کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

جزوه تجزیه و تحلیل حالات بالقوه خرابی و آثار آن- FMEA ( مدیریت کیفیت و بهره وری )

اختصاصی از کوشا فایل جزوه تجزیه و تحلیل حالات بالقوه خرابی و آثار آن- FMEA ( مدیریت کیفیت و بهره وری ) دانلود با لینک مستقیم و پرسرعت .

جزوه تجزیه و تحلیل حالات بالقوه خرابی و آثار آن- FMEA ( مدیریت کیفیت و بهره وری )


جزوه تجزیه و تحلیل حالات بالقوه خرابی و آثار آن- FMEA  ( مدیریت کیفیت و بهره وری )

 

 

فهرست :

تعریف FMEA

فواید اجرای FMEA

زمان اجرای FMEA

مراحل FMEA

فرم FMEA

انواع FMEA

System FMEA

آنالیز حالات بالقوه خرابی در طراحی سیستم

شدت

وقوع

تشخیص

تهیه فرم DFMEA

ارتباط بین SFMEA و DFMEA

PFMEA

MFMEA

......

 

 


دانلود با لینک مستقیم

کتاب- چیلر و انواع آن- در 80 صفحه

اختصاصی از کوشا فایل کتاب- چیلر و انواع آن- در 80 صفحه دانلود با لینک مستقیم و پرسرعت .

کتاب- چیلر و انواع آن- در 80 صفحه


کتاب- چیلر و انواع آن- در 80 صفحه

 

چیلر (به انگلیسی: Chiller) دستگاهی است که حرارت را از مایع (معمولاً آب) بر اساس سیکل تبرید تراکم بخار و یا جذبی می‌زداید. این مایع می‌تواند برای خنک کاری هوا و یا دستگاه‌هااستفاده شود که معمولاً به صورت سیکل و درون یک مبدل حرارتی جریان دارد. به عنوان یک محصول جانبی مهم، حرارتی که از مایع جذب شده یا باید به محیط خارج دفع شود یا برای کارایی‌های بالاتر برای مقاصد گرمایی استفاده شود. نگرانی‌هایی در مورد طراحی و انتخاب چیلرها وجود دارد. این نگرانی‌ها شامل، کارایی، بازده، تعمیر و نگهداری، آسیب پذیری‌های محیطی است.

 

انواع چیلرها

 

چیلرها به دو دسته چیلرهای تراکمی و چیلرهای جذبی تقسیم می‌شوند. شکل دیگر تقسیم بندی چیلرها بر اساس شکل خنک شدن ماده مبرد است که به سه دسته آب خنک، هوا خنک وتبخیری تقسیم بندی می‌شوند.

 

چیلرهای تراکمی با استفاده از انرژی الکتریکی و چیلرهای جذبی با استفاده از انرژی حرارتی باعث ایجاد برودت و سرما می‌شوند.

 

چیلر تراکمی

 

در چیلرهای تراکمی گاز ابتدا توسط کمپرسور، متراکم می‌گردد. این گاز سپس به کندانسور وارد شده توسط آب یا هوای محیط، خنک شده و به مایع تبدیل می‌گردد این مایع با عبور از شیر انبساط یالوله موئین وارد خنک‌کننده (اواپراتور) می‌شود که در فشار کمتری قرار دارداین کاهش فشار باعث تبخیر مایع گردیده و در نتیجه مایع سردکننده با گرفتن حرارت نهان تبخیر خود از محیط خنک‌کننده، باعث ایجاد برودت در موادی که با قسمت خنک‌کننده در ارتباطند می‌گردد. سپس گاز ناشی از تبخیر، به کمپرسور منتقل می‌شود.

 

با عبور بخار با سرعت در یک مسیر هوای کندانسور مکیده می‌شود. خلاء در کندانسور به علت تبدیل بخار به اب و اختلاف حجم بین بخار و اب ایجاد می‌گردد

 

انواع چیلر تراکمی

 

 

کنترل کننده‌های فشار در چیلر تراکمی

 

کنترل فشار بالا و پایین

 

این وسیله جهت کنترل کردن فشار دستگاه می‌باشد، دو لوله موئین در این کنترل وجود دارد که لوله LP را به قسمت مکش کمپرسور متصل کرده و لوله HP را به قسمت فشار بالا.

 

در سیستم چیلر کمپرسور باید با فشار مکش و دهش معینی کار کند. هرگاه از این فشار کمتر یا بیشتر شود این کنترل عمل کرده و دستگاه را خاموش می‌کند. کنترل فشار بالا و پایین قابل تنظیم می‌باشد.

 

در چیلر تراکمی با کندانسور آبی معمولاً فشار پایین را روی ۳۰ psi و فشار بالا را روی psi ۲۲۰ و با کندانسور هوایی فشار پایین را روی ۴۰ و فشار بالا را روی ۲۵۰ psi می‌توان تنظیم کرد.

 

اگر کمپرسور بر اثر فشار بالا قطع شود باید از سیستم رفع عیب شده و کلید ریست را فشار دهیم ولی اگر بر اثر فشار پایین قطع شود دوباره بر اثر افزایش گاز دستگاه روشن می‌شود.

 

کنترل فشار روغن

 

این وسیله جهت کنترل کردن مداوم فشار روغن کمپرسور می‌باشد. اگر در کمپرسور فشار روغن نباشد باعث صدمه دیدن آن می‌شود. کنترل روغن دارای دو لوله موئین می‌باشد که یکی از آنها به قسمت ساکشن (مکش) کمپرسور و دیگری به قسمت فشار روغن کمپرسور متصل می‌شود. بین فشار مکش کمپرسور و فشار روغن باید حداقل ۱۰ psi فشار باشد در غیر این صورت کنترل روغن فرمان قطع می‌دهد. هنگامی که کنترل روغن احساس کند که فشار زیر ۱۰ psi است یک هیتر درداخل کنترل روغن شروع به گرم شدن می‌شود و پس از تقریباً ۹۰ ثانیه حرارت هیتر باعث قطع شدن جریان شده و کمپرسور خاموش می‌شود.

 

ساختمان چیلر تراکمی

 

  1. الکتروموتور: میل لنگکمپرسور را به حرکت در می‌آورد حرکت دورانی میل لنگ باعث حرکت رفت وبرگشت پیستون در داخل سیلندر می‌گردد در نتیجه گاز مبرد در کمپرسور متراکم می‌شود.
  2. کوپلینگ: جفت کننده محور الکترو موتور با محور میل لنگ کمپرسور است.
  3. کمپرسور: گاز خروجیاز اواپراتور را متراکم کرده وارد کندانسور می‌کند.
  4. لوله رانش: گاز خروجی از کمپرسور را به کندانسور هدایت می‌کند.
  5. کندانسور: کندانسور این چیلر از نوع پوسته و لوله است در داخل پوسته گازمبرد و در داخل لوله‌ها آب خنک جریان دارد. گاز داغ و متراکم توسط لوله وارد پوسته کندانسور می‌شود. به علت تماس با لوله‌های مسی حاوی آب خنک، خنک شده به مایع تبدیل می‌شود و از پایین از طریق لوله خارج می‌شود. آب جریانی از طریق لوله وارد کندانسور شده واز طریق لوله خارج می‌شود. آب خروجی از کندانسور به برج خنک کنهدایت می‌شود تا پس از خنک شدن دوباره به کندانسور برگردد.
  6. لوله خروج مایع مبرد از کندانسور
  7. شیر سرویس کندانسور: برای بستن لولهخروج مبرد از کندانسور در مواقع سرویس و تعمیرات و توقف طولانی دستگاه مورد استفاده قرار می‌گیرد.
  8. شیر تغذیه ماده مبرد: برای شارژ سیستم استفاده می‌شود.
  9. فیلتر درایر یا صافی رطوبت گیر: وجود مواد جامد و رطوبت در دستگاه تبرید موجب بروز اشکالاتی می‌گردد که برای جلوگیری آن از وسیله‌ای به نام فیلتر برای گرفتن مواد جامد و درایر برای گرفتن رطوبت موجود در سیستم استفاده می‌شود.
  10. شیر برقی: که در صورت وصل بودن جریان الکتریکیمسیر عبور مایع مبرد را باز نگه می‌دارد این شیر برقی از ترموستات فرمان می‌گیرد.
  11. شیشه رویت یا سایت گلاس: میزان تغذیه ماده مبرد در سیستم و همچنین وجود رطوبت بیش از حد را در سیستم مشخص می‌نماید.
  12. اواپراتور: ماده مبرد پس از عبور از شیر انبساط وارد اواپراتور چیلر می‌شود ودر داخل لوله‌های مسی تبخیر شده و به صورت بخار از اواپراتور خارج می‌شود. تبخیر در اواپراتورباعث سرد شدن آب جریانی در پوسته می‌گردد. آب سرد شده از محل بطرف هواساز و فن کویلها جریان می‌یابد و در برگشت از هواسازیا فن کویلها از محل وارد اوپراتور چیلر می‌شود.
  13. شیر انبساط ترموستاتیک: که از دمای گاز خروجی از اواپراتور تأثیر گرفته مقدار مادهمبرد ورودی به اواپراتور را تنظیم می‌نماید.
  14. لوله مکش: که گاز خروجی از اواپراتور از طریق لوله وارد قسمت مکش کمپرسور می‌گردد.
  15. تابلو وسایل اندازه‌گیری و کنترل فشار: که مانومترهای فشار زیاد و فشارکم کنترل فشار کم و زیاد و منترل فشار روغن روی آن نصب شده‌اند.[۱]

 

اصول کار چیلر تراکمی

 

اصول کار چیلر تراکمی بدین شکل می‌باشد که سیال مبرد وارد لوله‌ها یا به اصطلاح تبخیر کننده که در داخل اتاق یا محلی که می‌خواهیم سرد کنیم می‌شود گرما از هوای اتاق به سیال مبرد داده می‌شود و سیال در نتیجه گرفتن گرما تبخیر می‌شود و در عوض درجه حرارت اتاق پایین می‌آید و دارای شرایط زیر باشد:

 

  • دمای آب رفتبرج خنک کن بایستی ۲۸ درجه سانتیگراد باشد.
  • دمای آب برگشت برج خنک کن بایستی ۵ درجه سانتیگراد با رفت اختلاف داشته باشد.
  • فشار گاز فریون در مکش چیلر تراکمی بایستی ۴۵ تا ۷۵ پیاسآی ورانش ۲۰۰ تا ۲۶۰ پیاسآی باشد با کندانسور آبی.
  • هنگامی که می‌خواهیم گاز تزریق کنیم بایستی شیر سرویس آن را ببندیم.
  • در حالت کارکرد چیلر تمامی شیرهای آن بایستی باز باشد. مکش - رانش - مایع.
  • برای روشن کردن چیلر ابتدا فن برج سپس پمپ فن کوئل و بعد از آن پمپ برج را روشن می‌کنیم.
  • برای وکیوم کردن چیلر بایستی چیلر خاموش باشد.
  • برای روغن زدن هم بایستس دستگاه خاموش باشد.
  • فشار روغن حداقل PSi 20 بیشتر از درجه فشار مکش باشد.
  • سطح شیشه نشان دهنده مایع مبرد باید صاف و بدون حالت کف زدگی باشد.
  • روغن داخل کمپرسور حدود ۱/۲ سطح شیشه روغن نما باشد و اگر از ۱/۴ سطح شیشه کمتر باشد روغن لازم را تأمین کنید.
  • مقدار اسید برای هر ظرفیت چیلر معادل ۱/۵ کیلوگرم پیشنهاد می‌شود.
  • از گیج قرمز برای فشار زیاد و تست ازت استفاده می‌شود.
  • از گیج آبی (یا سبز) برای فشار کم و وکیوم کردن دستگاه چیلر استفاده می‌شود.
  • در کنار دریا فشار وکیوم بایستس ۱٫۲۹ اینچ جیوه باشد و در تهران ۲۷ اینچ جیوه.

 

چیلر جذبی

 

در چیلرهای جذبی برخلاف چیلرهای تراکمی از جذب کننده (Absorber) و مولد حرارتی (ژنراتور) بجای کمپرسور استفاده می‌گردد. عمومی‌ترین خنک‌کننده در چیلرهای جذبی سیستم برمید لیتیم(لیتیوم برماید) است. در این سیستم، در قسمت جذب کننده، بخار آب توسط لیتیوم برماید غلیظ جذب شده و در قسمت مولد حرارتی، آب بر اثر حرارت تبدیل به بخار می‌شود. بخار آب در کندانسور که دارای فشار ۱/۰ اتمسفر است به حالت مایع در می‌آیدو سپس در خنک‌کننده که تحت فشار ۰۱/۰ اتمسفر دوباره به بخار تبدیل می‌گردد و آب برای اینکه تبخیر گردد گرمای نهان خود رااز محیط خنک‌کننده می‌گیرد و باعث ایجاد برودت می‌گردد سپس بخار آب ایجاد شده در خنک‌کننده به جذب کننده منتقل می‌گردد و دوباره این چرخه تکرار می‌شود.

 

انواع چیلر جذبی[ویرایش]

 

۱- گروه تک اثره (Single effect)

 

که خود به سه دسته چیلرهای تک اثره با تغذیه بخار، تک اثره با تغذیه آب داغ (دمای بالای ۱۰۰ درجه سانتیگراد) و تک اثره با تغذیه آب گرم (دمای زیر۱۰۰ درجه سانتیگراد) تقسیم می‌شوند که نحوه کار آنها مشابه بوده و همگی دارای حداقل یک مولد حرارتی می‌باشند.

 

۲- گروه دو اثره (Double effect)

 

که به دو دسته دو اثره با تغذیه بخار و دو اثره با شعله مستقیم طبقه‌بندی می‌شوند. این چیلرها، جز نسل جدید چیلرهای جذبی بوده و دارای سیکل تبرید کاملتری نسبت به چیلرهای جذبی تک اثره‌است.

 

انواع چیلر

 

چیلر : به دستگاه تولید برودت بر اساس عکس چرخه رانکین، چیلر گفته می شود. در این دستگاه مبرد چهار مرحله افزایش فشار (compress)، حرارت دهی و میعان (condense)، کاهش فشار (expansion) و حرارت گیری و تبخیر (evaporation) را در یک چرخه طی می نماید. به این صورت که مبرد مایع در فشار پایین حرارت را از محیط سرد در اواپراتور گرفته و بخار می شود، بخار تولید شده توسط مرحله افزایش فشار به فشار و دمای بالاتر می رسد، حرارت در این مرحله از بخار داغ گرفته شده و مبرد پس از طی نمودن مرحله اختناق به صورت مایع برای بازگشت به اواپراتور آماده می شود.

 

1مرحله افزایش فشار (کمپرس):

 

این مرحله به دو صورت رخ می دهد که بر اساس آن چیلرها نیز به دو دسته کلی تراکمی یا جذبی طبقه بندی می شوند.

 

چیلرهای تراکمی:

 

در این نوع چیلرها وظیفه افزایش فشار مبرد بر عهده کمپرسور می باشد. کمپرسور مبرد بخار شده در مرحله حرارت گیری (اواپراتور) را متراکم کرده و وارد مرحله حرارت دهی (کندانسور) می نماید.

 

این چیلرها که منبع تغذیه آنها برق است، دارای بازده (COP) بالایی بوده و معمولا 4 تا 7 برابر انرژی الکتریکی وارد شده به دستگاه را از منبع سرد (اواپراتور) و به منبع گرم (کندانسور) تحویل می دهند. این چیلرها بر اساس نوع کمپرسور به انواع رفت و برگشتی، اسکرو، اسکرال و سانتریفیوژ تقسیم بندی می شوند که تفاوت آنها در یک مقاله مجزا قابل بحث است.

 

 

 

چیلرهای جذبی:

 

تفاوت این چیلرها با چیلرهای تراکمی در مرحله افزایش فشار می باشد. در این چیلرها مبرد پس از اواپراتور، در قسمتی به نام ابزربر (absorber)، جذب یک ماده دیگر در فاز مایع به عنوان جاذب می شوند و حرارت تولید می نماید. (البته این حرارت توسط یک سیکل دیگر از سیستم دفع شده و تاثیر بسزایی در کارکرد سیکل کلی ندارد.) در این حالت مایع به فشار بالاتر پمپ می شود و با گرفتن حرارت در فشار بالاتر از جاذب خود رها شده به کندانسور وارد می شود. چرخه جاذب نیز توسط یک شیر اختناق کامل شده جاذب رقیق شده برای جذب مجدد مبرد به ابزربر برگشت داده می شود. این چیلرها به دلیل افزایش فشار به وسیله پمپ برق زیادی مصرف نمی کنند (در مقابل کمپرسور در چیلرهای تراکمی) و مصرف انرژی اصلی آنها حرارتی است که باید به جاذب در ژنراتور (generator) داده شود تا مبرد را وارد کندانسور نماید. حرارت مورد نیاز این چیلرها به صورت های مختلف تامین می شود و بر اساس آن، این چیلرها به انواع شعله مستقیم، بخار آب یا آب گرم تقسیم بندی می شوند. که توضیح تفاوت های آنها از حوصله این رساله خارج است.

 

از مشخصه های این سیستم ها بازده پایین 0.8 تا  1.2 است و معمولا برای مصارفی به کار می روند که برق مورد نیاز چیلر تراکمی مشابه قابل تهیه نباشد. (ظرفیت های بالا) هزینه اولیه بالا و نیاز به تعمیرات و نگهداری از مشخصه های منفی این سیستم است. همچنین به دلیل تولید حرارت در بخش ابزربر این چیلرها نیاز به ظرفیت بالاتری در حرارت دهی که در بخش آینده توضیح داده می شود هستند.

 

 

 

تذکر: می بایست توجه داشت انواع چیلرهای تراکمی گازسوز نیز امروزه در بازار تاسیسات موجود می باشند. این چیلرها را نباید با چیلرهای جذبی اشتباه گرفت. این چیلرها تراکمی بوده و کمپرسور آنها با موتورهای احتراق داخلی یا توربین کار می کنند.   

 

2- مرحله حرارت دهی به محیط (کندانسور):

 

در این مرحله مبرد که در فشار بالا و به صورت گاز داغ می باشد توسط یک مبدل انتقال حرارتی گرمای خود را به محیط اطراف می دهد. چیلرها بر اساس این نوع مبدل حرارتی به دو نوع آب خنک و هواخنک طبقه بندی می شوند.

 

چیلر آب خنک:

 

در چیلرهای آب خنک در مرحله کندانس حرارت مبرد به یک واسط انتقال حرارت (آب) داده می شود. آب نیز در برج خنک کن حرارت گرفته را به وسیله تبخیر و انتقال جرم به محیط بیرون می دهد.

 

چیلر هوا خنک:

 

در چیلرهای هواخنک حرارت مرحله کندانس به صورت مستقیم به هوا داده میشود. از آنجایی که ارزش حرارتی آب بسیار بالاتر از هوا است، چیلرهای هواخنک نیاز به کندانسور بزرگتری دارند که این عامل گرانی این چیلرها را به همراد دارد. همچنین استفاده تمام وقت آنها از فن و بازده پایین تر مرحله کندانس موجب افزایش مصرف این دستگاه ها می باشد. (بازده پایین تر) از این رو این دستگاه ها تنها در مواردی که مشکل کمبود منابع آبی یا بی کیفیت بودن منابع آب وجود دار د و همچنین مناطق بسیار شرجی که تبخیر آب پایین است پیشنهاد می گردند.

 

3- مرحله کاهش فشار (اختناق):

 

در این مرحله مبرد میعان یافته در کندانسور از یک شیر انبساط قابل تنظیم عبود نموده برای تبخیر در فشار پایین تر در اواپراتور آماده میشود. شیر انبساط دستگاه ها یک طرفه یا دو طرفه می باشد از این رو سیستم های تبرید به دو دسته کلی تقسیم بندی می شوند.

 

چیلرهای سرد:

 

این دستگاه ها دارای شیر انبساط یک طرفه بوده و به این صورت می توانند فقط چرخه رانکین را در یک مسیر انجام دهند مورد استفاده آنها نیز تنها در فصل گرم و برای تولید برودت است.

 

چیلرهای سرد و گرم (مجهز به هیت پمپ):

 

این دستگاه ها دارای شیر انبساط دو طرفه بوده و با دارا بودن شیر های سه راه موتوری می توانند جهت سیکل را معکوس کرده به عبارتی جای اواپراتور و کندانسور را تغییر دهند به این صورت در فصل سرد نیز کندانسور دستگاه حرارت خود را به محیط داخل تحویل می دهد و اواپراتور دستگاه حرارت را از بیرون دریافت می نماید.

 

4- مرحله حرارت گیری (اوپراتور):

 

چیلرها بنا بر اینکه در اواپراتور آب را خنک می کنند یا هوا را به دو دسته تقسیم می شوند.

 

چیلر و فن کویل:

 

در این مرحله ممکن است مبرد گرما را از آب گرفته آن را خنک کند و این آب خنک شده در فن کویل ها موجب کاهش حرارت داخلی ساختمان شده و شرایط آسایش را ایجاد کند

 

پکیج سقفی:

 

البته مبرد می تواند حرارت را مستقیم از هوا گرفته و هوای تهویه شده وارد محیط شود که این حالت در پکیج های سقفی ملاحظه میشود.

 

چیلر جذبی چگونه کار میکند؟

 

تاریخچه

 

به جرات می توان گفت که سرمایش جذبی اولین بار با ماده جاذب جامد شناخته شد. مایکل فاراده در سال 1824 میلادی در حین انجام یک سلسله آزمایشات برای تبدیل و شناخت گازهای پایدار با پدیده سرمایش جذبی روبرو شد. او می دانست که پودر کلرید نقره درجذب آب و آمونیاک بسیار موثر عمل می کند. بنابراین برای تعیین پایداری آمونیاک، در یک لوله خمیده کلرید نقره را در مجاورت گاز خشک آمونیاک قرار داد و سر دیگر آن را با آب، سرد کرد. گرما آمونیاک را از مخلوط جدا کرد و آمونیاک جدا شده، در اثر سرمای آب در سر دیگر لوله به صورت مایع جمع آوری شد. فاراده به گرما دادن سر دیگر لوله ادامه داد تا مقدار کافی آمونیاک مایع بدست آورد.

 

 

 


دانلود با لینک مستقیم

کتاب -خازن و کاربردهای آن- در 58صفحه-word

اختصاصی از کوشا فایل کتاب -خازن و کاربردهای آن- در 58صفحه-word دانلود با لینک مستقیم و پرسرعت .

کتاب -خازن و کاربردهای آن- در 58صفحه-word


کتاب -خازن و کاربردهای آن- در 58صفحه-word

 

خازن المان الکتریکی است که می‌تواند انرژی الکتریکی را توسط میدان الکترواستاتیکی (بار الکتریکی) در خود ذخیره کند. انواع خازن در مدارهای الکتریکی بکار می‌روند. خازن را با حرف C که ابتدای کلمه capacitor است نمایش می‌دهند.

با توجه به اینکه بار الکتریکی در خازن ذخیره می‌شود؛ برای ایجاد میدانهای الکتریکی یکنواخت می‌توان از خازن استفاده کرد. خازنها می‌توانند میدانهای الکتریکی را در حجم‌های کوچک نگه دارند؛ به علاوه می‌توان از آنها برای ذخیره کردن انرژی استفاده کرد.

ظرفیت خازن

ظرفیت معیاری برای اندازه‌گیری توانایی نگهداری انرژی الکتریکی است. ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است. باید گفت که ظرفیت خازن‌ها یک کمیت فیزیکی‌ست و به ساختمان خازن وابسته‌است و به مدار و اختلاف پتانسیل بستگی ندارد.

واحد اندازه گیری ظرفیت فاراد است. ۱ فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا می‌باشد. بنابراین استفاده از واحدهای کوچک‌تر نیز در خازنها مرسوم است. میکروفاراد (µF)،نانوفاراد (nF) و پیکوفاراد (pF) واحدهای کوچک‌تر فاراد هستند.

نسبت مقدار باری که روی صفحات انباشته می‌شود بر اختلاف پتانسیل دو سر باتری را ظرفیت خازن (C) گویند؛ که مقداری ثابت است.

 

در این رابطه:

  • C= ظرفیت خازن بر حسب فاراد
  • Q= بار ذخیره شده برحسب کولن
  • V= اختلاف پتانسیل دو سر مولد برحسب ولت
  • ε0= قابلیت گذر دهی خلا است که برابر است با: 
  • k(بدون یکا) = ثابت دی‌الکتریک است که برای هر ماده‌ای فرق دارد. تقریباً برای هوا و خلأ 1=K است و برای محیطهای دیگر مانند شیشه و روغن ۱
  • A= سطح خازن بر حسب 
  • d=فاصله بین دو صفه خازن بر حسب متر(m)

چند نکته

  • آزمایش نشان می‌دهد که ظرفیت یک خازن به اندازه بار (q) و به اختلاف پتانسیل دو سر خازن (V) بستگی ندارد بلکه به نسبت q/v بستگی دارد.
  • بار الکتریکی ذخیره شده در خازن با اختلاف پتانسیل دو سر خازن نسبت مستقیم دارد.
  • ظرفیت خازن با فاصله بین دو صفحه نسبت عکس دارد.
  • ظرفیت خازن با مساحت هر یک از صفحات و جنس دی‌الکتریک (K) نسبت مستقیم دارد.

 

 

 

به عبارت ساده انرژی ذخیره شده در یک خازن یک فارادی ۲۲۰ ولتی می‌تواند یک مصرف کننده ۶،۷۲۲ وات بر ساعت را به مدت یک ساعت روشن کند .

 


و یا انرژی ذخیره شده در یک خازن یک فارادی ۱۲ ولتی می‌تواند یک مصرف کننده ۰،۰۲ وات بر ساعت را به مدت یک ساعت روشن کند ( مثلا یک LED لامپ ۲۰ میلی وات ) .

ساختمان خازن

 

یک نمایش ساده از خازنی با صفحه‌های موازی

ساختمان داخلی خازن از دو قسمت اصلی تشکیل می‌شود:

هرگاه دو هادی در مقابل هم قرار گرفته و در بین آنها عایقی قرار داده شود، تشکیل خازن می‌دهند. معمولاً صفحات هادی خازن از جنسآلومینیوم، روی و نقره با سطح نسبتاً زیاد بوده و در بین آنها عایقی (دی‌الکتریک) از جنس هوا، کاغذ، میکا، پلاستیک، سرامیک، اکسید آلومینیومو اکسید تانتالیوم استفاده می‌شود. هر چه ضریب دی‌الکتریک یک ماده عایق بزرگ‌تر باشد آن دی‌الکتریک دارای خاصیت عایقی بهتر است. به عنوان مثال، ضریب دی‌الکتریک هوا ۱ و ضریب دی‌الکتریک اکسید آلومینیوم ۷ می‌باشد. بنابراین خاصیت عایقی اکسید آلومینیوم ۷ برابر خاصیت عایقی هوا است.

انواع خازن

خازنها بر حسب ثابت یا متغیر بودن ظرفیت به دو گروه کلی ثابت و متغیر تقسیم‌بندی می‌شوند. خازنها انواع مختلفی دارند و از لحاظ شکل و اندازه با یک دیگر متفاوت‌اند. بعضی از خازنها از روغن پر شده و بسیار حجیم‌اند.

خازنهای ثابت

این خازنها دارای ظرفیت معینی هستند که در وضعیت معمولی تغییر پیدا نمی‌کنند. خازنهای ثابت را بر اساس نوع ماده دی‌الکتریک به کار رفته در آنها تقسیم بندی و نام‌گذاری می‌کنند و از آنها در مصارف مختلف استفاده می‌شود. از جمله این خازنها می‌توان انواع سرامیکی، میکا، ورقه‌ای (کاغذی و پلاستیکی)، الکترولیتی، روغنی، گازی و نوع خاص فیلم (Film) را نام برد. اگر ماده دی‌الکتریک طی یک فعالیت شیمیایی تشکیل شده باشد آن را خازن الکترولیتی و در غیر این صورت آن را خازن خشک گویند. خازنهای روغنی و گازی در صنعت برق بیشتر در مدارهای الکتریکی برای راه اندازی و یا اصلاح ضریب قدرت به کار می‌روند. بقیه خازنهای ثابت دارای ویژگیهای خاصی هستند.

  • خازنهای ثابت:
    • سرامیکی
    • خازنهای ورقه‌ای
    • خازنهای میکا
    • خازنهای الکترولیتی
    • آلومینیومی
    • تانتالیوم

خازنهای سرامیکی

خازن سرامیکی (به انگلیسی: Ceramic capacitor) معمولترین خازن غیر الکترولیتی است که در آن دی‌الکتریک بکار رفته از جنس سرامیک است. ثابت دی‌الکتریک سرامیک بالا است، از این رو امکان ساخت خازنهای با ظرفیت زیاد در اندازه کوچک را در مقایسه با سایر خازنها بوجود آورده، در نتیجه ولتاژ کار آنها بالا خواهد بود. ظرفیت خازنهای سرامیکی معمولاً بین ۵ پیکوفاراد تا ۱/۰ میکروفاراد است. این نوع خازن به صورت دیسکی (عدسی) و استوانه‌ای تولید می‌شود و بسامد کار خازنهای سرامیکی بالای ۱۰۰ مگاهرتز است. عیب بزرگ این خازنها وابسته بودن ظرفیت آنها به دمای محیط است، زیرا با تغییر دما ظرفیت خازن تغییر می‌کند. از این خازن در مدارهای الکترونیکی، مانند مدارهای مخابراتی و رادیویی استفاده می‌شود.

خازنهای ورقه‌ای

در خازنهای ورقه‌ای از کاغذ و مواد پلاستیکی به سبب انعطاف‌پذیری آنها، برای دی‌الکتریک استفاده می‌شود. این گروه از خازنها خود به دو صورت ساخته می‌شوند:

خازنهای کاغذی

دی‌الکتریک این نوع خازن از یک صفحه نازک کاغذ متخلخل تشکیل شده که یک دی‌الکتریک مناسب درون آن تزریق می‌گردد تا مانع از جذب رطوبت گردد. برای جلوگیری از تبخیر دی‌الکتریک درون کاغذ، خازن را درون یک قاب محکم و نفوذناپذیر قرار می‌دهند. خازنهای کاغذی به علت کوچک بودن ضریب دی‌الکتریک عایق آنها دارای ابعاد فیزیکی بزرگ هستند، اما از مزایای این خازنها آن است که در ولتاژها و جریانهای زیاد می‌توان از آنها استفاده کرد.

خازنهای پلاستیکی

در این نوع خازن از ورقه‌های نازک پلاستیک برای دی‌الکتریک استفاده می‌شود. ورقه‌های پلاستیکی همراه با ورقه‌های نازک فلزی (آلومینیومی) به صورت لوله، در درون قاب پلاستیکیبسته بندی می‌شوند. امروزه این نوع خازنها به دلیل داشتن مشخصات خوب در مدارات زیاد به کار می‌روند. این خازنها نسبت به تغییرات دما حساسیت زیادی ندارند، به همین سبب از آنها در مداراتی استفاده می‌کنند که احتیاج به خازنی با ظرفیت ثابت در مقابل حرارت باشد. یکی از انواع دی‌الکتریک‌هایی که در این خازنها به کار می‌رود پلی استایرن (به انگلیسی:Polystyrene) است، از این رو به این خازنها «پلی استر» گفته می‌شود که از جمله رایج‌ترین خازنهای پلاستیکی است. ماکزیمم بسامد کار خازنهای پلاستیکی حدود یک مگاهرتز است.

خازنهای میکا

در این نوع خازن از ورقه‌های نازک میکا در بین صفحات خازن (ورقه‌های فلزی – آلومینیوم) استفاده می‌شود و در پایان، مجموعه در یک محفظه قرار داده می‌شوند تا از اثر رطوبت جلوگیری شود. ظرفیت خازنهای میکا تقریباً بین 0/01 تا ۱ میکروفاراد است. از ویژگیهای اصلی و مهم این خازنها می‌توان داشتن ولتاژ کار بالا، عمر طولانی و کاربرد در مدارات فرکانس بالا را نام برد.

خازنهای الکترولیتی

این نوع خازنها معمولاً در رنج میکروفاراد هستند. خازنهای الکترولیتی همان خازنهای ثابت هستند، اما اندازه و ظرفیتشان از خازنهای ثابت بزرگتر است. نام دیگر این خازنها، خازن شیمیایی است. علت نامیدن آنها به این نام این است که دی‌الکتریک این خازنها را به نوعی مواد شیمیاییآغشته می‌کنند که در عمل، حالت یک کاتالیزور را دارا می‌باشند و باعث بالا رفتن ظرفیت خازن می‌شوند. برخلاف خازنهای عدسی، این خازنها دارای قطب یا پایه مثبت و منفی می‌باشند. روی بدنه خازن کنار پایه منفی، علامت – نوشته شده‌است. مقدار واقعی ظرفیت و ولتاژ قابل تحمل آنها نیز روی بدنه درج شده‌است. خازن‌های الکترولیتی در دو نوع آلومینیومی و تانتالیومی ساخته می‌شوند. یکی از کاربردهای گسترده این نوع خازن استفاده در مدار یکسوساز دیودی بعنوان فیلتر dc است.

خازن آلومینیومی

این خازن همانند خازنهای ورقه‌ای از دو ورقه آلومینیومی تشکیل شده‌است. یکی از این ورقه‌ها که لایه اکسید بر روی آن ایجاد می‌شود «آند» نامیده می‌شود و ورقه آلومینیومی دیگر نقش کاتد را دارد. ساختمان داخلی آن بدین صورت است که دو ورقه آلومینیومی به همراه دو لایه کاغذ متخلخل که در بین آنها قرار دارند هم زمان پیچیده شده و سیمهای اتصال نیز به انتهای ورقه‌های آلومینیومی متصل می‌شوند. پس از پیچیدن ورقه‌ها آن را درون یک الکترولیت مناسب که شکل گیری لایه اکسید را سرعت می‌بخشد غوطه‌ور می‌سازند تا دو لایه کاغذ متخلخل از الکترولیت پر شوند. سپس کل مجموعه را درون یک قاب فلزی قرار داده و با یک پولک پلاستیکی که سیمهای خازن از آن می‌گذرد محکم بسته می‌شود.

خازن تانتالیوم

 

خازن تانتالیوم

در این نوع خازن به جای آلومینیوم از فلز تانتالیوم استفاده می‌شود. زیاد بودن ثابت دی‌الکتریک اکسید تانتالیوم نسبت به اکسید آلومینیوم (حدوداً ۳ برابر) سبب می‌شود خازنهای تانتالیومی نسبت به نوع آلومینیومی درحجم مساوی دارای ظرفیت بیشتری باشند. محاسن خازن تانتالیومی نسبت به نوع آلومینیومی بدین قرار است:

  • ابعاد کوچکتر
  • جریان نشتی کمتر
  • عمر کارکرد طولانی

از جمله معایب این نوع خازن در مقایسه با خازنهای آلومینیومی می‌توان به موارد زیر اشاره کرد:

  • خازنهای تانتالیوم گرانتر هستند
  • نسبت به افزایش ولتاژ اعمال شده در مقابل ولتاژ مجاز آن، همچنین معکوس شدن پلاریته حساس‌ترند
  • قابلیت تحمل جریانهای شارژ و دشارژ زیاد را ندارند
  • خازنهای تانتالیوم دارای محدودیت ظرفیت هستند (حد اکثر تا ۳۳۰ میکرو فاراد ساخته می‌شوند)

خازنهای متغیر

به طور کلی با تغییر سه عامل می‌توان ظرفیت خازن را تغیییر داد: «فاصله صفحات»، «سطح صفحات» و «نوع دی‌الکتریک». اساس کار خازن متغیر بر مبنای تغییر سطح مشترک صفحات خازن یا تغییر ضخامت دی‌الکتریک است، ظرفیت یک خازن نسبت مستقیم با سطح مشترک دو صفحه خازن دارد. خازنهای متغیر عموماً ازنوع عایق هوا یا پلاستیک هستند. نوعی که به وسیله دسته متحرک (محور) عمل تغییر ظرفیت انجام می‌شود «واریابل» نامند و در نوع دیگر این عمل به وسیله پیچ گوشتی صورت می‌گیرد که به آن «تریمر» گویند. محدوده ظرفیت خازنهای واریابل ۱۰ تا ۴۰۰ پیکو فاراد و در خازنهای تریمر از ۵ تا ۳۰ پیکو فاراد است. از این خازنها در گیرنده‌های رادیویی برای تنظیم فرکانس ایستگاه رادیویی استفاده می‌شود.

در مدارات تیونینگ رادیویی از این خازن‌ها استفاده می‌شود و به همین دلیل به این خازنها گاهی خازن تیونینگ هم اطلاق می‌شود. ظرفیت این خازن‌ها خیلی کم و در حدود ۱۰۰ تا ۵۰۰ پیکوفاراد است و بدلیل ظرفیت پایین در مدارات تایمینگ مورد استفاده قرار نمی‌گیرند، در مدارات تایمینگ از خازن‌های ثابت استفاده می‌شود و اگر نیاز باشد دوره تناوب را تغییر دهیم، این عمل به کمک مقاومت انجام می‌شود.

  • خازنهای متغیر
    • واریابل
    • تریمر

خازن‌های تریمر

خازن‌های تریمر خازن‌های متغیر کوچک و با ظرفیت بسیار پایین هستند. ظرفیت این خازن‌ها از حدود ۱ تا ۱۰۰ پیکوفاراد است و بیشتر در تیونرهای مدارات با فرکانس بالا مورد استفاده قرار می‌گیرند. این خازن‌ها معمولاً دارای ۳ پایه هستند که نوع ۲ پایه عملاً فرقی در مونتاژ ندارد.

انواع خازن بر اساس شکل ظاهری آنها

خازن مسطح

خازنهای مسطح از دو صفحه هادی که بین آنها عایق یا دی‌الکتریک قرار دارد تشکیل می‌شوند. صفحات هادی نسبتاً بزرگ هستند و در فاصله‌ای بسیار نزدیک به هم قرار می‌گیرند.دی‌الکتریک این نوع خازن‌ها انواع مختلفی دارد و با ضریب مخصوصی که نسبت به هوا سنجیده می‌شود، معرفی می‌گردد. این ضریب را ضریب دی‌الکتریک می‌نامند. برخی دیگر بسیار کوچک و به اندازه یک دانه عدس می‌باشند.

انواع خازن‌ها بر اساس دی‌الکتریک آن‌ها

 

مواد به کار رفته در خازن. از چپ: سرامیک چندلایه، دیسک سرامیکی، فیلم پلی‌استر چندلایه، سرامیکی لوله‌ای،یونولیت، فیلم پلی‌استر متالیزه‌شده، الکترولیتی آلمینیوم.

  • خازن کاغذی
  • خازن الکترونیکی
  • خازن سرامیکی
  • خازن متغیر

کاربرد خازنها در مدارات دیجیتال و انالوگ

در مدارهای دیجیتال از خازنها به عنوان عنصر ذخیره کنندهٔ انرژی استفاده می‌کنند که در یک لحظه شارژ و در لحظه دیگر دی شارژ می‌شود ولی در مدارات انالوگ از خازن جهت ایزوله کردن (جداساختن) دو منبع متناوب و مستقیم استفاده می‌شود. خازن در برابر ولتاژ متناوب مثل اتصال کوتاه عمل می‌کند و اجازه ورود یا خروج می‌دهد ولی در مقابل ولتاژ مستقیم همانند سد عمل می‌کند و اجازه ورود و یا خارج شدن ولتاژ مستقیم از مدار را به قسمت تحت ایزوله خود نمی‌دهد.

شارژ یا پر کردن یک خازن

 

یک مدار خازنی-مقاومتی ساده که چگونگی شارژ خازن را نمایش می‌دهد.

وقتی که یک خازن بی‌بار را به دو سر یک باتری وصل کنیم؛ الکترون‌ها در مدار جاری می‌شوند. بدین ترتیب یکی از صفحات بار مثبت و صفحه دیگر بار منفی پیدا می‌کند. آن صفحه‌ای که به قطب مثبت باتری وصل شده؛ بار مثبت و صفحه دیگر بار منفی پیدا می‌کند. خازن پس از ذخیره کردن مقدار معینی از بار الکتریکی پر می‌شود. یعنی وجود اینکه کلید همچنان بسته‌است، ولی جریانی از مدار عبور نمی‌کند و در واقع جریان به صفر می‌رسد. یعنی به محض اینکه یک خازن خالی بدون بار را در یک مدار به مولد متصل کردیم؛ پس از مدتی کوتاه عقربه گالوانومتر دوباره روی صفر بر می‌گردد. یعنی دیگر جریانی از مدار عبور نمی‌کند. در این حالت می‌گوییم خازن پرشده‌است.

دشارژ یا تخلیه یک خازن

ابتدا خازنی را که پر است در نظر می‌گیریم. دو سر خازن را توسط یک سیم به همدیگر وصل می‌کنیم. در این حالت برای مدت کوتاهی جریانی در مدار برقرار می‌شود و این جریان تا زمانی


دانلود با لینک مستقیم