2-7-1 مواردی که باید از آنالیز سه بعدی استفاده کرد.
A- 2-7-1 شرایط نقض کرنش صفحه ای
برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:
دانلود پاورپوینت پایداری شیب ها - 16 اسلاید
2-7-1 مواردی که باید از آنالیز سه بعدی استفاده کرد.
A- 2-7-1 شرایط نقض کرنش صفحه ای
برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 47
مقدمه ای بر پایداری ولتاژ
با تغییر ساختار جدیدی که در سالهای اخیر در سیستمهای قدرت پدید آمده که باعث میشود ئاحدهای تولیدی توان الکتریکی هرچه بیشتری را از خطوط انتقال عبور دهند، انتظار می رود شاهد فروپاشی ولتاژ گسترده تر و بیشتر سیستم های قدرت باشیم. برای مثال عبور توان بیش از حد یک خط انتقال باعث افت ولتاژ بیش از حد و کاهش ظرفیت انتقال توان الکتریکی به بخش مشخصی از سیستم قدرت گردد. (برای کمک کرده به واحدهای تولیدی در مواجهه و مقابله با این مسئله شرکت EPRI دست به تهیه این متن زده است که توضیح کامل و مناسبی است در مورد پایداری ولتاژ، تجزیه و تحلیل، سنجش، جلوگیری و کاهش اثرات آن.
پایداری ولتاژ چیست؟
تعریف IEEE از پایداری ولتاژ عبارتست از توانایی یک سیستم قدرت در نگهداری ولتاژ دائمی در همه باسهای سیستم بعد از بروز اغتشاش در شرایط مشخصی از بهره برداری. اغتشاش ممکن است خروج ناگهانی یکی از تجهیزات باشد یا افزایش تدیریجی بار. هنگامی که توان الکتریکی انتقالی به بار رو به افزایش است تا بتواند بار اضافه شده را تامین کند (بار ممکن است مکانیکی، حرارتی یا روشنایی باشد9، و هر دو مؤلفه یعنی توان و ولتاژ قابل کنترل بمانند، سیستم قدرت پایداری ولتاژی خواهد بودو اگر سیستم بتواند بار الکتریکی را منتقل کند و ولتاژ از دست برود سیستم تاپایدار ولتاژ است. فروپاشی ولتاژ هنگامی رخ یم دهد که افزاییش بار باعث غیرقابل کنترل شدن ولتاژ در ناحیه مشخصی از سیستم قدرت گردد. بنابراین ناپایداری ولتاژ در طبیعت خود یک پدیده ناحیه ای است، که میتواند بصورت فروپاشی ولتاژ کلی بدل گردد بدون هیچ پاسخ سریعی.
3. موضوعات پایداری ولتاژ چه هستند؟
آگاهی در مورد مشخصات بار که از شبکه های قدرت بزرگ قابل دسترسی هستند.
روشهای کنترل ولتاژ در ژنراتور ها، دستگاههای کنترل توان راکتیو (مانند خازنهای موازی، راکتورها) در شبکه.
توانایی شبکه در انتقال قدرت، به خصوص توان راکتیو، از نظر تولید به نقاط مصرف
هماهنگی بین رله های حفاظتی و ادوات کنترل سیستم قدرت.
4-در هنگام برزو ناپایداری چه اتفاقاتی می افتد؟
ناپایداری ولتاژ اغلب هنگامی رخ می دهد که بروز یک خطا ظرفیت سیستم انتقال یک شبکه قدرت را کاهش می دهتد. پس از بروز این خطا، به سرعت بار مصرفی بارهای حساس به ولتاژ افت می کند آنگونه که ولتاژ افت کرد.
این کاهش بارگیری بصورت موقتی باعث می شود که سیستم قدترت پایدار بماند. به هر حال با گذشت زمان توان مصرفی بارها افزایش خواهد یافت چرا که بسیاری از بارها بصورت دستی یا اتئماتیک کنترل میشدند تا بتوانند نیازهای فیزیکی ویژه و تعیین شده ای را برآورده کنند و همچنین نپ ترانسفورماتورهای قدرت به گونه ای تغییر خواهند کرد تا بتوان ولتاژ مورد نیاز را تامین نمود با اینکه ولتاژ در سمت ائلیه ترانس 0ولتاژ سیستم انتقال) مقدار مطلوب را نداشته باشد و از حد مطلوب پائینتر باشد. از هنگامی که بار به مقدار اولیه خود (قبل از بروز خطا) دست یافت، ممکن است سیستم قدرت وارد مرحله ناپایداری ولتاژ گردد که زمینه فروپاشی ولتاژ نیز هست. در خلال این مرحله بهره برداران (Operators) سیستم قدرت ممکن است کنترل ولتاژ و پخش بار در شبکه را از دست بدهند.
ممکن است توان راکتیو خروجی ژنراتورهای سیستم قدرت کاهش یابد تا از حرارت بیش از حد آنها جلوگیری به عمل آید، این کار باعث میگردد ذخیره توان راکتیو سیستم قدرت کاهش یابد و از دست برود. از طرفی با کاهش یافتن ولتاژ موتورها از حرکت باز می مانند که خود باعث مصرف توان راکتیو بسیاری میگردد که نهایتاً این امر فروپاشی کامل ولتاژ را در پی دارد.
5-چه چیزهایی باعث بروز فروپاشی ولتاژ در شبکه میگردند؟
از آنجایی که واحدهای تولیدی در صددذ انتقال توان هرچه بیشتر از خطوط انتقال هستند، وقوع فروپاشی ولتاژ محتمل تر است، چرا که توان راکتیو مصرفی خطهایی که بیش از حد بارگیری شده اند بیشتر است.
تجهیزاتی که بصورت پل به یکدیگر متصل هستند و همچنین موتورهای سرعت ثابت که مقدار مشخصی توان مصرف رمی کنند – حتی در مواقعی که ولتاژ کاهش می یابد – می توانند به طور موثری کاهش بار موقتی و طبیعی را که به سرعت کاهش ولتاژ شبکه رخ داده و می تواعث خروج در سیستم گردد را کاهش دهد. در پی انجام موارد فوق سیستم قدرت بص.رت ناپایدار درخواهد آمد (Whde Less Stable).
تغییر دهنده های تپ بار اثر ناپایدار کننده مشابهی دارند. برای جبران کاهش ولتاژ در اولیه سیستم، آنها با افزایش نسبت سعی در نگهداشتن ولتاژ ثانویه بصورت ثابت خواهد داتش. نتیجتاً ولتاژ در اولیه سیستم در قسمت ثانویه ظاهر نخواهد شد تا زمانی که LTC (Load Top Changer) به حد نهایی خود نرسد. علاوه بر
فرمت فایل : ورد
تعداد صفحات: 32
2-1-1 حالت اول: دو ژنراتور دینامیکی 6
2-1-2 حالت دوم: ژنراتور را در باس یک به حالت منبع سه فاز قرار دادیم 8
2-1-3 ساختا رسیستم در حالت حذف باس خطا 9
2-2 شبیه سازی مدل دینامیکی در باس دوم 10
2-2-1 مقایسه تغییرات سرعت ژنراتور باس چهارم در هنگام وجود و تریپ کردن بار دینامیکی(موتور القایی) 13
2-2-2 تأثیر مقاومت باس دوم برشدت نوسانات در باس چهارم در هنگام تریپ موتور 17
2-2-3 تأثیر افزایش تعداد موتور برشدت نوسانات در باس چهارم 19
2-3 مدل بار امپدانس ثابت حالت استاتیکی 22
منابع
چکیده
بررسی تأثیر مدلهای بارهای استاتیکی خصوصاً بارهای وابسته به ولتاژ بار در مطالعات پایداری ولتاژ از اهمیت خاصی برخوردار بوده و بعنوان یک نیاز پایه برای ارزیابی امنیت ولتاژ شبکه قدرت محسوب می شود.
در این مقاله دو مدل وابسته به ولتاژ بار یعنی بارهای امپدانس ثابت و جریان ثابت به همراه مدل بارهای توان ثابت مورد توجه و آنالیز قرارگرفته اند و تأثیر این سه نوع مدل بار بطور جداگانه بر پایداری ولتاژ ارزیابی شده و نتایج حاصله با هم مقایسه گردیده اند. همچنین در این مقاله محدودیت تولید نیز در شبیه سازی ها در نظر گرفته شده و در نتیجه نتایج حاصله بصورت واقعی تر ارائه گردیده اند. سیستم تست 14IEEE باس جهت مطالعات عددی انتخاب شده است.
این فصل مقدمه ای جهت ورود به موضوعات پایاننامه می باشد. در ابتدا به موضوع اصلی پایداری ولتاژ و بیان کلیاتی در مورد پایداری ولتاژ می پردازیم و سپس به معرفی سیستم قدرت و ویژگیهای لازم آن خواهیم پرداخت. یکی از مهمترین ویژگیهای یک سیستم قدرت پایداری آن است. بیان این ویژگی و انواع شکلهای بروز ناپایداری در بخش بعد مطرح می شود. بیان اهمیت پایداری ولتاژ در سیستمهای قدرت توسعه یافته امروزی و کلیاتی در مورد روشهای تحلیل و مدلهای بار، چگونگی تاثیر این مدلها بر پایداری ولتاژ و سپس روش های منتخب ارزیابی شد، در این پایاننامه از مطالب بعدی هستند. در ادامه این فصل تاریخچه ای از وقایع ناپایداری ولتاژ که در دنیا اتفاق افتاد هاند و همچنین کارهای انجام شده بیان می گردد. محتوای فصل های بعدی پایان نامه مطلبی هست که در انتهای این فصل ارائه می شود.
1-1- مقدمه
مسئله پایداری ولتاژ یکی از اساسی ترین مسائل سیستم قدرت است و کشورهای مختلفی با این مشکل در شبکه های خود مواجه هستند. پایداری ولتاژ سیستم قدرت یکی از مهمترین مسائلی است که در طراحی و بهره برداری نگرانی ایجاد می کند. این نگرانی می تواند با افت ولتاژ سیستم مشخص گردد. این افت ولتاژ در ابتدای کار بتدریج بوده اما در نهایت سریع می شود. موارد زیر می توانند بعنوان فاکتورهای شرکت کننده در این مسئله در نظر گرفته شوند:
1- در تنگنا گذاشتن سیستم یا فشار وارد کردن به آن بعنوان مثال بهره برداری از سیستم تحت شرایط ماکزیمم باردهی توان
راکتیو.
2- ناکافی بودن منابع تولید قدرت راکتیو.
3- مشخصات و نوع رفتار بارها در ولتاژهای پائین و مغایر بودن این رفتار با رفتار مدلهای سنتی بارها که در سیستم های قدرت
مورد استفاده قرار گرفته اند.
4- پاسخ ترانسفورمرهای تپ – چنجردار به کاهش اندازة ولتاژ در باس های بار.
5- عملکرد ناخواسته و غیرقابل پیش بینی رله ها که در شرایط کاهش اندازه ولتاژ رخ خواهد داد.
مسئله پایداری ولتاژ بیشتر یک پدیده دینامیکی است و شبیه سازی در حالت گذرا برای پایداری گذرا نیز ممکن است که بکار رود. در هر حال، بعضی از شبیه سازی ها نمی توانند اطلاعات حساسیت یا درجه پایداری را به آسانی فراهم آورند. و این روشهای شبیه سازی با صرف زیاد وقت در شبیه سازی های کامپیوتری و بکارگیری کوشش و روشهای مهندسی در آنالیز نتایج را بیان می دارند. این مسئله به بازنگری و بازرسی شرایط سیستم در یک مقیاس وسیع و همچنین در نظر گرفتن تعداد زیادی رخداد تصادفی احتیاج دارد. بنابراین در بسیاری از کاربردها روش های آنالیز استاتیکی بسیار سودمندتر هستند. و می توانند بینش بیشتری را در مورد ولتاژ و توان راکتیو بار فرآهم آورند.
بنابراین، داشتن یک روش آنالیز، که بتواند مسئله فروپاشی ولتاژ در سیستم قدرت را پیش بینی کند امری ضروی می باشد. در نتیجه، توجه قابل ملاحظه ای توسط محققان سیستم قدرت برروی این مسئله شده و روشهای مختلفی در مقالات برای آنالیز این مسئله پیشنهاد شده است.
مسئله قدرت راکتیو و کنترل ولتاژ از مسائل مشهور این بحث هستند و توسط بسیاری از محققان مورد توجه قرار گرفته اند. می دانیم که برای حفظ یک پروفیل ولتاژ مورد قبول برای یک سیستم بایستی منابع کافی توان راکتیو در محلهای مناسبی استفاده شوند. با این همه داشتن یک پروفیل ولتاژ مناسب لزوماً پایداری ولتاژ را تضمین نخواهد کرد. بعبارت دیگر اگرچه ولتاژ پائین اکثر اوقات از ناپایداری ولتاژ نشأت می گیرد لزوماً باعث آن نخواهد شد.
همانطور که بیان شد روشهای آنالیز مختلفی در مقالات و نشریات برای آنالیز پایداری ولتاژ ارائه شده است که میتوان از آنالیز مدال و روش پخش بار تداومی نام برد. اساس روش آنالیز مدال بر محاسبه مقادیر ویژه کوچکتر ماتریس ژاکوبین کاهش یافته و همچنین بردارهای ویژه چپ و راست متناظر با این مقدار ویژه می نیمم پایه گذاری شده است. مقادیر ویژه نشأت گرفته یا وابسته به یک مد ولتاژ یا توان راکتیو متغیر هستند. پایداری سیستم بوسیلة چک کردن مقادیر ویژه قابل ارزیابی است. اگر تمام مقادیر ویژه مثبت باشند آنگاه سیستم قدرت بعنوان یک سیستم پایدار در نظر گرفته خواهد شد. بعبارت دیگر حتی اکر یکی از مقادیر ویژة سیستم منفی باشند آنگاه سیستم قدرت ناپایدار بوده و ولتاژ دچار فروپاشی خواهد شد. و مقدار ویژه صفر نشان دهندة آن است که سیستم در حاشیه ناپایداری قرار گرفته است. وضعیت فروپاشی ولتاژ برای یک سیستم پایدار با ارزیابی مقادیر ویژه مینیمم قابل پیشگوئی است. اندازه هر کدام از مقادیر ویژة مینیمم معیاری جهت اندازة نزدیک شدن به فروپاشی ولتاژ می باشد.
با استفاده از فاکتور مشارکت باس های ضعیف یا ناحیه ضعیف سیستم از جهت نزدیکی به فروپاشی مشخص خواهند شد. این قسمت از سیستم در واقع بیشترین نقش را در فروپاشی ولتاژ اعمال خواهد کرد. و همانگونه که بروز اتفاقات ناگهانی می تواند باعث ناپایداری و از دست دادن سیستم گردد این وضعیت (باسهای ضعیف) نیز اگر جبران نشوند باعث از دست دادن سیستم خواهند شد.
تعداد صفحه : 133
–مقدمه 1
-2-1 مشخصة عمومی سیستم های قدرت 6
-3-1 پایداری سیستم قدرت 7
-1-3-1 پایداری زاویه ای رتور 9
-2-3-1 پایداری ولتاژ 9
-4- اهمیت پایداری ولتاژ در سیست مهای قدرت توسعه یافته 11 1
-5-1 تحلیل پایداری ولتاژ 13
-6-1 کنترل پایداری ولتاژ 15
-7-1 تاریخچه ای از کارهای انجام شده 16
8-1 – هدف از بررسی پایداری ولتاژ 20
9-1 - مروری بر وقایع پایداری ولتاژ در سطح جهان 21
-9-1 محتوای فصل های بعدی 22
فصل دوم:پایداری و ناپایداری ولتاژ
مقدمه 34
-1-2 تعاریف و مفاهیم پایداری ولتاژ 34
36 Ciqre/ 1-1-2 - تعاریف برطبق تعاریف
37 Hiskens و Hill -2-1-2 تعاریف براساس
39 I E E E 3-1-2 - تعاریف براساس
-2-2 چارچوبهای زمانی و مکانیسم های ناپایداری ولتاژ 42
3-2 - مکانیسم ها و سنایورها 43
-4-2 مکانیسم ها – دینامیک بارها 47
-5-2 مشخصه های پایداری ولتاژ 50
6-2 - بررسی و تحلیل یک سیستم کوچک 54
برای سیستمهای کوچک 55 VQ و PV -1-6-2 منحنی های
-7-2 مفهوم پایداری ولتاژ در ارتباط با ماتریسهای جاکوبین سیستم 57
-1-7-2 مدل سیستم قدرت 58
2 7 2 - ارتباط بین پایداری ولتاژ و ماتریس جاکوبین سیستم 62
شبکه 72 v –q و v –p -8-2 پایداری ولتاژ و مشخصه های
سیستم 74 V – P -1-8-2 پایداری ولتاژ اختلال کوچک و منحنی
سیستم 78 V- P 2 8 2 – پایداری ولتاژ اختلال بزرگ و منحنی
فصل سوم: بررسی پایداری ولتاژ و روشهای ارزیابی آن
-1-3 مقدمه 84
-2-3 روش های کلی تحلیل پایداری ولتاژ 86
-3-3 روشهای استاتیکی آنالیز پایداری ولتاژ 87
-1-3-3 روشهای تحلیلی 88
-2-3-3 شاخصها و روشهای حساسیت برای آنالیز پایداری ولتاژ 90
-3-3-3 تجزیه و تحلیل مدال ،برای ارزیابی پایداری ولتاژ 92
-4-3-3 روشهای حساسیت 103
-5-3-3 شاخصهای دیگر 109
110 V-Q -6-3-3 منحنی های
115 V – P -7-3-3 منحنی های
-8-3-3 پخش بار تداومی بعنوان یک ابزار جهت آنالیز پایداری ولتاژ 117
-1-8-3-3 مقدمه 117
-2-8-3-3 پخش بار تداومی 121
-9-3-3 ارزیابی ولتاژ با استفاده از تکنیک آنالیز مدال بهبود یافته 136
-1-9-3-3 مقدمه 136
-2-9-3-3 آنالیز تئوری 137
-3-9-3-3 بحث و نتایج 145
فصل چهارم: مدلهای بار
-1-4 مقدمه 152
-2-4 بارهای استاتیکی 152
-1-2-4 بارهای وابسته به ولتاژ 153
شده 155 ZIP -2-2-4 مدل بارهای
-3-2-4 مدلهای چند جمله ای و نمایی وابسته به فرکانس و ولتاژ 155
-4-2-4 موتور القایی 158
-3-4 بارهای دینامیکی 159
-1-3-4 بارهای بازیافتی خطی 160
-2-3-4 بارهای کنترل شده با ترموستات 161
فصل پنجم: روش آنالیز منتخب
-1-5 مقدمه 164
-2-5 پخش بار 164
-1-2-5 روش نیوتن رافسون 165
-2-2-5 پخش بار استاتیکی ( در حالتی که دینامیک ها در نظر گرفته نشوند ) 166
-3-5 آنالیز مدال 169
-1-3-5 مشخص کردن باسهای ضعیف 173
-4-5 تأثیر مدل بار بر پایداری حالت استاتیکی 174
-5-5 روش پخش بار تداومی توسعه داده شده با مدلهای بار 176
-1-5-5 تغییرات بارهای وابسته به ولتاژ 179
-2-5-5 آنالیز پخش بار تداومی با مدلهای بار 181
فصل ششم: شبیه سازی ها و نتایج
-1-6 مقدمه 187
187 ( Case study ) -2-6 توصیف سیستم تست
-3-6 روش آنالیز و ارائة شبیه سازی ها 188
14 باس 189 IEEE -4-6 سیستم
-1-4-6 آنالیز با بارهای قدرت ثابت 190
-2-4-6 آنالیز با بارهای جریان ثابت 203
-3-4-6 آنالیز با بارهای امپدانس ثابت 216
-5-6 مقایسه بارهای قدرت ثابت,جریان ثابت,امپدانس ثابت. 230
نتیجه گیری وپیشنهادات 230
فهرست مراجع 232
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:103
پایان نامه برای دریافت درجه کارشناسی ارشد M.Sc
رشته شیمی فیزیک
فهرست مطالب:
چکیده 1
فصل اول: مقدمه و مروری بر تحقیقات گذشته 2
1-1- مقدمه 3
1-2- نانو تکنولوژی 3
1-3- نیروهای مؤثر در ابعاد نانومتری 4
1-3-1- نیروهای واندروالس 4
1-3-2- نیروهای کوالانسی 4
1-3-3- نیروهای غیرموضعی بدون جهت 5
1-4- انواع نانوساختارها 5
1-5- نانو لولهها 6
1-6- نانو لولههای بورون نیترید 8
1-6-1- تاریخچهی مختصری از تهیهی نانو لولههای بورون نیترید 9
1-6-2- پیکربندی نانو لولههای بورون نیترید 10
1-6-3- انواع ساختارهای نانو لوله بورون نیترید 10
1-6-4- روشهای ساخت نانولوله بورون نیترید 11
1-6-4-1- سایش با لیزر 12
1-6-4-2- رسوبگیری بخار شیمیایی (CVD) 12
1-6-4-3- تخلیه قوس الکتریکی 13
1-6-4-4- اتوکلاو 13
1-6-5- مقایسهی خواص نانو لوله بورون نیترید با نانو لولهی کربنی 13
1-6-5-1- الکترونگاتیویته 14
1-6-5-2- شکل ظاهری 15
1-6-5-3- رسانایی و لومیسانس 15
1-6-5-4- خواص مکانیکی و حرارتی 16
1-6-5-5- کاربرد 16
1-6-6- کاربردهای نانو لوله بورون نیترید 16
1-6-6-1- ذخیره هیدروژن 16
1-6-6-2- نانو پرکننده در کامپوزیتها 16
1-6-6-3- سازگاری با بافت زنده و کاربرد آن 17
1-6-6-4- کاربردهای دیگر 17
1-7- مروری بر تحقیقات گذشته 19
فصل دوم: مباحث تئوری 26
2-1- مقدمه 27
2-2- مکانیک مولکولی (MM) 27
2-3- مکانیک کوانتومی (QM) 28
2-3-1- روشهای نیمه تجربی 31
2-3-1-1- روشهای تجربی میدان نیرو(مکانیک مولکولی) 31
2-3-2- روشهای ab-initio 32
2-3-3- تواناییهای روش ab-initio 32
2-3-4- محدودیتهای روش ab-initio 33
2-3-5- نکات قوت روشن ab-initio 33
2-3-6- توابع پایه (basis set) 33
2-3-6-1- سریهای پایهی ظرفیتی ـ شکافته 34
2-3-6-2- سری پایهی قطبیده 35
2-3-6-3- سری پایه پخش شده 35
2-3-6-4- سری پایهی اندازهی حرکت زاویهای بالا 35
2-3-7- روش هارتری ـ فاک 36
2-3-7-1- روش هارتری ـ فاک محدود شده (RHF) و محدود نشده (UHF) 37
2-3-8- گرادیان و مشتقات مرتبهی دوم هارتری ـ فاک 37
2-3-9- همبستگی الکترونی 37
2-3-10- تئوری اختلال 38
2-3-11- تئوری تابع چگال 39
2-3-11-1- معادلات کوهن ـ شم 41
2-3-11-2- اوربیتالهای کوهن ـ شم 42
2-3-11-2- روش چگالی موضعی (LDA) 44
2-3-11-4- روشهای تصحیح گرادیان 46
2-3-11-5- مزایا و معایب روش DFT 46
2-4- روشهای کامپیوتری 48
2-4-1- گوسین 98 (Gaussian 98) 48
2-4-2- نرمافزار Gauss view 50
2-4-3- هایپر کم 50
2-4-4- Chem Draw 51
2-5- تاریخچهی NMR 51
2-6- محاسبات آغازین پارامترهای NMR 52
2-6-1- روشهای محاسبات کامپیوتری 53
2-6-2- روش GIAO 53
2-6-3- روش LGLO 54
فصل سوم: روش کار و بررسی دادهها 56
فصل چهارم: نتایج 75
4-1- بررسی نتایج حاصل برای ساختار B21N21 در فاز گازی و دمای 298 کلوین 76
4-2- بررسی نتایج حاصل برای ساختار B21N21 در حلالهای مختلف 79
منابع 90
فهرست جداول
جدول (1-1) ویژگیهای نانو لوله بورون نیترید در مقایسه با نانو لوله کربنی 14
جدول (1-2) بهبود هدایت گرمایی کامپوزیتهای پلی مری نانو لولههای بورون نیترید 17
جدول (2-1) مقایسهی عملکرد روشهای مختلف DFT (شباهت نتایج حاصل از روش MP2 یا روش تئوری تابعیت قابل توجه است) 47
جدول (3-1) مقادیر پارامترهای ترمودینامیکی برای نانو لوله B21N21 تحت متدها و توابع گوسی مختلف در محیط گازی و دمای 298 کلوین 61
جدول (3-2) مقدار گشتاور دو قطبی ترکیبی B21N21 در متدها و توابع کوسی مختلف در فاز گاز و دمای 298 کلوین 61
جدول (3-3) توابع ترمودینامیکی بهدست آمده در حالهای مختلف تحت متد B3LYP و تابع پایه 6-31G 63
جدول (3-4) بارکلی ایجاد شده در حلالهای مختلف 64
جدول (3-5) مقدار گشتاور دو قطبی ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلالهای مختلف 65
جدول (3-6) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در فاز گاز و دمای 298 کلوین 66
جدول (3-7) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال آب 68
جدول (3-8) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال نیترومتان 69
جدول (3-9) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال اتانول 70
جدول (3-10) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال استون 71
جدول (3-11) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال دیکلرواتان 72
جدول (3-12) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال کلروفرم 73
جدول (3-13) مقادیر پارامترهای NMR مربوط به ترکیب B21N21 تحت متد B3LYP و تابع پایه 6-31G در حلال تترا کلرید کربن 74
فهرست اشکال و نمودار
شکل (1-1)الف: ساختار کلی نانو لولههای تک لایه و چند لایه 6
ب: نانو لوله تک لایه و چند لایه کربنی 6
شکل (1-2)الف: ساختار نانو لوله کربنی بسته با پیکربندی (a) صندلی شکل (b) زیگزاگی و (c) کایرال 8
ب: ساختار نانو لوله بورون نیترید باز با پیکربندی (a) صندلی شکل (b) زیگزاگی و (c) کایرال 8
شکل (1-3) ساختار نانو لوله بورون نیترید با فرمول عمومی برای 10-1=n 9
شکل (1-4) ساختارهای (a) صندلی، (b) زیگزاگ و (c) کایرال نانو لوله بورون نیترید 11
شکل (1-5) نانو لوله کربنی و نانو لوله بورون نیترید 14
شکل (1-6) شکل ظاهری نانو لوله کربنی (a) و نانو لوله بورون نیترید (b) 15
شکل (1-7) (a) تصویر TEM از نانو لوله بورون نیترید با ساختار فنجانی انباشته. (b) تصویر بزرگنمایی شده HREM نانو لوله (c) مدل ساختاری نانو لوله دارای چهار دیوارهای با ساختار فنجانی انباشته (d) تصویر TEM از نانو لوله بامبو مانند و (e) تصویر بزرگنمایی شده HREM مربوط به بخشی از تصویر d که با فلش سفید نشان داده شده است. 18
شکل (3-1) ساختار B21N21 از ابعاد مختلف 59
شکل (4-1) نمودار انرژی آزاد گیبس در متدها و توابع پایهی مختلف 76
شکل (4-2) نمودار آنتالپی در متدها و توابع پایهی مختلف 77
شکل (4-3) نمودار انرژی درونی در متدها و توابع پایهی مختلف 77
شکل (4-4) نمودار zero point energy در متدها و توابع پایهی مختلف 78
شکل (4-5) نمودار ممان دو قطبی سیستم B21N2 در متدها و توابع پایهی مختلف 79
شکل (4-6) نمودار گشتاورهای دو قطبی سیستم B21N21 در حلالهای مختلف 80
شکل (4-7) نمودار бise برای اتمهای مختلف ساختار B21N21 در حلالهای مختلف 80
شکل (4-8) نمودار бaniso برای اتمهای مختلف ساختار B21N21 در حلالهای مختلف 81
شکل (4-9) نمودار برای اتمهای مختلف ساختار B21N21 در حلالهای مختلف 81
شکل (4-10) نمودار برای اتمهای مختلف ساختار B21N21 در حلالهای مختلف 82
شکل (4-11) نمودار б برای اتمهای مختلف ساختار B21N21 در حلالهای مختلف 82
شکل (4-12) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در فاز گازی و دمای 298 کلوین 83
شکل (4-13) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در حلال آب 83
شکل (4-14) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در نیترومتان 84
شکل (4-15) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در اتانول 84
شکل (4-16) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در استون 85
شکل (4-17) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در 2 و 1- دیکلرو اتان 85
شکل (4-18) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در کلروفرم 86
شکل (4-19) نمودار پارامترهای رزونانس مغناطیسی هستهی سیستم B21N21 در تتراکلرید کربن 86
شکل (4-20) نمودار بار کلی اتمها بر حسب ساختار B21N21 در حلالهای مختلف 87
شکل (4-21) نمودار بارکلی اتمها بر حسب ساختار B21N21 در فاز گازی و دمای 298 کلوین 87
شکل (4-22) نمودار بارکلی اتمها برحسب ساختار B21N21 در حلال قطبی آب 88
شکل (4-23) نمودار بارکلی اتمها برحسب ساختار B21N21 در حلال غیرقطبی تتراکلریدکربن 88
چکیده
با نگاهی به تاریخ علم شیمی میتوان دریافت که مطالعات زیادی بر روی نانو لولههای مختلف انجام یافته است. با ساخت نانولولههای بورون نیترید و به دلیل کارایی بیشتر آنها در مقایسه با نوع کربنی نظیر خود، بررسی و مطالعه بر روی این ساختارها توسعه بیشتری یافته است. نانو لولههای بورون نیتریدی از یک نظر به دو نوع بسته و باز و از دیدگاه دیگر به دو دسته تک دیواره و چند دیواره تقسیمبندی میشوند. عموماً این ترکیبات سطحی مواج دارند و اتمهای بور به سمت داخل و اتمهای نیتروژن به سمت بیرون آرایش دارند به طوریکه نهایتاً یک لبه بوری و یک لبه نیتروژنی در آنها دیده میشود.
در این مطالعه، با استفاده از تئوری تابعیت چگالی، مطالعات آغازین بر روی نانولوله بورون نیترید با فرمول ساختاری B21N21 انجام گرفت. این بررسی با بهکارگیری نرمافزارهایی چون Chem Draw، Chem3D، Gaussian98 و با استفاده از یک کامپیوتر با قدرت پردازش بالا انجام گرفت. به این صورت که ابتدا ساختار را با استفاده از متد B3LYP و تابع گوسی 6-31G بهینهسازی نمودیم و خواص ترمودینامیکی آن در حلالهای مختلف و نیز فاز گازی بررسی کردیم تا بتوان حلالی را که به خوبی شکل هندسی مولکول را به لحاظ انرژی تأیید میکند را پیشنهاد داد. به علاوه مقادیر گشتاورهای دوقطبی، بار کلی اتمها، پارامترهای رزونانس مغناطیسی هسته و سایتهای فعال ساختار، در فاز گازی و حلالهای موجود بهدست آمده و نموداری گردید تا با یافتن بهترین حلال و سایت های فعال برای ساختار نانو لوله، بتوان از آن در پژوهشهای گستردهتر استفاده نمود و از سایت فعال پیشنهادی در طراحی داروهای ویژه و بهعنوان حامل مولکولهای بیولوژیکی نظیر پروتئینها، اسیدهای آمینه و ... استفاده نمود.
واژههای کلیدی: نانو لولهی بورون نیترید، حلال، تئوری تابعیت چگالی، مطالعات آغازین، پارامترهای رزونانس مغناطیسی هسته، گشتاور دو قطبی و سایت فعال.