کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

تحقیق درباره ویژگی های ترمودینامیکی الاستومرها

اختصاصی از کوشا فایل تحقیق درباره ویژگی های ترمودینامیکی الاستومرها دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 17

 

بسم الله الرحمن الرحیم

ویژگی های ترمودینامیکی الاستومرها

استاد محترم: مهندس شریف زاده

مهرنوش افراز مند 7903205

مقدمه:

وسایل لاستیکی که در زندگی روزمره بسیار معمول هستند، و هر کسی در زندگی حداقل با بعضی از ویژگی های فیزیکی طبقه ای از پلیمرها که الاستومرها نامیده میشوند آشناست.

پاره ای از ویژگی های الاستومرها:

الاستومرها قادر هستند چند برابر طول اصلیشان کشیده شوند با یک نیروی تقریباً کم

هنگامی که نیروی وارد به جسم کم می شود، این اجسام به سرعت به حالت اولیه شان بر می گردند و خصوصیت فنریت یا ارتجاعی گره های انتقالی جهت خاصیت ارتجاعی بسیار نزدیک به صفر است.

الاستومرها هیچ تغییر شکل همیشگی و ثابتی را متحمل نمی شوند به همان دلیل خاصیت ارتجاعی

هنگامی که کاملاً کشیده می شوند و یا نزدیک به آن حالت قرار دارند، از خود قدرت کششی و سختی بالایی نشان می دهند.

خصوصیاتی که در بالا ذکر شد، همگی در سطح میکروسکوپی قابل دیدن

هستند، که در زمینة( ترمودینامیک کلاسیک) می توان آنها را بررسی کرد. این رفتار کلاسیکی هیچ گونه اطلاعات و خصوصیاتی از ساختار مولکولی احتیاج ندارد هر چند که، جهت نمایش دادن این خصوصیات، پلیمرها باید ویژگی های مولکولی شخصی داشته باشند.

1)پلیمر باید وزن مولکولی بالایی داشته باشد.

2) برای بیشتر قسمت ها، پلیمر باید فعالیت درونی ضعیفی بین رشته ها برقرار باشد.

برای مثال، لاستیک طبیعی که کائوچو نیز نامیده می شود، پس از سرچشمة آن به عنوان « شیرة درخت کائوچو» یک وزن مولکولی حدود 000/350 دارد. ترکیب شیمیایی آن پلی است که در مواد تغییر داده نشده است و فقط دارای نیروهای ضعیف بین مولکولی است. این نیروها درونی هستند. شکل (1)


دانلود با لینک مستقیم


تحقیق درباره ویژگی های ترمودینامیکی الاستومرها

تحقیق در مورد الگو سازی ترمودینامیکی 30 ص

اختصاصی از کوشا فایل تحقیق در مورد الگو سازی ترمودینامیکی 30 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 32 صفحه


 قسمتی از متن .doc : 

 

الگو سازی ترمودینامیکی از تعادل فاز ترکیبات چند تائی:

نکات مؤلف :

محصولهای تجاری بعنوان نمونه مشخص شده اند . چنین شناسایی مورد توصیه یا پشتیبانی توسط موسسه ملی استاندارد و فن آوری نمی باشد؛ نیز توصیه نمی شود که آنها مورد نیاز بوده و مناسبترین برای رسیدن به هدف هستند .

چکیده :

مقاله حاضر دیدگاه جدیدی از روش CALPHAP و پیشرفتهای اخیر ایجاد شده را به ما میدهد.

تاریخچه مختصری داده شده سپس گسترده (زمینه ) محاسبه های نمودارهای فازی تشریح شده اند.

شرح و توصیفهای ترمودینامیکی بطور معمول در روشهای CALPHAP که بیان شد، بکار می روند و روشهای بکار رفته مقادیر عددی را برای این توصیفهای مطرح شده ؛ فراهم می کند.

برون یابی سیستمهایی با ترکیب بالاتر توضیح داده شده و پیشرفتهای اخیر در کیفیت ارزیابی ؛اثبات شده است .

یک مرور کلی بر ابزار نرم افزاری رایانه ای و داده های موجود ؛ارائه شده است. در نهایت کاربردهای مختلفی از محاسبه های نمودارهای فازی تشریح شده است.

مقدمه :

نمودارهای فازی نمایش دهنده حالت یک ماده بعنوان تابعی از دما و فشار و غلظتهای ترکیبهای تشکیل دهنده هستند و بنابراین بطور مکرر بعنوان یک دیده کلی یا راه حل برای طراحی آلیاژها ، گسترش ، پردازش و داده های قابل فهم مورد توجه بوده است. اهمیت نمودارهای فازی توسط انتشار کتابچه های راهنما (Hand Book) نظیر “نمودارهای فازی آلیاژی دوتایی”‌ ؛“ تعادل فازی ،تصاویر بلوری و داده های ترمودینامیکی “آلیاژهای دوتایی” ؛“ نمودارهای تعادلی فازی” انعکاس یافته است؛

“نمودارهای فازی برای سرامیستها ” ؛ “ هند بوک نمودارهای فازی آلیاژ سه تایی ” و“ آلیاژهای سه تایی” نیز که در ادامه آمده است.

حالت یک ماده با ترکیب دوتایی در فشار ثابت میتواند در شکلهای گرافیکی شناخته شده ای از نمودارهای فازی دوتایی ایجاد شوند . برای مواد با ترکیبهای سه گانه یک اندازه گیری مضاعف مورد نیاز است تا یک ترکیب کامل ایجاد شود . بنابراین ،سیستمهای سه تایی بطور معمول توسط یک سری از بخشها یا پروژه ها ایجاد میشود. به دلیل چند بعدی بود آنها تفسیر نمودار سیستمهای ترکیبی بخیر می تواند بسرعت دست و پاگیر برای کاربران موقت اینگونه نمودارها باشد . برای سیستمهای با ترکیبهای بیش از سه تا بازنمایی گرافیکی نمودارهای فازی در یک شکل مناسب نه تنها بعنوان چاشنی می باشد بلکه بواسطه نداشتن اطلاعات آزمایشگاهی کافی . مانعی است به هر حال ، مشکل سیستم باز نمایی گرافیکی با ترکیبهای زیاد ، برای محاسبه‌های نمودارهای فازی نامرتبط باشد. محاسبه هایی اینچنین می تواند برای مواد مشکلات پر اهمیت باشد.

تاریخچه :

از وقتیکه تنها توسعه جدید در الگو سازی و فن آوری محاسباتی که محاسبه های رایانه ای تعادل فازی درترکیبات چند گانه تا حد امکان واقعی ایجاد کرده است؛ از زمان ارتباط بین ترمودینامیک و تعادل فازی توسط J.W.Gibbs فراهم شده است . بیش از یک قرن می گذرد Hertz زمینه های شکست کاری Gibbs را خلاصه بندی کرده است اگر چه پایه های ریاضی بنیان نهاده شده به بیش از 30 سال گذشته تا j.J.Van Laa ساختار ریاضی اش را و سیستمهای دوتایی فرضی چاپ کرد . در توصیف فازهای مایع Van Laav جمله های نرم( افزارهای ) وابسته غلظت را بکار برد که Hildebrand محلول های با قاعده نام نهاد . بیش از 40 سال گذشته بود که J.L.Meijering محاسبات فضای مخلوط درمایعات چهارتایی و سه تایی را چاپ کرد . مدت کوتاهی در پی آن Meijering این روش در تجزیه ترمودینامیکی سیستم Cr-Cu-Ni بکار گرفت. بطور همزمان Cohen, Kaufman محاسبه های ترمودینامیکی در تجزیه و تحلیل تبدیلات مارتنزیتی در سیستم Fe-Ni بکار بردند.

Kaufman کارخود را درباره محاسبه نمودارهای فازی که شامل نقش فشار بود ؛ ادامه داد.

در سال Bernstein , Kanfman :1970 نتایج کلی از محاسبه های نمودارهای فازی را خلاصه بندی کردند و نیز فهرستی از برنامه های رایانه ای برای محاسبه های نمودارهای فازی سه تایی و دو تایی ارائه دادند که منجر به پایه ریزی روش CALPHAD گردید . (محاسبه نمودارهای فازی ). در سال Kaufman ؛1973 اولین جلسه پروژه گروه بین المللی CALPHAD را سازماندهی کرد. پس از آن گروه CALPHAD از نظر اعضاء گسترش یافت .

قلمروی محاسبه های نمودارهای فازی:

بمنظور غلبه بر مشکل چند بعدی وضع شده توسط سیستم با ترکیبات بسیار زیاد ؛ روشهای پیشنهادی هستند که متناوبا جایگزین اطلاعات نمودارهای فازی مورد نیاز می شوند . در آلیاژهای فولاد زنگ نزن، برای مثال؛ بطور مرکب متناوبا بوسیله انتقال ترکیبات عناصر پایدار – آهنی کاهش می یابد نظیر (معادل یا مشابه Cv ) و عناصر پایدار آستینتی نظیر (معادل Ni ) . مجموع معادلهای Cr, Ni در پیش بینی فازهای موجود در آلیاژهایی بکار می رود .بایستی توجه نمودکه تقریب نزدیک به اینها محدود به تغییر


دانلود با لینک مستقیم


تحقیق در مورد الگو سازی ترمودینامیکی 30 ص

تخمین توابع ترمودینامیکی محلولهای مائی (نظری تجربی)

اختصاصی از کوشا فایل تخمین توابع ترمودینامیکی محلولهای مائی (نظری تجربی) دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

تخمین توابع ترمودینامیکی محلولهای مائی (نظری- تجربی)

پارامتر حلالیت و کسر حجمی می‌باشد که طبق رابطه زیر ارائه می‌گردد.

(4-52)

(4-53)

گرمای تبخیر است

(4-54)

(4-55)

مدل براملی (Bromley)

براملی ]161[ یک مدل تجربی که بسیار ساده بود ارائه داد. این مدل قابل اعمال تا غلظتهای حدود 6 مولال محلول الکترولیت قوی می‌باشد و این مدل تنها دارای یک پارامتر قابل تنظیم می‌باشد که به صورت زیر است:

(4-56)

این معادله فقط یک پارامتر (B) را دارد که وابسته به الکترولیت می‌باشد. رابطه ضریب اسموزیته هم به صورت زیر می‌باشد:

(4-57)

و و

و B یک پارامتر قابل تنظیم می‌باشد

مدل هامر (Hamer)

هامر و وو ]161[ برای ضریب فعالیت و ضریب اسموزیته معادله‌های زیر را ارائه دادند.

(4-58)

(4-59)

که

مقادیر ثابت‌های و B و C و D برای الکترولیتهای مختلف با مقایسه ضرایب فعالیت و اسموزی تجربی با مدل به دست می‌آید.

مدل چن (Chen)

چن و همکارانش ]161[، معادله زیرین را برای اندازه‌گیری ضریب فعالیت ارائه دادند.

(4-60)

(4-61)

(4-62)

(4-63)

و معادله برای تخمین ضریب فعالیت به صورت زیر می‌باشد:

(4-64)

(4-65)

(4-66)

که در این معادله به کسر مولی کاتیون و آنیون و حلال به ترتیب اشاره دارند. و مقادیر پارامترها برای هر الکترولیت مثل با مقایسه با تجربی برای هر الکترولیت بدست می‌آید.

مدل میسنر (Meissner)

معادله به صورت زیر برای تخمین ضریب فعالیت توسط میسنر و کوسیک (Kusik) ارائه شد ]161[:

(4-67)

(4-68)

(4-69)

(4-70)

برای معادله بالا است. پارامتر معادله هم q می‌باشد. که با مقایسه با مقادیر تجربی بدست می‌آید. بدست آمدن یک معادله برای محاسبه ضریب اسموزیته از معادله بالا کمی مشکل می‌باشد.

مدل باهه (Bahe)

باهه ]161[ معادله زیر را برای محاسبه ضریب فعالیت ارائه داد:

(4-71)

که برابر با و A در دمای 15/298 درجه کلوین برابر 288941/0 است B پارامتری است که به الکترولیت وابسته است. و C نشان دهنده غلظت الکترولیت است که می‌تواند از مولالیته با استفاده از معادله زیر که توسط هارلزو اون ارائه شد بدست بیاید:

(4-72)

که p1 = 0.997 و مقدار a و b برای الکترولیتهای مختلف متفاوت است باز برای ضریب اسموزیته نمی‌توان با استفاده از معادله بالا معادله‌ای بدست آورد.

مدل گلوکوف (Glueckauf)

گلوکاف ]161[ معادله برای محاسبه و ضریب اسموزیته ارائه داد که به صورت زیر می‌باشد

(4-73)

که

معادله بالا سه پارامتر وابسته به الکترولیت داراد که دوتای آن یعنی و از مقادیر فعالیت بدست می‌ایند. و پارامتر r به صورت زیر می‌باشد.

(4-74)

حجم مولی جزئی الکترولیت و دقت بی‌نهایت حجم مولی آب خالص می‌باشد مقادیر ثابتهای بالا توسط هاردواون ]161[ داده شده است. مقادیر

و hc برای الکترولیتهای مختلف تخمین زده می‌شود.

4-4-2 مدلهای آماری

مدلهایی که بر اساس دیدگاههای مکانیک آماری استوار هستند به طور وسیعی در پیش‌گویی خواص ترمودینامیک محلولهای الکترولیت مورد استفاده قرار می‌گیرد. بر اساس گفته لی و همکارانش ]71[ بر پایه مفهوم ترمودینامیک آماری دو روش جهت مطالعه رفتار و ساختمان مواد وجود دارد یکی استفاده از داده‌های شبیه‌سازی مونت کارلو (Montecarlo) یا حرکتهای مولکولی (Molcalardynamics) و روش دیگر استفاده از معادلات انتگرالی از قبیل (Percus – yevick) یا HNS (Hypernetted chain) می‌باشد. تمام این روشهای مکانیک آماری با در نظر گرفتن


دانلود با لینک مستقیم


تخمین توابع ترمودینامیکی محلولهای مائی (نظری تجربی)

نرم افزار فوق العاده ی عالی آموزش مفاهیم ترمودینامیکی

اختصاصی از کوشا فایل نرم افزار فوق العاده ی عالی آموزش مفاهیم ترمودینامیکی دانلود با لینک مستقیم و پر سرعت .

نرم افزار فوق العاده ی عالی آموزش مفاهیم ترمودینامیکی


نرم افزار فوق العاده ی عالی آموزش مفاهیم ترمودینامیکی

 

 

 

 

 

 

 

نام فایل : نرم افزار فوق العاده ی عالی آموزش مفاهیم ترمودینامیکی 

فرمت : exe

توضیحات

از این نرم افزاربرای پژوهش، آموزش و درک بهتر مفاهیم ترمودینامیکی در فرآیندهای شیمیایی و متالورژیکی توسط اساتید و پژوهشگران استفاده می­شود...

توانایی نرم­ افزار:
تعیین شرایط تعادل در واکنشهای شیمیایی
موازنه جرم و گرما در فرآیندهای شیمیایی و متالورژیکی
تعیین اتلاف انرژی فرایند
تعیین تاثیر متغیرهای ترمودینامیکی بر پیشرفت واکنش
تعادل در پیلهای الکتروشیمیایی
رسم دیاگرام پوربه
رسم دیاگرام پایداری
رسم دیاگرامهای انتروپی، آنتالپی، انرژی آزاد گیبس و ظرفیت حرارتی گونه های شیمیایی


در پیوست تصاویری از محیط این نرم افزار آورده شده است


دانلود با لینک مستقیم


نرم افزار فوق العاده ی عالی آموزش مفاهیم ترمودینامیکی

پایان نامه مطالعاتAb-initio و DFT بر روی پایداری ترمودینامیکی نانولوله‌های بورون نیترید و بررسی NMRآن درحلال‌های مختلف

اختصاصی از کوشا فایل پایان نامه مطالعاتAb-initio و DFT بر روی پایداری ترمودینامیکی نانولوله‌های بورون نیترید و بررسی NMRآن درحلال‌های مختلف دانلود با لینک مستقیم و پر سرعت .

پایان نامه مطالعاتAb-initio و DFT بر روی پایداری ترمودینامیکی نانولوله‌های بورون نیترید و بررسی NMRآن درحلال‌های مختلف


پایان نامه مطالعاتAb-initio   و DFT  بر روی پایداری ترمودینامیکی نانولوله‌های بورون نیترید و بررسی  NMRآن درحلال‌های مختلف

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:103

پایان نامه برای دریافت درجه کارشناسی ارشد  M.Sc
رشته شیمی فیزیک

فهرست مطالب:

چکیده    1
فصل اول: مقدمه و مروری بر تحقیقات گذشته    2
1-1- مقدمه    3
1-2- نانو تکنولوژی    3
1-3- نیروهای مؤثر در ابعاد نانومتری    4
1-3-1- نیروهای واندروالس    4
1-3-2- نیروهای کوالانسی    4
1-3-3- نیروهای غیرموضعی بدون جهت    5
1-4- انواع نانوساختارها    5
1-5- نانو لوله‌ها    6
1-6- نانو لوله‌های بورون نیترید    8
1-6-1- تاریخچه‌ی مختصری از تهیه‌ی نانو لوله‌های بورون نیترید    9
1-6-2- پیکربندی نانو لوله‌های بورون نیترید    10
1-6-3- انواع ساختارهای نانو لوله بورون نیترید    10
1-6-4- روش‌های ساخت نانولوله بورون نیترید    11
1-6-4-1- سایش با لیزر    12
1-6-4-2- رسوب‌گیری بخار شیمیایی (CVD)    12
1-6-4-3- تخلیه قوس الکتریکی    13
1-6-4-4- اتوکلاو    13
1-6-5- مقایسه‌ی خواص نانو لوله بورون نیترید با نانو لوله‌ی کربنی    13
1-6-5-1- الکترونگاتیویته    14
1-6-5-2- شکل ظاهری    15
1-6-5-3- رسانایی و لومیسانس    15
1-6-5-4- خواص مکانیکی و حرارتی    16
1-6-5-5- کاربرد    16
1-6-6- کاربردهای نانو لوله بورون نیترید    16
1-6-6-1- ذخیره هیدروژن    16
1-6-6-2- نانو پرکننده در کامپوزیت‌ها    16
1-6-6-3- سازگاری با بافت زنده و کاربرد آن    17
1-6-6-4- کاربردهای دیگر    17
1-7- مروری بر تحقیقات گذشته    19
فصل دوم: مباحث تئوری    26
2-1- مقدمه    27
2-2- مکانیک مولکولی (MM)    27
2-3- مکانیک کوانتومی (QM)    28
2-3-1- روش‌های نیمه تجربی    31
2-3-1-1- روش‌های تجربی میدان نیرو(مکانیک مولکولی)    31
2-3-2- روش‌های ab-initio    32
2-3-3- توانایی‌های روش ab-initio    32
2-3-4- محدودیت‌های روش ab-initio    33
2-3-5- نکات قوت روشن ab-initio    33
2-3-6- توابع پایه (basis set)    33
2-3-6-1- سری‌های پایه‌ی ظرفیتی ـ شکافته    34
2-3-6-2- سری پایه‌ی قطبیده    35
2-3-6-3- سری پایه پخش شده    35
2-3-6-4- سری پایه‌ی اندازه‌ی حرکت زاویه‌ای بالا    35
2-3-7- روش هارتری ـ فاک    36
2-3-7-1- روش هارتری ـ فاک محدود شده (RHF) و محدود نشده (UHF)    37
2-3-8- گرادیان و مشتقات مرتبه‌ی دوم هارتری ـ فاک    37
2-3-9- همبستگی الکترونی    37
2-3-10- تئوری اختلال    38
2-3-11- تئوری تابع چگال    39
2-3-11-1- معادلات کوهن ـ شم    41
2-3-11-2- اوربیتال‌های کوهن ـ شم    42
2-3-11-2- روش چگالی موضعی (LDA)    44
2-3-11-4- روش‌های تصحیح گرادیان    46
2-3-11-5- مزایا و معایب روش DFT    46
2-4- روش‌های کامپیوتری    48
2-4-1- گوسین 98 (Gaussian 98)    48
2-4-2- نرم‌افزار Gauss view    50
2-4-3- هایپر کم    50
2-4-4- Chem Draw    51
2-5- تاریخچه‌ی NMR    51
2-6- محاسبات آغازین پارامترهای NMR    52
2-6-1- روش‌های محاسبات کامپیوتری    53
2-6-2- روش GIAO    53
2-6-3- روش LGLO    54
فصل سوم: روش کار و بررسی داده‌ها    56
فصل چهارم: نتایج    75
4-1- بررسی نتایج حاصل برای ساختار B21N21 در فاز گازی و دمای 298 کلوین    76
4-2- بررسی نتایج حاصل برای ساختار B21N21 در حلال‌های مختلف    79
منابع    90

 
فهرست جداول

جدول (1-1) ویژگی‌های نانو لوله بورون نیترید در مقایسه با نانو لوله کربنی    14
جدول (1-2) بهبود هدایت گرمایی کامپوزیت‌های پلی مری نانو لوله‌های بورون نیترید    17
جدول (2-1) مقایسه‌ی عملکرد روش‌های مختلف DFT (شباهت نتایج حاصل از روش MP2 یا روش تئوری تابعیت قابل توجه است)    47
جدول (3-1) مقادیر پارامترهای ترمودینامیکی برای نانو لوله B21N21 تحت متدها و توابع گوسی مختلف در محیط گازی و دمای 298 کلوین    61
جدول (3-2) مقدار گشتاور دو قطبی ترکیبی B21N21 در متدها و توابع کوسی مختلف در فاز گاز و دمای 298 کلوین    61
جدول (3-3) توابع ترمودینامیکی به‌دست آمده در حال‌های مختلف تحت متد B3LYP و تابع پایه 6-31G    63
جدول (3-4) بارکلی ایجاد شده در حلال‌‌های مختلف    64
جدول (3-5) مقدار گشتاور دو قطبی ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال‌های مختلف    65
جدول (3-6) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در فاز گاز و دمای 298 کلوین    66
جدول (3-7) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال آب    68
جدول (3-8) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال نیترومتان    69
جدول (3-9) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال اتانول    70
جدول (3-10) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال استون    71
جدول (3-11) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال دی‌کلرواتان    72
جدول (3-12) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال کلروفرم    73
جدول (3-13) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال تترا کلرید کربن    74
 
فهرست اشکال و نمودار

شکل (1-1)الف: ساختار کلی نانو لوله‌های تک لایه و چند لایه    6
ب: نانو لوله تک لایه و چند لایه کربنی    6
شکل (1-2)الف: ساختار نانو لوله کربنی بسته با پیکربندی (a) صندلی شکل (b) زیگزاگی و (c) کایرال    8
ب: ساختار نانو لوله بورون نیترید باز با پیکربندی (a) صندلی شکل (b) زیگزاگی و (c) کایرال    8
شکل (1-3) ساختار نانو لوله بورون نیترید با فرمول عمومی   برای 10-1=n    9
شکل (1-4) ساختارهای (a) صندلی، (b) زیگزاگ و (c) کایرال نانو لوله بورون نیترید    11
شکل (1-5) نانو لوله کربنی و نانو لوله بورون نیترید    14
شکل (1-6) شکل ظاهری نانو لوله کربنی (a) و نانو لوله بورون نیترید (b)    15
شکل (1-7) (a) تصویر TEM از نانو لوله بورون نیترید با ساختار فنجانی انباشته. (b) تصویر بزرگنمایی شده HREM نانو لوله (c) مدل ساختاری نانو لوله دارای چهار دیواره‌ای با ساختار فنجانی انباشته (d) تصویر TEM از نانو لوله بامبو مانند و (e) تصویر بزرگنمایی شده HREM مربوط به بخشی از تصویر d که با فلش سفید نشان داده شده است.    18
شکل (3-1) ساختار B21N21 از ابعاد مختلف    59
شکل (4-1) نمودار انرژی آزاد گیبس در متدها و توابع پایه‌ی مختلف    76
شکل (4-2) نمودار آنتالپی در متدها و توابع پایه‌ی مختلف    77
شکل (4-3) نمودار انرژی درونی در متدها و توابع پایه‌ی مختلف    77
شکل (4-4) نمودار zero point energy در متدها و توابع پایه‌ی مختلف    78
شکل (4-5) نمودار ممان دو قطبی سیستم B21N2 در متدها و توابع پایه‌ی مختلف    79
شکل (4-6) نمودار گشتاورهای دو قطبی سیستم B21N21 در حلال‌های مختلف    80
شکل (4-7) نمودار бise برای اتم‌های مختلف ساختار B21N21 در حلال‌های مختلف    80
شکل (4-8) نمودار бaniso برای اتم‌های مختلف ساختار B21N21 در حلال‌های مختلف    81
شکل (4-9) نمودار  برای اتم‌های مختلف ساختار B21N21 در حلال‌های مختلف    81
شکل (4-10) نمودار  برای اتم‌های مختلف ساختار B21N21 در حلال‌های مختلف    82
شکل (4-11) نمودار б برای اتم‌های مختلف ساختار B21N21 در حلال‌های مختلف    82
شکل (4-12) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در فاز گازی و دمای 298 کلوین    83
شکل (4-13) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در حلال آب    83
شکل (4-14) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در نیترومتان    84
شکل (4-15) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در اتانول    84
شکل (4-16) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در استون    85
شکل (4-17) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در 2 و 1- دی‌کلرو اتان    85
شکل (4-18) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در کلروفرم    86
شکل (4-19) نمودار پارامترهای رزونانس مغناطیسی هسته‌ی سیستم B21N21 در تتراکلرید کربن    86
شکل (4-20) نمودار بار کلی اتم‌ها بر حسب ساختار B21N21 در حلال‌های مختلف    87
شکل (4-21) نمودار بارکلی اتم‌ها بر حسب ساختار B21N21 در فاز گازی و دمای 298 کلوین    87
شکل (4-22) نمودار بارکلی اتم‌ها برحسب ساختار B21N21 در حلال قطبی آب    88
شکل (4-23) نمودار بارکلی اتم‌ها برحسب ساختار B21N21 در حلال غیرقطبی تتراکلریدکربن    88
 

چکیده
با نگاهی به تاریخ علم شیمی می‌توان دریافت که مطالعات زیادی بر روی نانو لوله‌های مختلف انجام یافته است. با ساخت نانولوله‌های بورون نیترید و به دلیل کارایی بیشتر آنها در مقایسه با نوع کربنی نظیر خود، بررسی و مطالعه بر روی این ساختارها توسعه بیشتری یافته است. نانو لوله‌های بورون نیتریدی از یک نظر به دو نوع بسته و باز و از دیدگاه دیگر به دو دسته تک دیواره و چند دیواره تقسیم‌بندی می‌شوند. عموماً این ترکیبات سطحی مواج دارند و اتم‌های بور به سمت داخل و اتم‌های نیتروژن به سمت بیرون آرایش دارند به طوری‌که نهایتاً یک لبه بوری و یک لبه نیتروژنی در آنها دیده می‌شود.
در این مطالعه، با استفاده از تئوری تابعیت چگالی، مطالعات آغازین بر روی نانولوله بورون نیترید با فرمول ساختاری B21N21 انجام گرفت. این بررسی با به‌کارگیری نرم‌افزارهایی چون Chem Draw، Chem3D، Gaussian98 و با استفاده از یک کامپیوتر با قدرت پردازش بالا انجام گرفت. به این صورت که ابتدا ساختار را با استفاده از متد B3LYP و تابع گوسی 6-31G بهینه‌سازی نمودیم و خواص ترمودینامیکی آن در حلال‌های مختلف و نیز فاز گازی بررسی کردیم تا بتوان حلالی را که به خوبی شکل هندسی مولکول را به لحاظ انرژی تأیید می‌کند را پیشنهاد داد. به علاوه مقادیر گشتاورهای دوقطبی، بار کلی اتم‌ها، پارامترهای رزونانس مغناطیسی هسته و سایت‌های فعال ساختار، در فاز گازی و حلال‌های موجود به‌دست آمده و نموداری گردید تا با یافتن بهترین حلال و سایت های فعال برای ساختار نانو لوله، بتوان از آن در پژوهش‌های گسترده‌تر استفاده نمود و از سایت فعال پیشنهادی در طراحی داروهای ویژه و به‌عنوان حامل‌ مولکول‌های بیولوژیکی نظیر پروتئین‌ها، اسیدهای آمینه و ... استفاده نمود.
واژه‌های کلیدی: نانو لوله‌ی بورون نیترید، حلال، تئوری تابعیت چگالی، مطالعات آغازین، پارامترهای رزونانس مغناطیسی هسته، گشتاور دو قطبی و سایت فعال.


دانلود با لینک مستقیم