کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

تحقیق در مورد ماشین های DC

اختصاصی از کوشا فایل تحقیق در مورد ماشین های DC دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 10 صفحه


 قسمتی از متن .doc : 

 

ماشین های DC و AC

امروزه ماشین های الکتریکی نقش اساسی در صنعت ایفا می کنند و بنابراین به عنوان یکی از دروس مهم مهندسی برق در دانشگاه های دنیا مطرح می باشند.

متاسفانه بیشتر دانشجویان مهندسی برق به دلیل استفاده از فقط یک مرجع برای این درس و دید تک بعدی به ماشین های الکتریکی که همان دید مداری محض(KVL وKCL) است؛ همواره دارای ضعف اساسی در این درس می باشند.اولین ماشین های الکتریکی دوار که یک دانشجوی مهندسی برق با آنها آشنا می شود ماشین های DC هستند؛. لذا زیر بنای فهم دانشجویان از اصول اساسی ماشین های الکتریکی گردان در همین نوع ماشین ها شکل می گیرد و چه بسا در صورت عدم فهم مناسب ماشین های DC ،دانشجو با سایر ماشین های دواری که بعداً با آنها مواجه می شود(نظیر موتور های القایی سه فاز،ژنراتور های سنکرون سه فاز،موتور های القایی تک فاز و ماشین های مخصوص)قطعاً دچار اشکال می گردد و نخواهد توانست دید مهندسی خوبی را نسبت به ماشین های الکتریکی ،پیدا کند.

من با توجه به مطالعه تعداد زیادی کتاب راجع به ماشین های الکتریکی و چند ترم تدریس این درس (به صورت TA در خدمت چند تن از اساتید محترم دانشکده برق دانشگاه صنعتی شریف)

توانستم ضعف دانشجویان را در این درس ریشه یابی کنم ؛که همان طور در بالا اشاره شد نگاه یک چشمی به ماشین های الکتریکی به عنوان مدار های الکتریکی است.در حالی که می دانیم موتور ها و ژنراتور های الکتریکی به عنوان مبدل انرژی الکتریکی به مکانیکی و بالعکس هستند و این تبدیل انرژی تنها در سایه پدیده های الکترو مغناطیسی صورت خواهد گرفت.از همین بیان می توان نتیجه گرفت که روشی که ماشین های الکتریکی را مورد تجزیه و تحلیل قرار می دهیم ترکیبی از سه دیدگاه زیر است:

1)دیدگاه الکترومغناطیسی:محاسبات mmf و نیروهای الکترومغناطیسی و میدان های مغناطیسی.

2)دیدگاه مکانیکی:محاسبات گشتاور-سرعت و اعمال فرم زاویه ای قانون دوم نیوتن برای تجزیه و تحلیل حالت های گذرای ماشین های DC به صورت معادله دیفرانسیل معمولی رسته دوم

3)دیدگاه مداری:به دست آوردن مدار معادل الکتریکی ماشین های الکتریکی ومحاسبات ولتاژ و جریان پایانه ای ژنراتورها و جریانی که موتور از شبکه DC یاAC می کشدو مثلاً ضریب قدرت ورودی یک موتور AC که گفتیم این تنها دیدگاه دانشجویان نسبت به ماشین های الکتریکی است.

کتابی که پیش رو دارید در 8 فصل و از سه دیدگاه فوق به سبک استدلالی دقیق ماشین های DC را تجزیه و تحلیل می کند. با توجه به این موضوع که گرایش اصلی من مخابرات میدان (الکترومغناطیس) می باشد لذا سعی کردم دیدگاه الکترومغناطیسی روشنی از ماشین های DC ارائه دهم این موضوع در سرتاسر این کتاب به چشم می خورد (مثلاً در فصل پنجم اثبات دقیق الکترومغناطیسی این حقیقت که توزیع mmf روتور یک ماشین DC یک شکل موج شبه مثلثی است آورده شده است که در هیچ یک از مراجع معتبر درس ماشین های الکتریکی مطرح نشده است).

مهم ترین نکته برجسته این کتاب زبان ساده به کار گرفته شده و تعدد شکل های واضح در آن است اما در عین حال سعی شده کلیه مطالب درسی مربوطه به طور کامل پوشش داده شوند.همچنین در این کتاب سیم پیچی موجی یک ژنراتور DC و شکل موج ولتاژ تولیدی آن در فصل سوم تجزیه و تحلیل شده که این مساله همیشه به عنوان یک مساله بی جواب در کلاس های درس دانشکده برق بین دانشجویان تیزبین مطرح بود و در هیچ یک از مراجع درس ماشین بدان اشاره ای نشده است(فقط به ذکر فرمول تعداد مسیر های موازی جریان برابر 2 است بسنده کرده اند).حال من به کمک نرم افزار Mechanical Desktop روتور 18 شیاری با سیم پیچی موجی را 5 درجه،5درجه چرخانده ام و ولتاژ پایانه ای آن را به صورت تابعی از زمان درآوردم.

کنترل‌کننده سرعت موتور DC

با توجه به استفاده روز‌افزون موتورهای DC در بخش صنعت و تحقیقات، کنترل دقیق و بهینه سرعت این موتورها امری ضروری است. سامانه کنترل سرعت با داشتن کنترل‌کننده PID دیجیتال و با قابلیت تغییر پارامترهای کنترلی آن ابزار مناسبی در بخش تحقیقات و نیز استفاده در صنعت می‌باشد. این سامانه می‌تواند به صورت خودکار منحنی غیر خطی ماشین را استخراج کرده و در کنترل سرعت به‌کار‌گیرد.

 


دانلود با لینک مستقیم


تحقیق در مورد ماشین های DC

تحقیق درباره برق dc و ec

اختصاصی از کوشا فایل تحقیق درباره برق dc و ec دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

سیگنالهای  DC , AC

AC به معنی جریان متناوب و DC  به معنی جریان مستقیم می باشد . این دو مولفه گاهی به سیگنالهای الکتریکی ( مثلاً ولتاژ ) هم که جریان نیستند اطلاق می شود . بنابراین سیگنالهای الکتریکی جریان یا ولتاژی هستند که منتقل کننده اطلاعات ( که معمولا ولتاژ میباشد ) هستند .

جریان متناوب  AC

سیگنالهای متناوب در یک مسیر منتشر میشوند و سپس تغییر مسیر می دهند و این عمل دائماً تکرار می شود . یعنی ابتدا یک سیکل مثبت و بعد یک سیکل منفی و به همین ترتیب تکرار می شوند .

یک ولتاژ  متناوب  دائماً بین مثبت و منفی تغییر میکند و بصورت موجی تکرار میشود .

به هر تغییرات بین مثبت و منفی ، یک سیکل گفته می شود و واحد آن هرتز می باشد . در ایران وسائل الکتریکی با فرکانس 50 هرتز کار می کنند .

شکل بالا شکل موج یک منبع تغذیه متناوب است که به آن موج سینوسی اطلاق می شود و به شکل پائین از آنجا که مستقیماً بین مثبت و منفی تغییر می کند ، شکل موج مثلثی اطلاق می شود .

سیگنالهای متناوب برای راه اندازی وسائلی از قبیل لامپ ها و گرم کننده ها بکار می روند ولی اکثر مدارهای الکتریکی برای کار نیاز به یک ولتاژ مستقیم دارند که در زیر به آن اشاره شده است .

جریان مستقیم  DC

جریان مستقیم همیشه در یک مسیر جاری می شود ) همیشه مثبت و یا همیشه منفی است ( ولی ممکن است میزان آن کاهش یا افزایش پیدا کند .

باتری ها و رگولاتورها ولتاژ مستقیم می دهند و این ولتاژ برای مدارهای الکترونیکی مناسب است . اکثر منابع تغذیه شامل یک تبدیل کننده ترانسفورماتوری هستند که جریان اصلی غیر مستقیم را به یک جریان غیر مستقیم کم و بی خطر تبدیل می کنند .

سپس این جریان کم و بی خطر توسط مدارات یکسو کننده جریان از غیر مستقیم به مستقیم تبدیل می شود . البته این ولتاژ مستقیم یک ولتاژ متغییر می باشد و برای مدارهای الکترونیکی مناسب نیست و لذا برای صاف کردن سطح ولتاژ مستقیم از یک خازن استفاده می شود تا ولتاژ مستقیم برای مدارات الکترونیکی حساس قابل استفاده شود .

در شکل مقابل بالا شکل موج یک ولتاژ مستقیم ثابت و یکنواخت که از طریق باتری تامین میشود نشانداده شده است .

شکل وسط یک ولتاژ مستقیم با صاف کننده سطح ولتاژ )خازن (  است که مناسب بعضی از مدارهای الکترونیکی می باشد .و شکل پائین یک ولتاژ مستقیم بدون استفاده از خازن را نشان می دهد

مشخصات سیگنال های الکتریکی

/

همانطور که بیان شد ، سیگنالهای الکتریکی ولتاژ یا جریانی هستند که انتقال دهنده اطلاعات که معمولا ولتاژ است ، هستند .

در نمودار مقابل مشخصات مختلفی از سیگنال الکتریکی نشان داده شده است . یکی از این مشخصات فرکانس است که به تعداد سیکل ها در ثانیه اطلاق می شود .

Amplitude  ماکزیمم ولتاژی است که سیگنال دارد و Peak voltage  نام دیگری برای Amplitude  است .

  پیک تو پیک ( Peak-peak voltage ) دو برابر مقدار پیک ولتاژ می باشد .

 دوره تناوب ( Time period )  زمانی است که برای طی شدن یک سیکل کامل نیاز است . این زمان بر حسب ثانیه اندازهگیری می شود و در زمانهای خیلی کوتاه از واحد های میکروثانیه هم استفاده می شود .

فرکانس ( Frequency   ) به تعداد سیکل ها در هر ثانیه اطلاق می شود و واحد آن هرتز است . در اندازه گیری فرکانس های بالا از واحد های کیلوهرتز و مگاهرتز نیز استفاده می شود .

 

در ایران فرکانس شبکه برق 50 هرتز است بنابراین دوره تناوب برابر است با 20 میکروثانیه .

1/50 = 0.02s = 20ms.

هر کیلو هرتز برابر با هزار هرتز و هر مگاهرتز برابر را یک میلیون هرتز است .

1kHz = 1000Hz    و   1MHz = 1000000Hz.

در ولتاژ غیر مستقیم ، ولتاژ از صفر شروع و به پیک مثبت می رسد و دوباره به صفر رسیده و سپس به پیک منفی می رسد و لذا در بیشتر اوقات ، ولتاژ از مقدار پیک ولتاژ کمتر است . لذا از یک مقدار موثر استفاده می کنیم که همان RMS  است . مقدار ولتاژ RMS برابر است با 0.7 ولتاژ پیک

VRMS = 0.7 × Vpeak   and   Vpeak = 1.4 × VRMS

ارزش یا معیار RMS  یک ارزش موثر ولتاژ یا جریان متغییر می باشد ، بدین معنی که این ولتاژ تاثیر اصلیش در مدار معادل آن مقدار است . بعنوان مثال یک لامپ که به ولتاژ 6 ولت RMS  متصل شده ، همان مقدار روشنائی را دارد که اگر به یک ولتاژ 6 ولت مستقیم متصل می شد .به هر حال نور لامپی که با ولتاژ 6 ولت RMS  روشن شود ، کمتر است از نور لامپی که با 6 ولت مستقیم روشن شود . چون ولتاژ موثر 6 ولت غیر مستقیم برابر است با 2/4 ولت یعنی برابر با 2/4 ولت مستقیم نور می دهد .

بحث ولتاژ مؤثر این فکر را بوجود می اورد که مقدار RMS  نوع دیگری از میانگین است ولی بخاطر داشته باشید که این مقدار قطعاً میانگین نیست . در واقع ولتاژ یا جریان میانگین غیر مستقیم ،


دانلود با لینک مستقیم


تحقیق درباره برق dc و ec

تحقیق درباره راه اندازی انواع ژنراتورهای DC

اختصاصی از کوشا فایل تحقیق درباره راه اندازی انواع ژنراتورهای DC دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

راه اندازی انواع ژنراتورهای DC

منظور از راه اندازی ژنراتور DC چرخاندن محور مکانیکی آن توسط یک عامل خارجی و تغذیه ی الکتریکی سیم پیچهای مورد نیاز ( سیم پیچ میدان ) به منظور اخذ توان الکتریکی از سیم پیچ اصلی ماشین DC ( سیم پیچ آرمیچر) است.

هر کدام از انواع ژنراتورهای DC را بطور جداگانه مورد بررسی قرار می دهیم:

الف ) ژنراتور تحریک مستقل :

 

ابتدا محور را در سرعت می چرخانیم سپس یک منبع DC مستقل به سیم پیچ تحریک متصل می کنیم تا جریان تحریک و سپس شار بوجود آید .

 

با وجود شار و سرعت داریم

در سیم پیچ آرمیچر ولتاژ القاء می شود ( یعنی مخالف صفر است) و آن را با نمایش می دهیم . فرآیند فوق که منتهی به ظهور ولتاژ در سیم پیچ آرمیچر می شود را راه اندازی پنراتور DC تحریک مستقل گویند.

لازم به ذکر است که در تمام انواع ژنراتورهای DC کلید S که آن را کلید بار می گویند در ضمن راه اندازی باز می باشد.

بنابراین در ژنراتور تحریک مستقل در هنگام راه اندازی جریان آرمیچر صفر می باشد و ولت متر نصب شده و مقداری به اندازه ی را نمایش می دهد.

ب ) ژنراتور تحریک شنت:

 

باتوجه به تعریف ژنراتور شنت که سیم پیچ تحریک باید به 2 سر آرمیچر متصل شده امکان تغذیه ی آن توسط منبع DC به منظور تامین جریان تحریک و شار وجود ندارد از این رو به نظر می رسد که امکان تولید شار توسط عامل خارجی ژنراتور شنت وجود ندارد بنابراین به گونه ای داخلی باید شار را تولید نمود.

بدین صورت که عموماً درون ماشین های الکتریکی از راه اندازی های قبل مقداری شار پسمان وجود دارد.

با وجود شار پسمان ( بسیار کوچک ) و جا چرخاندن محور مجدداً ولتاژ به مقدار کم ظاهر می شود و این ولتاژ پس تولید جریان تحریک به مقدار کم می گردد.

عبور جریان از سیم پیچ تحریک سبب افزایش شار شده و مجدداً افزایش می‌یابد.

ولتاژ افزایش یافته جریان تحریک را افزایش می دهد و ...

این سیکل یا چرخه آنقدر ادامه می یابد که هسته ی مدار مغناطیسی ژتراتور به اشباع مغناطیسی برسد و دیگر زیاد نشود در این صورت ولتاژ نیز افزایش نیافته و ثابت باقی می ماند.

در این صورت گویند ژنراتور نشت ولتاژدار شده است و عملیات راه اندازی آن با موفقیت انجام می گردد.

در صورتی که ولت متر نصب شده ولتاژ مناسبی را نشان دهد عمل راه اندازی موفقیت آمیز بوده است در غیر این صورت ژنراتور راه اندازی نشده است که باید رفع عیب شود.

ج ) ژنراتور تحریک سری :

 

محور ژنراتور را در سرعت می چرخانیم با وجود شار پسمان ولتاژ به مقدار کم ظاهر می شود که ولت متر نصب گردیده این مقدار کم را نمایش می دهد.

اما جریان تحریک بوجود نمی آید زیرا کلید S باز می باشد از این رو ولتاژ افزایش نمی یابد.

از این رو ژنراتور سری تنها ژنراتوری است که به هنگام راه اندازی کلید بار بسته باشد تاهمراه بار راه اندازی شود . اصطلاحاً گویند که ژنراتور سری زیر بار راه اندازی می‌شود در این صورت جریان تجریک بوجود آمد و شار افزایش یافته و ولتاژ زیاد شده و مجدداً جریان تحریک افزایش و ...

تا پس از رسیدن مدار مغناطیسی به حالت اشباع دیگر ولتاژ افزایش نیابد و ژنراتور سری راه اندازی شود .


دانلود با لینک مستقیم


تحقیق درباره راه اندازی انواع ژنراتورهای DC

مقاله درباره حذف هارمونیکهای باس DC در اینورترها

اختصاصی از کوشا فایل مقاله درباره حذف هارمونیکهای باس DC در اینورترها دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

حذف هارمونیکهای باس DC در اینورترها

مقدمه:

اینورترهای منبع ولتاژ () در تنوع گسترده‌ای از کاربردهای صنعتی مانند منابع توان بدون وقفه ()، تغییر دهنده فرکانس استاتیک و درایوهای سرعت متغیر مورد استفاده قرار می‌گیرد. این به واسطه قابلیت آنها در کنترل خطی و پیوسته فرکانس و مؤلفه‌های اصلی ولتاژ خروجی می‌باشد. به علاوه با یک الگوی بهینه اندازه فیلترهای خروجی مورد نیاز برای کاهش هارمونیکهای ناخواسته کاهش می‌یابد. در سال های اخیر روش مدولاسیون عددی عرض پالس گسترش یافته تا عملکرد را بهبود بخشد.

به طور کلی روش های الگوریتم مدولاسیون عرض پالس (PWM) بر این فرض استوارند که باس () ایده‌ال بوده و بدون ریپل است (شکل 1). در سیستم مبدل عملی، ‌وجودیک باس dc غیر ایده‌آل کیفیت ولتاژ خروجی اینورتر را با بروز یک هارمونی ناخواسته مرتبه پایین خراب می‌کند که ممکن است قابل فیلتر کردن هم نباشد. در روش های جبرانسازی موجود معمولاً مدارات اضافی و پیچیده‌ای برای از بین بردن اثر این ریپل روی ولتاژ خروجی به کار می‌برند.

به علاوه در یک سیستم مبدل عملی در نظرگرفتن یک باس ایده‌ال به خاطر یک تعداد از محدودیت های عملی مشکل است. بسیاری از مبدل های نیاز به یک پل برای یکسو‌سازی دارند. در نتیجه هارمونی های مرتبة (که فرکانس تغذیه است) به داخل باس تزریق می‌شود. به علاوه یک عدم تعادل در تغذیه ورودی هارمونیک های اضافی از مرتبة را ایجاد می کند. در نهایت، عدم تعادل و غیر خطی بودن باراینورتر اعوجاج شکل موج ایجاد می‌کند که باعث ظاهر شدن هارمونیک های غیر مشخص در باس می‌شود. در عمل طراحی فیلتری که بتواند تمام هارمونیک های گفته شده در بالا را فیلتر کند، مشکل است.

نوسان با دامنه فرکانسی در باس نامطلوب است، به طوریکه موجب ظاهر شدن هارمونیک های مرتبه پایین یا در خروجی اینورتری که فرکانس مؤلفه اصلی اینورتر (جدول‏1) است، می‌شود. فیلتر کردن این هارمونیک ها به این دلیل که باعث تخریب کیفیت ولتاژ خروجی می‌شود، مشکل است. در این مقاله راه حلی برای جبرانسازی باس غیر ایده‌ال ارائه شده است.

جدول1: اثر نوسان باس dc روی ولتاژخروجی

فرکانس خروجی اینورتر

فرکانس ریپل موج

هارمونیک‌های مرتبه پائین در اینورتر

50

100

50

150

50

300

250

350

این مقاله یک مولد ساده که بر اساس کنترل مرحله به مرحله ولتاژ خروجی استوار است، ارائه می‌کند. با استفاده از این روش یک ولتاژ سینوسی در خروجی بدون توجه به باس ورودی خواهیم داشت. استفاده از این روش در ادوات FACTS وسیستم های HVDC در کاهش اعوجاج هامونیکی موثر خواهد بود.

ساختار مولدپالس ارائه شده

کارکرد تک فاز

مولد الگوی استاندارد یک ساختارحلقه باز دارد که در آن الگوی کلید زنی با مقایسه سیگنال مدوله کننده سینوسی با یک سیگنال حامل ثابت به دست می‌آید. شاخص مدولاسیون با تغییر دامنه سیگنال مدولاسیون تنظیم می‌شود.

 

شکل 1: مبدلdc به ac

الگوی سوئیچینگ ارائه شده (شکل2) دارای یک ساختار حلقه بسته بر اساس نمونه‌گیری آنی از مقدار ولتاژ گذرنده از کلید پایین است. این ولتاژ شامل اطلاعات مربوط به نوسان ولتاژباس است. پس با کنترل کردن ولتاژ گذرنده از سویچ پایین می توانیم خروجی روی هر فاز را تنظیم کرده و اثر نوسان باس را خنثی کنیم. شکل موج در شکل3 عملکرد سیستم درشکل 2 را نشان می‌دهد.

 

شکل 2: مولد پالس ارائه شده برای تمام پل

ولتاژ سوئیچ پایین یک انتگرال گیر قابل ریسیت را تغذیه می‌کند. خروجی به یک مقدار مطلوب می‌رسد و سوییچ قطع می‌شود. در همان زمان خروجی انتگرالگیر صفر شده، خروجی انتگرال‌گیر تا پایان یک دوره تناوب سوییچینگ در صفر می‌ماند.

 

(a)

 

(b)

 

(c)

شکل 3: (a) ولتاژ گذرنده ازسوییچ پایین (b) خروجی انتگرالگیر (c) الگوی پالس دهی به سوییچ پایین

جبرانسازی تغییرات باس

ولتاژ گذرنده از سویچ پایین در پل دیودی شکل 2 به صورت زیر تعیین می‌شود:

فرمول 1:

 

شیب انتگرال‌گیری متناسب با مقدار لحظه‌ای ولتاژ باس است. وقتی که ولتاژ باس بالا‌تر می‌رود انتگرال‌گیری سریع‌تر می‌شود و بنابراین مقدار انتگرال سریعتر به مقدار مرجع می‌رسد و عرض پالس باریکتری تولید می‌کند و از طرف دیگر وقتی که ولتاژ باس کمتر می شود، پالس عریض‌تری تولید می‌شود. الگوی تولید شده با این انتگرالگیری همزمان تابعی از باس غیر ایده‌ال است. بنابراین مدولاتور ارائه شده می‌تواند نوسان باس را جبران کند. این کارکرد را بدون نیاز به مدارات کنترلی پیچیده بهبودی بخشد.

روش کنترل انتگرالی ارائه شده با مدارات آنالوگ به راحتی قابل انجام است. در پیاده‌سازی دیجیتالی از آنجا که خروجی انتگرال‌گیردر فرکانس سوئیچینگ تغییر می کند، یک سرعت نمونه برداری سریع نیاز دارد تا دقت عمل تأمین شود.

روش ارائه شده در این مقاله برای سه فاز نیز اجرا شده که در شکل4 نشان داده شده است. این مدار شامل سه مدولاتور مستقل است که روی سوئیچ پایین هر پایه اینور قرار داده شده و مرجع کنترل هر کدام شیفت فاز نسبت به دیگری دارد.

 

شکل 4: مولد پالس ارائه شده برای سه فاز

معادلات طراحی

به این ترتیب طراحی یک باس بدون نوسان انجام شده است. نکته کلیدی در روش کنترل ارائه شده، انتگرال‌گیر با ثابت زمانی است. از آنجایی که ولتاژ سوئیچ پایین فقط مؤلفه دارد، یک ولتاژ مرجع شامل سینوسی و به صورت زیر نیاز داریم:

) 2(

 

به طوریکه فرکانس خروجی اصلی اینوتر است، شاخص مدولاسیون به صورت روبرو تعریف می‌شود:

) 3(

اگر را فرکانس سوئیچینگ و را دامنه ولتاژ سنسور در نظر بگیریم، خروجی آنی انتگرال‌گیر به صورت زیر خواهد بود:

) 4(

ثابت زمانی انتگرالگیری طوری باید انتخاب شود که خروجی انتگرالگیر همیشه به سیگنال مرجع برسد. اگر ثابت زمانی خیلی بزرگ انتخاب شود، خروجی انتگرال‌گیر به سیگنال مرجع نمی‌رسد و عملکرد مدار خراب می‌شود. بزرگترین انتگرال‌گیری وقتی اتفاق می‌افتد که ولتاژ در ماکزیمم مقدار خود باشد به عبارت دیگر . بنابراین شرایط لازم برای انتخاب ثابت زمانی به صورت زیر است:

) 5 (

اگر معادلة بالا را بازنویسی کنیم و یا قرار دهیم خواهیم داشت:

) 6 (

قابلیت کاهش هارمونیک بوسیله اعوجاج هارمونیکی ولتاژ خروجی اندازه گرفته می‌شود که:

(8)

در یک نوسان فرکانس به اندازة فرکانسهای غالب مرتبه پایین و هستند.

شبیه سازی

به منظور بررسی مفاهیم ارائه شده، یک اینورتر سه فاز شبیهسازی شده است. پل دیودی از منبع غیر متعادل سه‌فاز تغذیه می‌شود. خروجی انتگرالگیر وقتی که به مقدار مرجع می‌رسد صفر می‌شود.

شکل 5- aولتاژdc با یک هارمونیک غالب را نشان می‌دهد. این هارمونیکها در یکسوسازهای پل دیودی تولید می شوند. شکل 5-b وc ولتاژ و جریان خروجی اینورتر را نشان می‌دهند. در شکل 6 طیف فرکانسی مربوط نشان داده شده است. درشکل 6-a هارمونیک غالب در وشکل 6-b هارمونیک ها را در و نشان می دهد. برای مطالعه عملکرد اینورتر تحت شرایط غیر فعال یکی از خطوط تغذیه کنندة پل دیودی باز شده است.

شکل7-a ولتاژ آزمایشی را نشان می دهد و شکل 8-a طیف فرکانسی مربوط با هارمونیک غالب در را نشان می‌دهد. شکل7-b ولتاژ خط به خط اینورتر و شکل8-b طیف فرکانسی مربوط به آن را نشان می دهد. این نتایج نشان می‌دهد که هارمونیک های فرکانس پایین کم شده‌اند. جریان خط و طیف آن نیز درشکل 7-c و شکل8-c نشان داده شده است.

 

(a)

 

(b)

 

(c)

شکل 5 : نتایج آزمایش (a)ولتاژ ورودی (b) ولتاژ خط به خط خروجی اینورتر (c) جریان خط.


دانلود با لینک مستقیم


مقاله درباره حذف هارمونیکهای باس DC در اینورترها

تحقیق درباره ی سیگنالهای AC, DC 7 ص

اختصاصی از کوشا فایل تحقیق درباره ی سیگنالهای AC, DC 7 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

سیگنالهای  DC , AC

 AC به معنی جریان متناوب و DC  به معنی جریان مستقیم می باشد . این دو مولفه گاهی به سیگنالهای الکتریکی ( مثلاً ولتاژ ) هم که جریان نیستند اطلاق می شود . بنابراین سیگنالهای الکتریکی جریان یا ولتاژی هستند که منتقل کننده اطلاعات ( که معمولا ولتاژ میباشد ) هستند .

جریان متناوب  AC

سیگنالهای متناوب در یک مسیر منتشر میشوند و سپس تغییر مسیر می دهند و این عمل دائماً تکرار می شود . یعنی ابتدا یک سیکل مثبت و بعد یک سیکل منفی و به همین ترتیب تکرار می شوند .

یک ولتاژ  متناوب  دائماً بین مثبت و منفی تغییر میکند و بصورت موجی تکرار میشود .

به هر تغییرات بین مثبت و منفی ، یک سیکل گفته می شود و واحد آن هرتز می باشد . در ایران وسائل الکتریکی با فرکانس 50 هرتز کار می کنند .

شکل بالا شکل موج یک منبع تغذیه متناوب است که به آن موج سینوسی اطلاق می شود و به شکل پائین از آنجا که مستقیماً بین مثبت و منفی تغییر می کند ، شکل موج مثلثی اطلاق می شود .

سیگنالهای متناوب برای راه اندازی وسائلی از قبیل لامپ ها و گرم کننده ها بکار می روند ولی اکثر مدارهای الکتریکی برای کار نیاز به یک ولتاژ مستقیم دارند که در زیر به آن اشاره شده است .

جریان مستقیم  DC

جریان مستقیم همیشه در یک مسیر جاری می شود ( همیشه مثبت و یا همیشه منفی است ) ولی ممکن است میزان آن کاهش یا افزایش پیدا کند .

باتری ها و رگولاتورها ولتاژ مستقیم می دهند و این ولتاژ برای مدارهای الکترونیکی مناسب است . اکثر منابع تغذیه شامل یک تبدیل کننده ترانسفورماتوری هستند که جریان اصلی غیر مستقیم را به یک جریان غیر مستقیم کم و بی خطر تبدیل می کنند .

سپس این جریان کم و بی خطر توسط مدارات یکسو کننده جریان از غیر مستقیم به مستقیم تبدیل می شود . البته این ولتاژ مستقیم یک ولتاژ متغییر می باشد و برای مدارهای الکترونیکی مناسب نیست و لذا برای صاف کردن سطح ولتاژ مستقیم از یک خازن استفاده می شود تا ولتاژ مستقیم برای مدارات الکترونیکی حساس قابل استفاده شود .

در شکل مقابل بالا شکل موج یک ولتاژ مستقیم ثابت و یکنواخت که از طریق باتری تامین میشود نشانداده شده است .

شکل وسط یک ولتاژ مستقیم با صاف کننده سطح ولتاژ ( خازن )  است که مناسب بعضی از مدارهای الکترونیکی می باشد .و شکل پائین یک ولتاژ مستقیم بدون استفاده از خازن را نشان می دهد

مشخصات سیگنال های الکتریکی

 

همانطور که بیان شد ، سیگنالهای الکتریکی ولتاژ یا جریانی هستند که انتقال دهنده اطلاعات که معمولا ولتاژ است ، هستند .

در نمودار مقابل مشخصات مختلفی از سیگنال الکتریکی نشان داده شده است . یکی از این مشخصات فرکانس است که به تعداد سیکل ها در ثانیه اطلاق می شود .

Amplitude  ماکزیمم ولتاژی است که سیگنال دارد و Peak voltage  نام دیگری برای Amplitude  است .


دانلود با لینک مستقیم


تحقیق درباره ی سیگنالهای AC, DC 7 ص