این نانوکامپوزیت را به صورت شکل (2-4) ارائه کردند.
.
.
-2- خواص الکتریکی نانوکامپوزیتهای آلی– معدنی:
نانوکامپوزیتهای پلیمری- معدنی رابطه تنگاتنگی با طراحی قطعات الکترونیکی و اپتیکی – الکترونیکی دارد. مقیاس ابعادی قطعات الکترونیکی در حال حاضر وارد محدوده نانو شده است[1]. سو[1] و کورا ماتا[2] [6]، سنتز نانوکامپوزیتهای PANI/TiO2 را با پلیمریزاسیون در محل PANI در حضور نانوذرات TiO2 گزارش کردند. در این گزارش پوستههای نانوکامپوزیت سنتز شده، رسانایی قابل توجهی (S/cm 10-1) نشان دادند که این رسانایی با گرمادهی به مدت یک ساعت در دمای ̊C80، افزایش یافته است. شکل(2-7) رسانایی و اثر دمای حرارتی در نانوکامپوزیت PANI-DBSA/TiO2-DBSA، با محتوای مختلف از TiO2 را نشان میدهد. هدایت لایه نانوکامپوزیتی با افزایش مقدار TiO2 کمی افزایش مییابد، و سپس با محتوای بیش از حد TiO2 کاهش مییابد....
.
.
-3- خواص مغناطیسی نانوکامپوزیتهای آلی– معدنی:
نانو ذرات مغناطیسی جزو یکی از دو گروه زیر هستند: گروهی شامل نانو ذرات فلزی و گروهی دیگر شامل نانوذرات Fe2O3، Fe3O4 یا هیدروکسید آهن[1] هستند. بیشتر نانوکامپوزیت های حاصل از نانوذرات فلزی یا هیدروکسید آهن، بدون پسماند مغناطیسی[2] هستند که این امر نشان دهنده یک ماده فرا پارامغناطیس[3] است.
ژان [4] و همکارانش، در پوسته های نانوکامپوزیت PI/γ-Fe2O3، رفتاری فرا پارامغناطیسی مشاهده کردند. آنها همچنین مشاهده کردند که با افزایش محتوای بار Fe3O4 از wt%2 به wt%8، مغناطش اشباع [5] پوسته های نانوکامپوزیت PI/γ-Fe2O3 ، از A 2-10× 354/1 به A 2-10× 220/4 افزایش یافت. بنابراین خواص مغناطیسی نانوکامپوزیت ها را میتوان با تغییر دادن محتوای بار Fe3O4، کنترل کرد. شکل (2-11) نشاندهنده حلقههای پسماند مغناطیسی نانوکامپوزیتهای پلی پیرول است که با بارگذاری 20 و 50 درصد وزنی از نانوذرات اکسید آهن ...
.
.
-4-1- مطالعه خواص ساختاری و اپتیکی نانوکامپوزیت PVA/TiO2:
ملک پور و براتی[8] نانوکامپوزیتهای پلیمری مشتق شده از پلی وینیل الکل (PVA) و نانوذرات دی اکسید تیتانیوم (TiO2) را سنتز نموده و خواص فیزیکی آن را بررسی نمودند. آنها در این تحقیق ابتدا نانوذرات TiO2 با سطح اصلاح شده را تهیه کرده و سپس نانوکامپوزیت PVA/TiO2 را تهیه کردند، بدین طریق که مقادیر مختلف نانوذرات اصلاح شده سطحیTiO2 (5، 10، 15 و 20 wt% از PVA) را با 1/0 گرم PVA مخلوط کردند. سپس مخلوط حاصل را در ml 15 اتانول خالص پخش کرده و به مدت 2 ساعت سونش[1] نمودند و ...
فهرست مطالب
فصل دوم : خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف .1
2-1: خواص اپتیکی نانو کامپوزیتهای آلی– معدنی.. 1
2-2: خواص الکتریکی نانوکامپوزیتهای آلی– معدنی.. 6
2-3: خواص مغناطیسی نانوکامپوزیتهای آلی– معدنی.. 9
2-4: مطالعه خواص فیزیکی نانوکامپوزیتهای انتخابی.. 10
2-4-1: مطالعه خواص ساختاری و اپتیکی نانوکامپوزیت PVA/TiO2 10
2-4-2: مطالعه و بررسی خواص نانوکامپوزیت پلی آنیلین دوپ شده با اکسید قلع (PANI/SnO2) 15
2-4-3: سنتز و مشخصه یابی نانوکامپوزیت TiO2-SiO2:PVA (TSP) 24
2-4-4: رشد لایه های نازک اکسید قلع با ناخالصی فلوئور بر بستر های پلیمری شفاف و انعطافپذیر. 29
مراجع. 33
فهرست شکلها
شکل 2-1: طیف UV-VIS نانوکامپوزیتهای PMMA/ZnO 2
شکل 2-2: عکس های دیجیتال از مواد هیبریدی PMMA/ZnO 2
شکل 2-3: طیف فوتولومینسانس از فیلم PMMA/ZnO در مدت زمان واکنش متفاوت.. 4
شکل 2-4 تغییرات اندازه میانگین دانهها با مقادیر مختلف ناخالصی از آهن.. 4
شکل 2-5: الگوی XRD از نانوذرات آمورف TiO2 5
شکل2-6: تغییرات ضریب شکست و طیف عبوری از پوششهای نانوکامپوزیت... 6
شکل 2-7: هدایت الکتریکی PANI-DBSA/TiO2-DBSA با محتوای مختلف از TiO2 7
شکل 2-8: الگوهای پراش XRD از نانوکامپوزیتهای PANI/TiO2 8
شکل 2-9: ثابت و اتلاف دی الکتریک نانوکامپوزیتهای PANI/TiO2 8
شکل 2-10: هدایت الکتریکی نانوکامپوزیتهای PANI/TiO2 در دمای C˚ 35. 9
شکل 2-11: حلقه پسماند مغناطیسی نانوکامپوزیتها در بارگذاری های مختلف... 10
شکل 2-12: الگوی پراش XRD نانوکامپوزیت PVA/TiO2 12
شکل 2-13: تصاویر SEM از: (a,b) PVA خالص؛ (c-f) نانوکامپوزیت PVA/TiO2، wt%10. 13
شکل 2-14: صاویر AFM از توپوگرافی سطح نانوکامپوزیت PVA/TiO2 13
شکل 2-15: طیف شفافیت UV-VIS غشاهای نانوکامپوزیتی PVA/TiO2.. 14
شکل 2-16: تصویر شماتیک از تشکیل نانوکامپوزیت PANI/SnO2. 17
شکل 2-17: تصویر SEM از نانوکامپوزیت PANI/SnO2. 17
شکل 2-18: طیف FTIR از نانوکامپوزیت PANI/SnO2. 19
شکل 2-19: طیف XRD از نانوکامپوزیت PANI/SnO2 20
شکل 2-20: پاسخ مقاومت نانوکامپوزیتهای PANI/SnO2 20
شکل 2-21: تصاویر FESEM از موفولوژی سطح نانو کامپوزیت PANI/SnO2. 23
شکل 2-22: تصاویر TEM نانو کامپوزیت PANI/SnO2. 24
شکل 2-23: : تصاویر SEMو TEM، از نانوکامپوزیتهای TS و TSP. 27
شکل 2-24: طیف XRD از نانوکامپوزیت های TS و TSP. 27
شکل 2-25: طیف UV-vis از نانوکاکمپوزیتهای TS و TSP. 28
شکل 2-28: میکروگرافSEM از فیلمFTO بر بسترPET 32
کوره های الکتریکی
تولید و ذوب آلومینوم در مقادیر زیاد و برای اجتناب از اکسیداسیون مذاب و جلوگیری از ورود گازهای ناشی از احتراق سوختگیهای فسیلی و افزایش کیفیت مذاب آلومینوم کوره های الکتریکی در انواع کوره های مقاومتی بوته ای ، روبرو کوره های القائی مورد استفاده قرار می گیرند.
مکانیسم اصلی کوره های مقاومتی استفاده از گرمای حاصل از مقاومت میله ( الکترودهائی ) در مقابل عبور جریان می باشد . معمولا مقاومت ها از نیکروم ( نیکل ، کرم ، آهن ) و کرومل ( اهن ، کروم ، آلومینوم ) ساخته می شوند . در نوع کوره های مقاومتی بوته ای که با ظرفیت حداکثر 500 کیلوگرم به کار می روند ، بوته از چدن خاکستری ساخته می شود و قدرت الکتریکی این کوره معمولا 40 تا 80 کیلو وات می باشد.
کوره های روبرو الکتریکی و بوته ای مقاومتی تفاوت چندانی با آنچه در قسمت های قبل گفته شد ندارند و فقط تفاوت عمده در منبع حرارتی است که الکتریکی و مقاومتی بوه و از این رو کنترل حرارت و کیفیت محصول بهتر و مطلوب تر می باشد. در بعضی از کوره های مقاومتی بوته از فلز ساخته می شود و مکانسیم را طوری تهیه می کنند که بوته مرکز و هسته اصلی مقاومت و ایجاد حرارت باشد
کوره های القائی
کوره های القائی از نظر افزایش ظرفیت و تقلیل مصرف انرژی نسبت به کوره های مقاومتی دارای مزایائی می باشند. این کوره ها در ظرفیت های مختلف قادر به ذوب 15کیلوگرم تا چندین تن آلومینوم هستند.
در این کوره ها هیچ گونه فعل و انفعال شیمیائی که باعث افزایش ناخالصی و تغییرات ترکیبی مذاب گردد، انجام نمی شود و علاوه بر آن به دلیل عدم استفاده الکترود امکان ورود ناخالصی های مواد از طرق مکانیکی نیز امکان پذیرنیست و از نظرمسائل الکتریکی محدودیتی برای افزایش درجه حرارت ندارند.
تا سال 1950 فقط کوره های القائی با فرکانس زیاد مورد استفاده قرار می گرفت که از نظر نیاز به تاسیسات و ژنراتور ها و همچنین ظرفیت بسیارکم ، از نظر سرمایه گذاری و هزینه تمام شده مقرون به صرفه نبود. در سال 1950 استفاده از کوره های القائی با فرکانس کم ( 50 تا 60 سیکل ) بدون هسته و کانال جریان ( ساده ) آغاز گردید که بنحو قابل ملاحظه ای هزینه سرمایه گذاری و قیمت تمام شده تقلیل پیدا کرد و افزایش ظرفیت و کارآئی آنها به سرعت بالا رفت بطوریکه امروز کوره هائی باظرفیت 70 تن چدن و 500/17 کیلو وات قدرت در مورد کوره های القائی با هسته و کانال جریان و 260 تن و 4000 کیلو وات قدرت در مورد کوره های القائی ساده مورد استفاده قرار می گیرد .
کوره های القائی به سه دسته :
کوره های فرکانس کم بدون هسته و کانال جریان
کوره های فرکانس کم با هسته و کانال جریان و
کوره های فرکانس زیاد، تقسیم می شوند که استفاده از دو نوع اول رو به افزایش می باشد.
کوره های القائی نوع اول بسیار ساده و مشتمل بر بوته و سیم پیچ های جریان است که به وسیله آب همواره خنک می شوند در حالی که در کوره های نوع دوم مذاب بین دو قطب اصلی ( هسته ) جریان پیدا می کند . تفاوت عمده این دو نوع کوره در استفاده از جریان برق و تبدیل به انرژی حرارتی می باشد.
کوره های نوع اول بیشتر در مورد ذوب شمش و قطعات بکار می روند و کوره های نوع دوم برای فوق ذوب ، تصفیه ، کنترل و نگاهداری مذاب مورد استفاده واقع می شوند و راندمان حرارتی و الکتریکی آنها زیادتر است و همان گونه که از شکل 4-2 استنباط می گردد منطقه ذوب آنها بسیار کوتاه می باشدو از این رو درجه حرارت و سرعت حرکت مذاب به حدی باید باشد تا درجه حرارت لازم در تمام قسمت های بوته تامین گردد.
اشکال عمده دیگر در کوره های القائی با هسته و کانال جریان درآنست که این کوره ها همواره برای شروع نیاز به مذاب دارند که در کنار کانال های جریان قادر به تشکیل هسته های القائی باشند .
تعداد صفحات: 38