کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پاورپوینت بررسی روش های تخمین عمر باقیمانده کابل های فشار قوی

اختصاصی از کوشا فایل پاورپوینت بررسی روش های تخمین عمر باقیمانده کابل های فشار قوی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت بررسی روش های تخمین عمر باقیمانده کابل های فشار قوی


پاورپوینت بررسی روش های تخمین عمر باقیمانده کابل های فشار قوی

 

نوع فایل:  ppt _ pptx ( پاورپوینت )

( قابلیت ویرایش )

 


 قسمتی از اسلاید : 

 

تعداد اسلاید : 36 صفحه

بسم الله الرحمن الرحیم اصول طراحی پست های فشار قوی بررسی روش های تخمین عمر باقیمانده کابل های فشار قوی سرفصل ها لزوم برآورد عمر کابل ها ؛ روش های سنجش عمر باقیمانده کابل ها ؛ مروری بر انواع کابل ها و انواع مشکلات ایجاد شده در آنها ؛ فهرست کلی اندیس هایی که در مقالات دیده می شود ؛ درصد مواد تشکیل دهنده ( بازیافت کابلها ) ؛ بررسی جزئی تر اندیس ها در مقالات مختلف و مقایسه نتایج آنها ؛ تخمین عمر و ضرورت آن (Need Of Life Estimation) روش های موجود برای برآورد عمر باقیمانده عایق های استفاده شده در تجهیزات فشار قوی ، بر این اساس است که ؛ تغییرات فیزوشیمیایی ناشی از پیر شدن عایق های آنها را بتوان با تغییرات قابل اندازه گیری در خواص دی الکتریک/عایقی آنها برآورد کرد. این خواص باید قابل اندازه گیری و در ایده آل ترین حالت در رابطه خطی معکوس با عمر باقی مانده کابل باشد .
تخمین عمر و ضرورت آن (Need Of Life Estimation) دلایل نیاز به تست کابل ها (1): بالا بردن امنیت شبکه به صورت بهینه ایرادات کابل های قدیمی و تعویض به موقع آنها غیر ممکن بودن تعویض کابل ها پیشبینی عمرباقیمانده تجهیزات فشار قوی (2) : کاهش خروج های برنامه ریزی نشده بهبود برنامه های تعمیراتی ( تعویض کل یا قسمتی از کابل ) بالا بردن قابلیت اطمینان شبکه مسئله امنیت شبکه و مسائل اقتصادی روش های سنجش عمر کابل ها :Life Estimation or Condition Monitoring سه روش کلی موجود است : آزمایش در محل با استفاده از تجهیزات ویژه Field / On-site Test : این دستگاه به کابل که در زیر زمین ( داکت ) قرار دارد وصل شده و آزمایش های مورد نیاز را بر روی انجام می دهد. This test my be Destructive (short term faults) or nondestructive . آزمایش نمونه ها در آزمایشگاه Sample Testing : مونیتورینگ وضعیت کابل Condition Monitoring [3] : در مناطق حساس مثلا نیروگاههای هسته ای Using Condition Monitoring To Predict Remaining Life Of Electrical Cables, R.
Lofaro, P.
Soo, M.
Villaran خواص اصلی در مدل اندیس : تغییرات زودتر در اندیس زمان پایان عمر مشخصات کلی شاخص برای Condition Monitoring [3]: تست باید غیر مخرب باشد ؛ ( عمر کابل را از اینی که هست کمتر نکند ! ) یک رابطه ( در صورت امکان خطی ) با بازدهی کابل داشته باشد. قابل اعمال بر روی همه انواع کابل ها با مواد مختلف ( به دلیل مواد تشکیل دهنده مختلف ایرادات متفاوت است .
) تکرار پذیر بودن و مستقل بودن تغییرات از شرایط محیطی ( دما ، فشار ، رطوبت ) از نظر هزینه ای قابل اجراء در محیط قابلیت مشخص کردن محل خرابی در کابل ( برای تعویض بخشی از کابل ) دادن زمان کافی برای تعویض کابل قبل از خرابی های وسیع در آن هیچکدام از اندیس هایی که در اینجا بررسی خواهد شد همه این خواص را ندارند. Cable Type & Deflective Cable Types [7]: Paper Oil Impregnated Paper (OIP) Poly Ethylene (PE) Cross Link Poly Ethylene (XLPE) Ethylene Propylene Rubber (EPR) سری های اول کابل های پلیمری که ساخته شد ، توسط انواع مختلف پلیمر ها عایق بندی شدند برای مثال کابل های XLPE ولی این کابل ها بازدهی کمتری از آنچه از آنها انتظار می رفته نشان می دادند و باید بعد از تنها بخشی از عمر در نظر گرفته شده ب

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  ................... توجه فرمایید !

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه جهت کمک به سیستم آموزشی برای دانشجویان و دانش آموزان میباشد .

 



 « پرداخت آنلاین »


دانلود با لینک مستقیم


پاورپوینت بررسی روش های تخمین عمر باقیمانده کابل های فشار قوی

تحقیق درباره تخمین مدل و استنتاج آماری

اختصاصی از کوشا فایل تحقیق درباره تخمین مدل و استنتاج آماری دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

تخمین مدل و استنتاج آماری

بررسی ایستایی (ساکن بودن) سری های زمانی

قبل از تخمین مدل، به بررسی ایستایی می پردازیم. می توان چنین تلقی نمود که هر سری زمانی توسط یک فرآیند تصادفی تولید شده است. داده های مربوط به این سری زمانی در واقع یک مصداق از فرآیند تصادفی زیر ساختی است. وجه تمایز بین (فرآیند تصادفی) و یک (مصداق) از آن، همانند تمایز بین جامعه و نمونه در داده های مقطعی است. درست همانطوری که اطلاعات مربوط به نمونه را برای استنباطی در مورد جامعه آماری مورد استفاده قرار می دهیم، در تحلیل سریهای زمانی از مصداق برای استنباطی در مورد فرآیند تصادفی زیر ساختی استفاده می کنیم. نوعی از فرآیندهای تصادفی که مورد توجه بسیار زیاد تحلیل گران سریهای زمانی قرار گرفته است فرآیندهای تصادفی ایستا می باشد.

برای تاکید بیشتر تعریف ایستایی، فرض کنید Yt یک سری زمانی تصادفی با ویژگیهای زیر است:

(1) : میانگین

(2) واریانس :

(3) کوواریانس :

(4) ضریب همبستگی :

که در آن میانگین ، واریانس کوواریانس (کوواریانس بین دو مقدار Y که K دوره با یکدیگر فاصله دارند، یعنی کوواریانس بین Yt و Yt-k) و ضریب همبستگی مقادیر ثابتی هستند که به زمان t بستگی ندارند.

اکنون تصور کنید مقاطع زمانی را عوض کنیم به این ترتیب که Y از Yt به Yt-k تغییر یابد. حال اگر میانگین، واریانس، کوواریانس و ضریب همبستگی Y تغییری نکرد، می توان گفت که متغیر سری زمانی ایستا است. بنابراین بطور خلاصه می توان چنین گفت که یک سری زمانی وقتی ساکن است که میانگین، واریانس، کوواریانس و در نتیجه ضریب همبستگی آن در طول زمان ثابت باقی بماند و مهم نباشد که در چه مقطعی از زمان این شاخص ها را محاسبه می کنیم. این شرایط تضمین می کند که رفتار یک سری زمانی، در هر مقطع متفاوتی از زمان، همانند می باشد.

آزمون ساکن بودن از طریق نمودار همبستگی و ریشه واحد

یک آزمون ساده برای ساکن بودن براساس تابع خود همبستگی (ACF) می باشد. (ACF) در وقفه k با نشان داده می شود و بصورت زیر تعریف می گردد.

 

از آنجاییکه کوواریانس و واریانس، هر دو با واحدهای یکسانی اندازه گیری می‌شوند، یک عدد بدون واحد یا خالص است. به مانند دیگر ضرایب همبستگی، بین (1-) و (1+) قرار دارد. اگر را در مقابل K (وقفه ها) رسم نماییم، نمودار بدست آمده، نمودار همبستگی جامعه نامیده می شود. از آنجایی که عملاً تنها یک تحقق واقعی (یعنی یک نمونه) از یک فرآیند تصادفی را داریم، بنابراین تنها می‌توانیم تابع خود همبستگی نمونه، را بدست آوریم. برای محاسبه این تابع می‌بایست ابتدا کوواریانس نمونه در وقفه K و سپس واریانس نمونه را محاسبه نماییم.

 

که همانند نسبت کوواریانس نمونه به واریانس نمونه است. نمودار در مقابل K نمودار همبستگی نمونه نامیده می شود. در عمل وقتی مربوط به جامعه را ندایم و تنها را براساس مصداق خاصی از فرآیند تصادفی در اختیار داریم باید به آزمون فرضیه متوسل شویم تا بفهمیم که صفر است یا خیر. بارتلت (1949) نشان داده است که اگر یک سری زمانی کاملاً تصادفی یعنی نوفه سفید باشد، ضرایب خود همبستگی نمونه تقریباً دارای توزیع نرمال با میانگین صفر و واریانس می باشد که در آن n حجم نمونه است. براین اساس می توان یک فاصله اطمینان، در سطح 95 درصد ساخت. بدین ترتیب اگر تخمینی در این فاصله قرار گیرد، فرضیه(=0) را نمی توان رد کرد. اما اگر تخمینی خارج از این فاصله اعتماد قرار گیرد می توان صفر بودن را رد کرد.

آزمون دیگری نیز بصورت گسترده برای بررسی ایستایی سریهای زمانی بکار می‌رود که به آزمون ریشه واحد معروف است. برای فهم این آزمون مدل زیر را در نظر بگیرید:

Yt = Yt-1+Ut

Ut جمله خطای تصادفی است که فرض می شود بوسیله یک فرآیند تصادفی مستقل (White Noise) بوجود آمده است. (یعنی دارای میانگین صفر، واریانس ثابت و غیر همبسته می باشد).

خواننده می تواند تشخیص دهد که معادله فوق، یک معادلخ خود رگرسیون مرتبه اول یا AR(1) می باشد. در این معادله مقدار Y در زمان t بر روی مقدار آن در زمان (t-1) رگرس شده است. حال اگر ضریب Yt-1 برابر یک شود مواجه با مساله ریشه واحد می شویم. یعنی این امر بیانگر وضعیت غیر ایستایی سری زمانی Yt می باشد. بنابراین اگر رگرسیون زیر را اجرا کنیم:

 


دانلود با لینک مستقیم


تحقیق درباره تخمین مدل و استنتاج آماری

تخمین توابع ترمودینامیکی محلولهای مائی (نظری تجربی)

اختصاصی از کوشا فایل تخمین توابع ترمودینامیکی محلولهای مائی (نظری تجربی) دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

تخمین توابع ترمودینامیکی محلولهای مائی (نظری- تجربی)

پارامتر حلالیت و کسر حجمی می‌باشد که طبق رابطه زیر ارائه می‌گردد.

(4-52)

(4-53)

گرمای تبخیر است

(4-54)

(4-55)

مدل براملی (Bromley)

براملی ]161[ یک مدل تجربی که بسیار ساده بود ارائه داد. این مدل قابل اعمال تا غلظتهای حدود 6 مولال محلول الکترولیت قوی می‌باشد و این مدل تنها دارای یک پارامتر قابل تنظیم می‌باشد که به صورت زیر است:

(4-56)

این معادله فقط یک پارامتر (B) را دارد که وابسته به الکترولیت می‌باشد. رابطه ضریب اسموزیته هم به صورت زیر می‌باشد:

(4-57)

و و

و B یک پارامتر قابل تنظیم می‌باشد

مدل هامر (Hamer)

هامر و وو ]161[ برای ضریب فعالیت و ضریب اسموزیته معادله‌های زیر را ارائه دادند.

(4-58)

(4-59)

که

مقادیر ثابت‌های و B و C و D برای الکترولیتهای مختلف با مقایسه ضرایب فعالیت و اسموزی تجربی با مدل به دست می‌آید.

مدل چن (Chen)

چن و همکارانش ]161[، معادله زیرین را برای اندازه‌گیری ضریب فعالیت ارائه دادند.

(4-60)

(4-61)

(4-62)

(4-63)

و معادله برای تخمین ضریب فعالیت به صورت زیر می‌باشد:

(4-64)

(4-65)

(4-66)

که در این معادله به کسر مولی کاتیون و آنیون و حلال به ترتیب اشاره دارند. و مقادیر پارامترها برای هر الکترولیت مثل با مقایسه با تجربی برای هر الکترولیت بدست می‌آید.

مدل میسنر (Meissner)

معادله به صورت زیر برای تخمین ضریب فعالیت توسط میسنر و کوسیک (Kusik) ارائه شد ]161[:

(4-67)

(4-68)

(4-69)

(4-70)

برای معادله بالا است. پارامتر معادله هم q می‌باشد. که با مقایسه با مقادیر تجربی بدست می‌آید. بدست آمدن یک معادله برای محاسبه ضریب اسموزیته از معادله بالا کمی مشکل می‌باشد.

مدل باهه (Bahe)

باهه ]161[ معادله زیر را برای محاسبه ضریب فعالیت ارائه داد:

(4-71)

که برابر با و A در دمای 15/298 درجه کلوین برابر 288941/0 است B پارامتری است که به الکترولیت وابسته است. و C نشان دهنده غلظت الکترولیت است که می‌تواند از مولالیته با استفاده از معادله زیر که توسط هارلزو اون ارائه شد بدست بیاید:

(4-72)

که p1 = 0.997 و مقدار a و b برای الکترولیتهای مختلف متفاوت است باز برای ضریب اسموزیته نمی‌توان با استفاده از معادله بالا معادله‌ای بدست آورد.

مدل گلوکوف (Glueckauf)

گلوکاف ]161[ معادله برای محاسبه و ضریب اسموزیته ارائه داد که به صورت زیر می‌باشد

(4-73)

که

معادله بالا سه پارامتر وابسته به الکترولیت داراد که دوتای آن یعنی و از مقادیر فعالیت بدست می‌ایند. و پارامتر r به صورت زیر می‌باشد.

(4-74)

حجم مولی جزئی الکترولیت و دقت بی‌نهایت حجم مولی آب خالص می‌باشد مقادیر ثابتهای بالا توسط هاردواون ]161[ داده شده است. مقادیر

و hc برای الکترولیتهای مختلف تخمین زده می‌شود.

4-4-2 مدلهای آماری

مدلهایی که بر اساس دیدگاههای مکانیک آماری استوار هستند به طور وسیعی در پیش‌گویی خواص ترمودینامیک محلولهای الکترولیت مورد استفاده قرار می‌گیرد. بر اساس گفته لی و همکارانش ]71[ بر پایه مفهوم ترمودینامیک آماری دو روش جهت مطالعه رفتار و ساختمان مواد وجود دارد یکی استفاده از داده‌های شبیه‌سازی مونت کارلو (Montecarlo) یا حرکتهای مولکولی (Molcalardynamics) و روش دیگر استفاده از معادلات انتگرالی از قبیل (Percus – yevick) یا HNS (Hypernetted chain) می‌باشد. تمام این روشهای مکانیک آماری با در نظر گرفتن


دانلود با لینک مستقیم


تخمین توابع ترمودینامیکی محلولهای مائی (نظری تجربی)

تحقیق درمورد تاریخچه تخمین عمر زمین 18 ص

اختصاصی از کوشا فایل تحقیق درمورد تاریخچه تخمین عمر زمین 18 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 18

 

عمر زمین

دید کلی

از روزی که انسان برای نخستین بار شروع به نوشتن افکار خود کرد، پیوسته نگران موقعیت خود در عالم لایتناهی بوده است. لیکن تا سال 1788 و نوشته‌های «جیمز هاتن» ، مفهوم زمان تقریبا نامحدود ، تنها برای انسان دارای معنا بود و زمین صرفا در یک چارچوب موقتی مورد نظر قرار می‌گرفت. در اندیشه انسان قرون وسطی ، زمین از نظام بسته‌ای تشکیل می‌شد که از آغاز آن چندان وقتی نمی‌گذشت و عاقبت آن هم چندان دور نبود.

 

تاریخچه تخمین عمر زمین

از آنجایی که زمان غیر قابل لمس است، تصور ابعاد زمان نیاز به بصیرت ذهنی داشت که طبیعت ‌گرایان قرن هفدهم قادر به پذیرش آن نبودند، بنابراین نگرش قرون وسطایی کوتاه بودن زمان دنیوی همچنان باقی ماند. محققین مسیحی آن زمان بطور کلی می‌پنداشتند که سن زمین در حدود 6000 سال است، رقمی که بر اساس قبول نوشته‌های باستانی عبرانی قرار است.

سیر تحولی و رشد

تخمین عمر زمین از مدتهای بسیار طولانی فکر دانشمندان را به خود مشغول کرده بود. دانشمندان مختلف سعی داشتند با روشهای مختلفی سن کره زمین را تخمین بزنند که از آن جمله می‌توان تخمین عمر زمین را بر اساس شوری آب اقیانوسها و محاسبه میزان رسوبگذاری ذکر کرد. در سال 1897 ، فیزیکدان معروف «لرد کلوین» (Lord Kelvin) قدمت و عمر زمین را به این صورت تعریف نمود که زمین در ابتدا به حالت مذاب بوده و بعد سرد شده است. وی همچنین اظهار نظریه‌هایی را بر اساس فرضیه‌هایی در مورد منشأ و مبدا حرارت خورشید به عمل آورد و ادعا کرد زمین سنی در حدود 20 الی 40 میلیون سال دارد.در اوایل قرن بیستم ، «رادرفورد» (Ruther Ford) و «هولمز» (Holmes) در انگلیس و «بولتوود» (Boltwood) در آمریکا دریافتند که تجزیه عناصر ناپایدار جهت تولید ایزوتوپهای رادیوژنیک می‌توانند برای تعیین سن کانیها و سنگهای پوسته کره زمین مورد استفاده قرار گیرند. ولی روشها و تکنیکهای تحلیلی در آن زمان آنقدر دقیق نبود که بتواند مقدار ایزوتوپهای رادیوژنیک موجود در سنگها را تعیین نماید. در نتیجه منحصرا بعد از سال 1950 که اسپکترومتر (Spectrometer) اختراع گردید، تعیین سن سنگها به طریق ایزوتوپی معمول گردید از این مقاله سعی می‌شود تا روشهایی را که از ابتدا برای برآورد عمر زمین مورد استفاده قرار گرفته، مورد بحث قرار دهیم و در نهایت به روشی که امروزه استفاده می‌شود و دقیقتر است، اشاره کنیم.

تخمین عمر زمین بر اساس شوری آب اقیانوسها

در سال 1715 «ادموند هالی» (Edmond Halley) ، منجم انگلیسی ، این مطلب را پیش کشید که سن زمین را می‌توان از روی مقدار شوری آب اقیانوسها محاسبه کرد. عملا نقشه این بود که مقدار شوری آب دریاها را با دقت تمام محاسبه و سپس عمل را ده سال بعد تکرار کنند، با محاسبه مقدار ازدیاد شوری آب در هر ده سال می‌توان زمان لازم برای تحصیل شوری آب فعلی را از آبهای شیرین اولیه بدست آورد. اگر هم چنین آزمایشی انجام شده باشد، هیچ ازدیادی در شوری آب اقیانوسها دیده نشد.در اواخر قرن نوزدهم بعضی محققان با تجدید نظر در روش فوق و با تجزیه شیمیایی آب رودخانه‌ها ، مقدار سدیم اضافه شده به دریاها در هر سال توسط رودخانه‌های دنیا را محاسبه کردند. با دانستن حجم تقریبی آب اقیانوسهای امروزی و فرض اینکه آب اقیانوسهای اولیه شیرین بوده است و میزان ازدیاد سدیم توسط رودخانه‌های امروزی میانگینی برای تمام زمان زمین شناسی است، آنها زمان لازم برای تحصیل غلظت سدیم و شوری امروزی را محاسبه کردند. سرانجام نتیجه‌گیری کردند که از روز اولی که آب برای نخستین بار بر روی سطح زمین متراکم شد، 90 میلیون سال می‌گذرد. امروزه ما می‌دانیم که تخمین هالی از سن اقیانوسهای زمین به مراتب کمتر سن واقعی آنهاست. دلیل عمده آن هم این است که او تعویض سدیمی را که میان آب دریا و سنگهای پوسته کره زمینی صورت می‌گیرد، بسیار ناچیز می‌پنداشت.

 

تخمین عمر زمین بر اساس میزان رسوبگذاری

هر که سنگهای رسوبی را مطالعه کرده باشد، می‌داند که طبقه‌ای ضخیم از ماسه سنگ می‌تواند در عرض یک روز ته‌نشین شود یا لایه نازک گل رسی که روی آن قرار می‌گیرد، ممکن است برای ته‌نشین شدن به 100 سال زمان نیاز داشته باشد و سطح طبقه بندی میان آنها ممکن است نماینده مدت زمانی بیش از مجموع آنها باشد. برای ضخامت معینی از طبقات رسوبی میانگینی برای میزان رسوبگذاری وجود دارد. اگر تغییرات مهمی در شرایط محیط رسوبی رخ ندهد و فرسایش نیز در امر رسوبگذاری وقفه ایجاد نکند، ضخامت طبقات کم و بیش متناسب با زمان سپری شده خواهد بود.زمین شناسان اواخر قرن نوزدهم تصور می‌کردند که می‌توانند در صورت تخمین میزان ته‌نشست در محیطهای رسوبی امروزی ، زمان مشخص شده توسط واحدهای سنگهای قدیمی مشابه را نیز معین کنند. آنها همچنین تصور می‌کردند که در صورت تعیین ضخامت کل طبقات رسوب کرده در گذشته ، خواهند توانست کل زمان زمین شناسی طی شده را تخمین بزنند.

تخمین عمر زمین بر اساس سرد شدن کره زمین

در بسیاری مناطق درجه حرارت معادن عمیق ازدیاد محسوس و یکنواختی را بر حسب ازدیاد عمق نشان می‌دهد. این افزایش حرارت نشان می‌دهد که دما از درون گرم زمین به طرف قسمت سرد خارجی آن جریان دارد و از پوسته زمین متصاعد می‌شود. این اتلاف گرما قابل اندازه گیری است و منطق « کلوین » (Kelvin) استدلال می‌کرد که اگر زمین با از دست دادن حرارت ، تدریجا در حال خنک شدن است، پس در زمان گذشته می‌بایست گرمتر بوده باشد. کلوین این پدیده را به صورت اتلاف حرارت از یک حالت مذاب اولیه در نظر گرفته بود و با مطالعه میزان جریان حرارت امروزی نشان داد که از نظر زمان زمین شناسی ، مسلما مدت زیادی از زمانی که زمین در حالت مذاب بوده، نگذشته است.این زمان ظاهری تبلور پوسته جامد زمین ، حداکثر قدرت ممکن را برای حیات ، آنگونه که ما می‌شناسیم، مشخص کرد. عدم دسترسی به جزئیات مربوط به نقطه ذوب سنگها و هدایت گرما تحت شرایط حرارت و فشار زیاد ، مانع ارزیابی دقیق زمان تبلور می‌شد، لکن مدت تعیین شده بسیار کم بود. بر این اساس زمانی که کلوین بدست آورده بود، 100 میلیون سال بود.

 

مواد رادیواکتیو

بعضی از مواد معدنی دارای خاصیت رادیواکتیو هستند، بدین معنی که از خود سه نوع اشعه خارج می‌سازند. اشعه خارج شده یا دارای بار الکتریکی مثبت است، که در این صورت به نام پرتو آلفا خوانده می‌شود و یا دارای بار اکتریکی منفی است که اشعه بتا خوانده می‌شود. نوع سوم اشعه که نزدیک به اشعه ایکس است، از نظر الکتریکی خنثی است و به نام اشعه گاما خوانده می‌شود. در اثر صدور این ذرات ، به مرور جسم به مواد دیگر تبدیل می‌شود.مدت زمانی را که جهت نصف شدن اتمهای اولیه لازم است، به نام زمان نیم عمر می‌خوانند. زمان نیم عمر اجسام مختلف ، متفاوت است و از چند ثانیه تا چند میلیارد سال تغییر می‌کند. سنگهای تشکیل دهنده زمین معمولا حاوی یک یا چند ماده رادیواکتیو نظیر اورانیوم ، رادیوم ، توریوم و پتاسیم و... هستند. با در دست داشتن سرعت تجزیه و اندازه گیری مقدار اولیه و ماده تبدیل شده موجود در نمونه ، می‌توان زمانی را که از تجزیه نمونه می‌گذرد، بدست آورد و بر اساس همین روش است که سن زمین تعیین شده است.

تخمین سن زمین بر اساس سنگهای آسمانی

قسمت اعظم و در ضمن قدیمیترین بخش تاریخ زمین شناسی را بخش پرکامبرین تشکیل می‌دهد که معمولا از نظر سنگ شناسی مشخص است و می‌توان سنگهای متعلق به آن را را تشخیص داد. آزمایشات مختلف بر روی سنگهای این بخش ، اعداد متفاوتی را بدست داده که کمترین آنها 600 میلیون سال و بیشترین آنها 3.5 میلیارد سال است. اگر تصور کنیم که پرکامبرین از 3.5 میلیارد سال پیش شروع شده ، زمان تشکیل زمین مسلما از این عدد بیشتر است و بنابراین برای تعیین سن زمین از عوامل دیگر نیز بایستی کمک گرفت.یکی از این عوامل ، سنگهای آسمانی است. از آنجا که مطابق تمام نظریات موجود ، تشکیل زمین و سایر سیارات منظومه شمسی همزمان بوده است، با تعیین سن این سنگها می‌توان سن واقعی زمین را بدست آورد. حداکثر سنی که تا به حال برای سنگهای آسمانی بدست آمده 4،6 میلیارد سال بوده است. یکی دیگر از عواملی که به تعیین سن زمین کمک می‌کند، نمونه‌هایی است که از ماه گرفته شده و بر اساس تجزیه نمونه‌های مذبور عددی نظیر عدد فوق برای آنها حاصل شده است. بدین ترتیب می‌توان عدد 4،6 میلیارد سال را برای سن زمین در نظر گرفت.

نابودی زمین

مقدمه

عواملی وجود دارند که ممکن است در آینده باعث نابودی و یا تغییر در شرایط اقلیمی و از بین رفتن حیات در کره زمین شوند. بعضی از این عوامل که زائیده دست بشر است تا گذشته‌های ‌خیلی نزدیک اهمیت چندانی نداشت ولی امروزه نمی‌توان از آنها چشم پوشی کرد ، مثلا قطعه درختان جنگلی و افزایش دی‌اکسید کربن اتمسفر و سوراخ شدن لایه ازن. عوامل دیگری نیز وجود دارند که آدمی نمی‌تواند آنها را کنترل کند و این عوامل طبیعی ممکن است که در آینده باعث نابودی کره زمین شوند. در این مقاله سعی می‌شود تا حدودی به شرح این عوامل بپردازد.شکار بی رویه حیوانات ممکن است که باعث نابودی آنها شود مثلا شکار ماموتها‌ توسط انسان با از بین رفتن نسل این حیوان شده است و امروزه فقط اجساد باقیمانده این جانور عظیم الجثه را در میان یخهای سیبری می‌توان پیدا کرد. از میان دیگر قربانیها به پرنده قطبی اوک (Auk) باید اشاره کرد که طی 150 سال اخیر شکار گردیده و کلا نابود شده است و روند شکار پارهای ‌جانوران دیگر نیز بسیار خطرناک و هشدار دهنده است. قطعه درختان جنگلی ، پاکسازی بیشه را رها و گسترش کشتزارها و توسعه روز افزون شهرها را نیز باید از جمله عوامل دانش و گریزاندن جانوران از دادگاه خویش به شمار آورد.

 

آلودگی محیط زیست

مساله آلودگی محیط نیز بسیار جدی و سه طور فزآیندهای ‌خطرناک و هشدار دهنده است. مقدار دی‌اکسید کربن موجود در جو زمین هماهنگ با پیشرفت صنایع به شدت رو به فزونی است و ارائه آن زیانها‌ی جبران ناپذیری به همراه خواهد داشت. بیشتر افزایش دی‌اکسید کربن در جو ناهید موجب گردیده تا دمای سطحی سیاره مزبور به حدود 540 درجه سانتی گراد بالا رود و ان را به جهنمی سوزان مبدل سازد. پاره‌های ‌فعالیتها‌ی صنعتی نوین موجب می‌گردد که میزان دی‌اکسید کربن کره مسکونی ما نیز فزونی یابد و دگرگونی خطرناکی را در اقلیم زمین باعث گردد. کشور آمریکا بزرگترین کشور آلوده کننده زمین می‌باشد که به تنهایی در حدود 40 در صد از دی‌اکسید کربنی که وارد جو زمین می‌شود را تولید می‌کند.

جنگ اتمی

تهدید کننده‌ترین خطرات ، احتمال وقوع جنگ جهانی و کاربرد سلاحهای اتمی است. تاثیر جنگ افزارهای اتمی و عدم کنترل صحیح مواد رادیواکتیو نه تنها به نابودی انسان و دیگر موجودات کنونی زمین می‌انجامد بلکه امکان تجدید حیات از سیاره خاکی را نیز برای همیشه از بین خواهد برد.

 

تاثیر خورشید

به جز موارد قبلی که زائیده دست انسان است، رویدادهای دیگری نیز وجود دارد که از توان کنترل آدمی به دور است. حیات زمین کاملا به خورشید وابسته است و هر گونه تغییری درباره آن ولو خیلی ناچیز هم که باشد به ضایعات مرگباری مبدل می‌گردد و اثرات ، مطلوبی به جای می‌گذارد. آب و هوای زمین طی عصر یخبندان کوچک یعنی حدود قرن هفدهم میلادی بطور کاملا محسوس سردتر از امروزه بوده است. بین سالهای 1850 تا 1940 دوره نسبتا گرمی جایگزین آن گردید، اما این که دوره سرد احتمالا یخبندان بعدی کی آغاز خواهد شد، معلوم نیست و هیچگونه شواهدی دال بر این که شرایط معتدل کنونی تا چه زمان به درازا خواهد کشید در دست نداریم.گذشته‌ها‌ نشان داده که دورهها‌ی میان دو یخبندان گاه به بیش از ده هزار سال به درازا کشیده است ولی در هر صورت مسلم این است که دوره یخبندان دیگری در پیش خواهیم داشت. بدون تردید انسان با اتکا به نیروی تفکر و اندیشه که از ویژگیهای او به شمار می‌آید از این مهلکه جان سالم به در خواهد برد، ولی در عین حال باید گفت که این مبارزه به قیمت کاهش جمعیت جهان تمام خواهد شد.

برخورد سنگهای آسمانی

خطر ناشی از برخورد سنگهای آسمانی با زمین را نیز نباید از قطر دور داشت گرچه تصادف سنگهای آسمانی به نابودی زمین نخواهد انجامید ، اما دگرگونیهایی را در شرایط اقلیمی زمین موجب خواهد شد، سرنوشت دایناسورها می‌تواند گواهی بر این ادعا باشد. گفته می‌شود که دایناسورها در اثر برخورد سنگ آسمانی بسیار عظیمی منقرض شده‌اند. سنگهای آسمانی که به زمین برخورد می‌کنند در بدو پیدایش زمین بسیار زیاد بوده است و رفته رفته از تعداد آنها و نیز اندازه آنها کاسته شده است. همچنین این سنگها وقتی به جو زمین برخورد می‌کنند در اثر اصطکاک سوخته می‌شوند و اندازه آنها بسیار کوچک می‌شود و حتی ممکن است به صورت گرد و غبار در آیند و به زمین نرسند.

 

واژگونی قطبها‌ی مغناطیسی زمین

واژگونی قطبها‌ی مغناطیسی زمین نیز ضایعه ساز خطرناکی به شمار می‌آید. این دگرگونی در زمانی آغاز خواهد شد که اثرات فعلی میدان مغناطیسی زمین متوقف شود در خاصیت مگنتوسفر (Magnetosphere) که نقش سیر محافظ زمین را به عهده دارد زایل شود و راه را بر روی پرتوهای کیهانی بگشاید و صحنه حیات بخش زمین را میدان تاخت و تاز اشعه مرگبار کیهانی قرار دهد. دانشمندان اثبات کرده‌اند که هسته داخلی زمین که جامد است در حال بزرگ شدن است یعنی به اندازه آن افزوده می‌شود و از اندازه هسته خارجی مایع کاسته می‌شود. در اثر بزرگ شدن هسته جامد زمانی می‌رسد که دیگر هسته مایعی وجود نخواهد داشت و در این هنگام مغناطیس زمین بکلی از بین خواهد رفت. زیرا همانگونه که می‌دانیم هسته خارجی و داخلی به عنوان یک دینام عمل می‌کنند و باعث ایجاد میدان مغناطیسی زمین می‌شوند.

وقتی که خورشید بمیرد ...

در قانون طبیعت عمر ابدی مفهومی ندارد و طبیعتا برای خورشید هم استثنا قائل نخواهد شد. هیدروژن کره گرم و حیاتبخش خورشید نیز سرانجام روزی به پایان خواهد رسید و دگرگونیهایی در ساختار آن پدید خواهد آمد. توده مرکزی آن جمع و گداخته می‌گردد و توده‌ها‌ی سطحی باد کرده و متورم و سرد می‌شود و خورشید ما را به ستاره سرخ عظیمی مبدل می‌سازد.این فعل انفعالات بازده حرارتی خورشید را برای مدتی لااقل صد بار بیشتر از بازده حرارتی امروزی بالا خواهد برد و حتی اگر کره زمین جان سالم به در برد، خصیصه حیاتی آن برای ابد از میان خواهد رفت. طی این تحولات اقیانوسها‌ به جوش آمده و آب آنها تبخیر خواهد شد. جو آن که نسبت به وضع فعلی به شدت دگرگون گردیده است پراکنده می‌گردد و دنیای پرتلاش و امیدوار کننده انسان را به دیار خاموشان مبدل می‌سازد.

پایان عمر زمین چه زمانی است؟


دانلود با لینک مستقیم


تحقیق درمورد تاریخچه تخمین عمر زمین 18 ص

تخمین پارامترهای احتمال

اختصاصی از کوشا فایل تخمین پارامترهای احتمال دانلود با لینک مستقیم و پر سرعت .

تخمین پارامترهای احتمال


تخمین پارامترهای احتمال

مقالات  ریاضی  با فرمت           DOC           صفحات  20

تخمین پارامترهای احتمال:

1-4 : روش احتمال شرطی

اجازه دهید(X1,Y1) , ... Xn,Yn) ,)  نشان دهنده نمونه های تصادفی از جامعه n باشند این نمونه ها برای تخمین Рr(C|A) استفاده می شوند . احتمال شرطی رخداد C به شرط رخدادA به وسیله فرمول اماری زیر محاسبه می شود :

 

  • 4)

 

که وظایف مشخصه های XA ,Xc نشان داده می شوند به وسیله :

 

(2. 4)                      

 

(3. 4)                        

 

 

حالافرض کنید به جای پدیده های معمولی    Aو  C پدیده های فازی جایگزین شوند .

این به این معناست که به وسیله mfs  پدیده های A,C به µA وμC  تعریف شوندو

به جای XΑ،Xc  در معادله 4.1 جایگزین شوند . در نتیجه خواهیم داشت :

(4.4)

این فرمول پایه تعریف احتمال رخداد در پدیده فازی می باشد ( درس 37 ) .

مشتق اول فرمول 4.4 درسهای 35و36 را پدید می آورد .

نتیجه فرمول 4.4 در تخمین پارامترهای شرطی درPFS استفاده می شود . این دیدگاه دردرسهای 16و18و34 دنبال می شود که به روشهای احتمال شرطی در این تز اشاره

 می کند  .

فرض کنید مجموعه اطلاعاتی شاملn  نمونه به صورت ( (i=1,2, ...,n)     ( Xi,Yi

  برای تخمین پارامترهای احتمال  در دسترس باشد همچنین فرض کنید که هم مقدمه وهم نتیجه mfs درسیستم تعیین شده است ونیاز به بهینه سازی بیشتر نمی باشد یعنی فقط پارامترهای احتمال درتخمین باقی بمانند . به نظر منطقی می آید که پارامترهای Pj,k واقعی رابرای تخمین احتمال شرطی پدیده فازی Ck به شرط رخداد پدیده فازی Aj قرار دهیم . اگرچه ورودی X به تعریف بیشتر احتیاج ندارد اما برای نشان دادن غیر عادی بودن محاسبات  mfµAj وmfµ¯Aj باید ازفرمول زیراستفاده شود :

(4.5)                 

بنابراین Pj,k واقعی است و برای تخمین احتمال شرطی پدیده فازی Ck ونشان دادن غیر عادی بودن پدیده فازی Aj باید ازآن استفاده شود .

 


دانلود با لینک مستقیم


تخمین پارامترهای احتمال