کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

مقاله درباره بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی

اختصاصی از کوشا فایل مقاله درباره بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی دانلود با لینک مستقیم و پر سرعت .

مقاله درباره بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی


مقاله درباره بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی

لینک پرداخت و دانلود *پایین مطلب*

 فرمت فایل:word (قابل ویرایش و آماده پرینت)

  تعداد صفحات:39

عنصر اساسی در توانایی ما برای مشاهده، ساخت، و در بعضی موارد به‌کاراندازی دستگاههای بسیار کوچک فراهم بودن پرتوهای ذره‌ای بسیار متمرکز، مشخصا" از فوتون‌ها، الکترون‌ها و یون‌ها می‌باشد.

قانون عمومی حاکم بر اثر ذرات برخوردی، بیان می‌دارد که چنانچه تمایل به تمرکز یک پرتو از ذرات به یک نقطه با اندازه مشخص داشته باشیم، طول موج وابسته به ذرات برخوردی باید کوچک‌تر از اندازه قطر نقطه مورد نظر باشد. روابط حاکم بر انرژی و بالطبع طول موج این ذرات بیان کننده آن است که اتم‌ها و بالطبع یون‌ها مناسب ترین کاندیداها برای این آزمایشات می‌باشند (جدول 1).


دانلود با لینک مستقیم


مقاله درباره بررسی ایجاد پرتوهای یونی سرد برای نانو‌تکنولوژی

پیوند یونی 5ص

اختصاصی از کوشا فایل پیوند یونی 5ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

پیوند یونی

پیوند یونی نوعی از پیوند شیمیایی است که برپایه نیروی الکترواستاتیک بین دو یون با بار مخالف شکل می‌گیرد.

ترکیبات یونی متشکل از تعداد زیادی آنیون و کاتیون هستند که با طرح معین هندسی در کنار هم قرار گرفته‌اند و یک بلور بوجود می‌آورند. هر بلور ، به سبب جاذبه‌های منفی ـ مثبت یونها به هم ، نگهداشته شده است. فرمول شیمیایی یک ترکیب یونی نشانه ساده‌ترین نسبت یونهای مختلف برای به وجود آوردن بلوری است که از نظر الکتریکی خنثی باشد.

ماهیت یون

وقتی اتم‌ها به یون تبدیل می‌شوند، خواص آنها شدیدا تغییرمیکند. مثلا مجموعه‌ای از مولکولهای برم قرمز است. اما یونهای در رنگ بلورماده مرکب هیچ دخالتی ندارند. یک قطعه سدیم شامل اتم‌های سدیم‌ نرم است. خواص فلزی دارد و بر آب به شدت اثر می‌کند. اما یونهای در آب پایدارند.

مجموعه بزرگی از مولکولهای کلر ، گازی سمّی به‌رنگ زرد مایل به سبز است، ولی یونهای کلرید مواد مرکب رنگ ایجاد نمی‌کنند و سمّی نیستند. به همین لحاظ است که یونهای سدیم و کلر را به صورت نمک طعام می‌توان بدون ترس از واکنش شدید روی گوجه فرنگی ریخت. وقتی اتم‌ها به صورت یون در می‌آیند، ماهیت آنها آشکارا تغییر می‌کند.

خواص مواد مرکب یونی

رسانایی الکتریکی : رسانایی الکتریکی مواد مرکب یونی مذاب به این علت است که وقتی قطب‌هایی با بار مخالف در این مواد مذاب قرار گیرد و میدان الکتریکی برقرارشود، یونها آزادانه به حرکت در می‌آیند. این حرکت یونها بار یا جریان را از یک‌جا به جای دیگر منتقل می‌کنند. در جسم جامد که یونها بی‌حرکت‌اند و نمی‌توانند آزادانه حرکت کنند، جسم خاصیت رسانای الکتریکی ندارد.

سختی : سختی مواد مرکب یونی به علت پیوند محکم میان یونهای با بار مخالف است. برای پیوندهای قوی انرژی بسیاری لازم است تا یون‌ها از هم جدا شوند و امکان حرکت آزاد حالت مذاب را پیداکنند. انرژی زیاد به معنی نقطه جوش بالا است که خود از ویژگی‌های مواد مرکب یونی است.

شکنندگی : مواد مرکب یونی شکننده‌اند. زیرا که ساختار جامد آنها آرایه منظمی از یونهاست. مثلا ساختار سدیم کلرید (NaCl) را در نظر بگیرید. هرگاه یک سطح از یونها فقط به فاصله یک یون در هر جهت جابجا شود، یونهایی که بار مشابه دارند درکنار یکدیگر قرار می‌گیرند و یکدیگر را دفع می‌کنند و چون جاذبه‌ای در کار نیست بلور می‌شکند. سدیم کلرید را نمی‌توان با چکش کاری ، به ورقه‌های نازک تبدیل کرد. با چنین عملی بلور نمک خرد و از هم پاشیده می‌شود.

گروههای حاوی پیوند یونی

عناصرگروه IA (فلزات قلیایی) یعنی Li ، Na ، K ، Rb ، Cs ، هر یک به ترتیب یک الکترون بیشتر از گازهای نجیب ، (He ، Kr ، Ne ، Ar ، Xe) دارند. اگر هر یک از این فلزات از هر اتم یک الکترون از دست بدهند، جزء باقیمانده آرایش الکترونی گاز نجیب متناظر خود را پیدا می‌کند. مثلا ، Li یک الکترون والانس در آرایش حالت پایه دارد. از دست دادن یک الکترون موجب می‌شود که Li ساختار الکترونی He را پیداکند. یک اتم Li که فقط دو الکترون و سه پروتون داشته باشد، بار +۱ خواهد داشت.

یک اتم باردار مانند یا یک گروه از اتم‌های باردار ، مانند گروه سولفات را یون می‌گویند.

عناصر گروه IIA (فلزات قلیایی خاکی) هریک دو الکترون والانس دارند. پس برای اینکه mg ، ca ، sr ، ba ساختار گاز نجیب را به دست آورند اتم‌های هرعنصر باید دو الکترون از دست بدهند. از دست رفتن دو الکترون موجب می‌شود که دو پروتون در هسته خنثی نشده بماند. پس هر یون بار +۲ خواهد داشت. برای جدا شدن سومین الکترون لازم است جفت الکترونهای تراز اصلی با انرژی پایین‌تر شکسته شود. این امر انرژی زیادتری می‌خواهد. جداشدن الکترونها از فلزات و تشکیل یونهای مثبت حاصل از آنها را می‌توان به راههای مختلف ترسیم کرد.

پس جدا شدن یک الکترون از یک اتم معین جداشدن الکترونهای بعدی به ترتیب مشکلتر می‌شود. زیرا با از دست رفتن هر الکترون بار مؤثر زیادتری می‌شود و الکترونهای باقیمانده را محکمتر نگاه می‌دارد. بطور خلاصه یونهای مثبت وقتی تشکیل می‌شوند که اتم‌های فلزی یک الکترون (گروهIA) دو الکترون (گروهIIA) و یا سه الکترون (گروهIIIA) به اتم‌های غیر فلزی می‌دهند. یونهای حاصل آرایش الکترونی یکسان با یک گاز نجیب دارند.

عناصر گروه VIIA (هالوژنها) یونهای مثبت در حضور یونهای منفی پایدار می‌شوند. خنثی شدن بار ، هر دو نوع یون را پایدار می‌کند. یونهای منفی پایدار ، از اتم‌هایی که شش یا هفت الکترون والانس دارند، تولید می‌شوند. اینگونه اتم‌ها آنقدر الکترون بدست می‌آورند تا ساختار گاز نجیب را پیدا کنند. مثلا اتم‌های عناصر گروه VIIA (هالوژن‌ها) هفت الکترون والانس دارند و هر یک ، یک الکترون می‌خواهند تا آرایش الکترونی یک گاز نجیب را پیدا کنند.

اگر اتم‌های F ، Cl ، Br ، I هر یک ، یک الکترون بدست آورند، یونهای حاصل یعنی ، ، ، به ترتیب آرایش الکترونی را خواهند داشت.

عناص گروه VIA (گروه اکسیژن) اتم عناصر (VIA) برای رسیدن به ساختار الکترونی یک گاز نجیب هریک دو الکترون نیاز دارند. اضافه شدن دو الکترون به هر اتم ، سبب تولید می‌شود. روند به دست آوردن الکترون توسط غیرفلزات ، مانند از دست دادن الکترون توسط فلزات را می‌توان به راههای متفاوت ترسیم کرد. بطور خلاصه غیرفلزات یک ، دو ، یا سه الکترون از فلزات می‌گیرند و یون منفی ایجاد می‌کنند.

این یونهای منفی همگی الکترونهای والانس جفت شده و آرایش هشت الکترونی پایدار گازهای نجیب را دارند.


دانلود با لینک مستقیم


پیوند یونی 5ص

دانلود تحقیق کامل درباره بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی

اختصاصی از کوشا فایل دانلود تحقیق کامل درباره بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 39

 

بررسی ایجاد پرتوهای یونی سردبرای نانو‌تکنولوژی

عنصر اساسی در توانایی ما برای مشاهده، ساخت، و در بعضی موارد به‌کاراندازی دستگاههای بسیار کوچک فراهم بودن پرتوهای ذره‌ای بسیار متمرکز، مشخصا" از فوتون‌ها، الکترون‌ها و یون‌ها می‌باشد.

قانون عمومی حاکم بر اثر ذرات برخوردی، بیان می‌دارد که چنانچه تمایل به تمرکز یک پرتو از ذرات به یک نقطه با اندازه مشخص داشته باشیم، طول موج وابسته به ذرات برخوردی باید کوچک‌تر از اندازه قطر نقطه مورد نظر باشد. روابط حاکم بر انرژی و بالطبع طول موج این ذرات بیان کننده آن است که اتم‌ها و بالطبع یون‌ها مناسب ترین کاندیداها برای این آزمایشات می‌باشند (جدول 1).

انرژی‌های مختلف E 0 (eV)

طول موج ذره ((m)

106

105

104

103

102

10

1

6-10*24/1

5-10*24/1

4-10*24/1

3-10*24/1

2-10*24/1

6-10*24/1

24/1

فوتون‌ها

7-10*7/8

6-10*70/3

5-10*22/1

5-10*88/3

4-10*23/1

4-10*88/3

3-10*23/1

الکترونها

8-10*87/2

8-10*07/9

7-10*87/2

7-10*07/9

6-10*87/2

6-10*07/9

5-10*87/2

پروتونها

جدول 1: طول موج ذرات ((m) در انرژی‌های مختلف Eo(eV)

با نگاهی به جدول 1 مشاهده می‌کنیم


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره بررسی ایجاد پرتوهای یونی سرد برای نانوتکنولوژی

پایان نامه تهیه الکترود خمیر کربن اصلاح شده با مایع یونی واجد یون های نیکل و کاربرد آن برای اکسایش الکتروکاتالیزی متانول

اختصاصی از کوشا فایل پایان نامه تهیه الکترود خمیر کربن اصلاح شده با مایع یونی واجد یون های نیکل و کاربرد آن برای اکسایش الکتروکاتالیزی متانول دانلود با لینک مستقیم و پر سرعت .

پایان نامه تهیه الکترود خمیر کربن اصلاح شده با مایع یونی واجد یون های نیکل و کاربرد آن برای اکسایش الکتروکاتالیزی متانول


پایان نامه تهیه الکترود خمیر کربن اصلاح شده با مایع یونی واجد یون های نیکل و کاربرد آن برای اکسایش الکتروکاتالیزی متانول

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:89

پایان نامه دوره کارشناسی ارشد در رشته شیمی تجزیه

عنوان : تهیه الکترود خمیر کربن اصلاح شده با مایع یونی واجد یون های نیکل و کاربرد آن برای اکسایش الکتروکاتالیزی متانول و فرمالدهید

فهرست مطالب:
عنوان                                                                                                                   صفحه
فصل اول: مقدمه                                                                                                                 1
فصل دوم: تئوری                                                                                                                            6
2-1- مایعات یونی                                                                                                                                  7
2-2- تاریخچه مایعات یونی                                                                                                                      7
2-3- خواص مایعات یونی                                                                                                                        9
2-4- کاربردهای مایعات یونی                                                                                                                    11
2-4-1- استفاده از مایعات یونی جهت ترسیب الکتروشیمیایی فلزات و نیمه رساناها                                                     11
2-4-2- استفاده از مایعات یونی در کروماتوگرافی                                                                                                                                   12
2-4-3- استفاده از مایعات یونی در پیل¬های سوختی با غشای پلیمری                                                                     12
2-5- الکترود های اصلاح شده شیمیایی                                                                                                               13
2-5-1- الکترود¬های اصلاح شده با فیلم¬های پلیمری                                                                                                13
2-5-2- الکترودهای اصلاح شده با پلیمرهای قالب مولکولی                                                                               15
2-5-3- الکترودهای اصلاح شده با نانوذرات                                                                                                  16
2-5-4- الکترودهای اصلاح شده با آنزیم¬ها                                                                                                    17
2-6- الکتروکاتالیز در سطح الکترودهای اصلاح شده                                                                                         18
2-7- کاربرد اصلاح¬گر در بافت خمیرکربن                                                                                                     20

فصل سوم: بخش تجربی                                                                                                                    23
3-1- مواد شیمیایی                                                                                                                                 24
3-2- تجهیزات                                                                                                                                      25
3-3- الکترودهای مورد استفاده                                                                                                                   25
3-4- روش ساخت الکترودکار                                                                                                                   26
فصل چهارم: تهیه الکترودهای خمیر کربن اصلاح شده با مایع یونی فاقد و واجد نیکل و بررسی رفتار الکتروشیمیایی
آنها                                                                                                                                             27
4-1- کلیات                                                                                                                                           28
4-2- مطالعه پاسخ الکتروشیمیایی الکترودهای T-CPE و IL/CPE به روش ولتامتری چرخه¬ای                                     28
4-3- مطالعه امپدانس الکتروشیمیایی الکترودهای خمیر کربن ساده و خمیر کربن اصلاح شده با مایع یونی                         30
4-4- تهیه الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل (Ni/IL/CPE)                                                     31
4-5- بررسی اثر سرعت روبش پتانسیل بر رفتار Ni/IL/CPE                                                                                 34
4–6- پاسخ الکتروشیمیایی  Ni/IL/CPEبه روش کرونوآمپرومتری با پله پتانسیل دو گانه                                              37
4–7- نتیجه گیری                                                                                                                                    39
فصل پنجم: استفاده از الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل(II) برای الکتروکاتالیز
 فرآیند اکسایش متانول                                                                                                                      40
5-1- کلیات                                                                                                                                           41
5-2- بررسی فرآیند اکسایش متانول در سطح الکترود¬ خمیر کربن                                                                          41
5-3- بررسی فرآیند اکسایش متانول در سطح الکترود خمیرکربن اصلاح شده با مایع یونی فاقد و واجد Ni(II)                   42
5-4- تاثیر افزایش غلظت متانول بر فرآیند الکتروکاتالیز اکسایش متانول                                                                   47
5-5- بررسی فرآیند الکتروکاتالیز اکسایش متانول در سطح الکترود خمیرکربن اصلاح شده به روش کرونوآمپرومتری
 با پلۀ پتانسیل دوگانه                                                                                                                               49
5-6- محاسبۀ ضریب نفوذ متانول و ثابت سرعت واکنش شیمیایی کاتالیزی بین متانول و محل های فعال نیکل                    51
5-7- پایداری الکترود اصلاح شده                                                                                                               53
5-8- نتیجه گیری                                                                                                                                   53
فصل ششم: استفاده از الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل(II) برای الکتروکاتالیز فرآیند
 اکسایش فرمالدهید                                                                                                                         55
6-1- کلیات                                                                                                                                          56
6-2- بررسی فرآیند اکسایش فرمالدهید در سطح الکترود خمیرکربن ساده و الکترود خمیرکربن اصلاح شده با مایع یونی        57
6-3- بررسی الکتروکاتالیز اکسایش فرمالدهید در سطح الکترود خمیرکربن اصلاح شده با مایع یونی واجد Ni(II) به
 روش ولتامتری چرخه¬ای                                                                                                                          58
6-4- اثر سرعت روبش پتانسیل بر فرآیند الکتروکاتالیز اکسایش فرمالدهید                                                                60
6-5- بررسی فرآیند الکتروکاتالیز اکسایش فرمالدهید در سطح الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل
 به روش کرونوآمپرومتری با پلۀ پتانسیل دوگانه                                                                                                62
6-6- محاسبۀ ثابت سرعت واکنش شیمیایی کاتالیزی بین فرمالدهید با محل های فعال نیکل                                           64
6-7- نتیجه گیری                                                                                                                                   65
نتیجه گیری کلی                                                                                                                                     66
پیشنهادات                                                                                                                                             69
منابع                                                                                                                                                    70
چکیده انگلیسی                                                                                                                                      76

 

فهرست شکل ها
شمای 2-1- کاتیون ها و آنیونهای متداول در مایعات یونی                                                                                                               
شمای 2-2- تعداد مقالات منتشر شده در رابطه با مایعات یونی در سال¬های اخیر                                                                              
شکل 3-1- ساختار مایع یونی به کار رفته جهت تهیه الکترود اصلاح شده                                                                                       
شکل4-1- الف) ولتاموگرام¬های چرخه¬ای الکترود¬های خمیر کربن (a) و خمیر کربن اصلاح شده با مایع یونی (b) در محلول آبی شامل...                                                                                                                                                                                         
شکل 4-2- نمودار نایکویست امپدانس فارادایی مربوط به الکترود خمیر کربن ساده (نمودار a) و الکترود خمیر کربن اصلاح شده با مایع یونی (نمودار b) در حضور محلول آبی شامل...                                                                                                                       
شکل 4-3- الف) ولتاموگرام¬های چرخه¬ای متوالی الکترود خمیرکربن اصلاح شده با مایع یونی واجد Ni(II) در محلول M 1/0 NaOH  در سرعت روبش پتانسیل...                                                                                                                                                    
شکل 4-4- ولتاموگرام های چرخه¬ای گونه¬های نیکل تثبیت شده بر سطح الکترودهای خمیر کربن (a) و الکترود خمیرکربن اصلاح شده با مایع یونی (b) در شرایط یکسان...                                               
شکل 4-5- الف) ولتاموگرام های چرخه ای الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل (II) در محلول M 1/0 سدیم هیدروکسید در سرعت¬های روبش پتانسیلی مختلف...                                                                                                                     
شکل 4-6- (الف) کرونوآمپروگرام با پتانسیل دوگانهNi/IL/CPE  در محلول سدیم هیدروکسید  M 1/0. پله های اول و دوم به ترتیب برابر با  65/0وV  3/0 نسبت به الکترود شاهد است. (ب) نمودار کوترل قسمت آندی کرونوآمپروگرام ارائه شده در شکل الف.
شکل 5-1- ولتاموگرام های چرخه¬ای الکترود خمیرکربن درمحلول آبی شامل M 1/0 سدیم هیدروکسید دارای غلظت های مختلف متانول...                                                                                                                
شکل 5-2- ولتاموگرام های چرخه ای الکترود خمیرکربن اصلاح شده با مایع یونی فاقد نیکل در محلول  M1/0 سدیم هیدروکسید در غیاب (a) و در حضور...                                                                                                                                                                
شکل 5-3- ولتاموگرام های چرخه ای الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل (II)درمحلول آبی شامل M 1/0 سدیم هیدروکسید دارای غلظت¬های...                                                                                                                                                           
شکل 5-4- الف) کرونوآمپروگرام با پلۀ پتانسیل دوگانۀ الکترود خمیرکربن اصلاح شده با مایع یونی واجد Ni(II) در حضور غلظت های...                                                                                                                                                                                           
شکل 5-5- نمودار تغییرات نسبت جریان کاتالیزی به جریان حدی بر حسب جذر زمان بر اساس داده های استخراج شده از کرونوآمپروگرام های (a) و (d) در...                                                                                                                             
شکل 6-1- ولتاموگرام های چرخه ای مربوط به (الف) الکترود خمیرکربن اصلاح نشده و (ب) الکترود خمیرکربن اصلاح شده با مایع یونی در محلول آبی شاملM  1/0 سدیم هیدروکسید دارای غلظت¬های مختلف....                                                                                      
شکل 6-2- ولتاموگرام¬های چرخه¬ای الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل در محلول M 1/0 سدیم هیدروکسید دارای غلظت¬های مختلف...                                                                                                                                                                                 
شمای 6-1- مکانیسم الکتروکاتالیزی اکسایش فرمالدهید در سطح الکترود اصلاح شده                                                                   
شکل 6-3- الف) ولتاموگرام های چرخه ای الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل  (II)در محلولmM  5 فرمالدهید و سود...                                                                                                                                                                              
شکل 6-4- الف) کرونوآمپروگرام های با پلۀ پتانسیل دوگانۀ الکترود خمیرکربن اصلاح شده با مایع یونی واجد نیکل در غیاب (a) و در حضور غلظت¬های ...                                                                                                                                                                
شکل 6-5- نمودار تغییرات نسبت شدت جریان کاتالیزی(IC)  به شدت جریان حدی (IL) بر حسب جذر زمان، بر اساس داده های استخراج شده از کرونوآمپروگرام های (a) و (c) در شکل6-4.                                                                                                     

فهرست جداول
جدول 3-1- مشخصات مواد شیمیایی مورد استفاده در این تحقیق                                                                          24

جدول 5-1- مقایسه کارآیی Ni/IL/CPE با برخی از سایر الکترودهای اصلاح شده برای اکسایش الکتروکاتالیزی متانول در
 محیط قلیایی                                                                                                                                          49

جدول 5-1- مقایسه کارآیی  Ni/IL/CPEبا برخی از سایر الکترودهای اصلاح شده برای اکسایش الکتروکاتالیزی فرمالدهید     65


چکیده:
   در این کار، از مایع یونی 1-بوتیل3-متیل ایمیدازولیوم بیس(تری فلوئورومتیل سولفونیل) ایمید به عنوان اصلاحگر جهت ساخت نوع جدیدی از الکترودهای خمیر کربن اصلاح شده با مایع یونی استفاده شد. فنون اسپکتروسکوپی امپدانس الکتروشیمیایی و ولتامتری چرخه¬ای نشان داد که این الکترود اصلاح شده نسبت به الکترود خمیر کربن فاقد این مایع یونی، افزایش قابل ملاحظه¬ای در سرعت انتقال الکترون و هدایت الکتریکی نشان می¬دهد. سپس با فرو بردن این الکترود اصلاح شده در محلول نیکل سولفاتM  0/1 و متعاقباً اعمال ولتامتری چرخه¬ای متوالی در محیط قلیایی، گونه¬های نیکل(II) به سطح الکترود متصل شدند. بدین ترتیب الکترود خمیر کربن اصلاح شده با مایع یونی واجد یونهای نیکل (Ni/IL/CPE) ساخته شد و رفتار الکتروشیمیایی این الکترود نیز با استفاده از ولتامتری چرخه¬ای و کرونوآمپرومتری مورد بررسی قرار گرفت.
   این الکترود به طور موفقیت آمیزی برای اکسایش الکتروکاتالیزی متانول و فرمالدهید به کار رفت. الکترواکسایش این ترکیبات از طریق یک مکانیسم واسطه شده توسط گونه¬هایNi(III)/Ni(II)  انجام می¬شود. نکته قابل توجه دانسیته جریان الکتروکاتالیزی بالای (2mA cm- 6/17 برای متانول و 2- mA cm2/16 برای فرمالدهید) بدست آمده توسط این الکترود است. با استفاده از روش کرونوآمپرومتری، ثابت سرعت واکنش کاتالیزی برای اکسایش متانول و فرمالدهید محاسبه شد. در خاتمه مقایسه کارایی این الکترود با برخی از الکترودهای اصلاح شده توسط سایر اصلاح¬گرها قبلی نشان داد که این الکترود از قابلیت الکتروکاتالیزی خوبی برای الکترواکسایش متانول و فرمالدهید برخوردار است.

واژه¬های کلیدی:
مایع یونی، اسپکتروسکوپی امپدانس الکتروشیمیایی، ولتامتری چرخه¬ای، کرونوآمپرومتری، متانول، فرمالدهید، الکتروکاتالیز، الکترود خمیر کربن اصلاح شده.


دانلود با لینک مستقیم


مقاله رشته زمین شناسی رزین های معدنی یونی

اختصاصی از کوشا فایل مقاله رشته زمین شناسی رزین های معدنی یونی دانلود با لینک مستقیم و پر سرعت .

مقاله رشته زمین شناسی رزین های معدنی یونی


 مقاله رشته زمین شناسی رزین های معدنی یونی

دانلود مقاله رشته زمین شناسی رزین های معدنی یونی با فرمت ورد و قابل ویرایش تعداد صفحات 69

دانلود مقاله آماده

 

تاریخچه رزین های تعویض یونی

رزین های تعویض یونی ذرات جامدی هستند که می توانند یون های نامطلوب در محلول را با همان مقدار اکی والان از یون مطلوب با بار الکتریکی مشابه جایگزین کنند.در سال 1850 یک خاک شناس انگلیسی متوجه شد که محلول سولفات آمونیمی که به عنوان کود شیمیایی بکار می رود، در اثر عبور از لایه های ستونی از خاک، آمونیم خود را از دست می دهد بگونه ای که در محلول خروجی از ستون خاک، سولفات کلسیم در محلول ظاهر می شود.این یافته توسط دیگران پیگیری شد و متوجه شدند که سیلیکات آلومینیوم موجود در خاک قادر به تعویض یونی می باشد. این نتیجه گیری با تهیه ژل سیلیکات آلومینیوم از ترکیب محلول و سولفات آلومینیم و سیلیکات سدیم به اثبات رسید. بنابراین اولین رزین مصنوعی که ساخته شد سیلیکات آلومینیوم بود.به رزین های معدنی، زئولیت می گویند و در طبیعت سنگهای یافت می شوند که می توانند کار زئولیت های سنتزی را انجام دهند. این مواد، یون های سختی آور آب ( کلسیم و منیزیم) را حذف می کردند و بجای آن یون سدیم آزاد می کردند از اینرو به زئولیت های سدیمی مشهور شدند که استفاده از آن در تصفیه آب مزایای زیادی داشت چون احتیاج به استفاده از مواد شیمیایی نبود و اثرات جانبی هم نداشتند. اما زئولیت های سدیمی دارای محدودیتهایی بودند. این زئولیت ها می توانستند فقط سدیم را جایگزین کلسیم و  منیزیم محلول در آب نمایند و آنیونها بدون تغییر باقی می ماندند. از این رو آب تصفیه شده با زئولیت های سدیمی به همان اندازه آب خام، قلیاییت، سولفات، کلراید و سیلیکاتت دارند.


دانلود با لینک مستقیم