کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود پایان نامه ارزیابی فولادی استحکام بالا در صنعت سازه های فولادی

اختصاصی از کوشا فایل دانلود پایان نامه ارزیابی فولادی استحکام بالا در صنعت سازه های فولادی دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه ارزیابی فولادی استحکام بالا در صنعت سازه های فولادی


دانلود پایان نامه ارزیابی فولادی استحکام بالا در صنعت سازه های فولادی

ارزیابی فولادی استحکام بالا در صنعت سازه های فولادی

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:40

چکیده :

استفاده ار سازه های فولادی استحکام بالا به دلیل مزایای فنی و اقتصادی در بسیاری کشورها گسترش یافته است اما کاربرد این فولادها در کشور به خاطر عدم شناخت کافی رواج نیافته است. در این مقاله خصوصیات مکانیکی متالوژیکی این آلیاژها برای استفاده در سازه های فولادی مورد ارزیابی قرار گرفته است. ابتدا مکانیزم های افزایش استحکام در این فولادها توصیف می شود، سپس عوامل کلیدی در انتخاب فولادهای استحکام بالا شامل استحکام تسلیم، قابلیت جوشکاری، ضربه پذیری و قیمت تمام شده مورد تحلیل قرار می گیرد و به دنبال آن کاربردهای این گروه از فولادها در سازه های گوناگون بیان می شود. در انتهای مقاله خوص فولاد 52-St به عنوان یکی از فولادهای استحکام بالا از تولیدات شرکت فولاد مبارکه اصفهان معرفی خواهد شد و با فولادهای معمول ساختمانی مقایسه می شود.

واژه فولاد ساختمانی (structural steel) عموماً به فولادهای C-Mn اطلاق می شود که ساختاری فریتی – پرلیتی دارند و در تناژ بالا برای مصارف ساختمانی و شیمیایی تولید می شوند. تولیدات اغلب به صورت ورق و مقاطع شکل دار است. که ضخامت آنها گاه بیش از 10 سانتیمتر می رسد، استحکام تسلیم تا حدود N/mm² 500 است ولی گریدهای کم آلیاژ با انجام عملیات حرارتی تا مقادیر N/mm²700 را نیز کسب می کنند. ساختمان، پل، مخازن، کشتی و خودرو از کاربردهای مرسوم این فولادها به شمار می آید، اما اخیراً در سکوهای نفت و گاز دریایی، خطوط لوله و مصارف دمای پایین نیز وارد شده اند و مصارف آنها گسترش روزافزونی یافته است.

تحقیقات ده1950 را می توان انقلابی در طراحی فولادهای سازه قلمداد نمود؛ کار دو نفر از محققین نشان داد که ریز کردن دانه های فریت منجر به افزایش استحکام تسلیم تافنس فولادی می شود. به این ترتیب فولادهای ساختمانی با نقطه تسلیم Mpa 300 همراه با ضربه پذیری خوب و قابلیت جوشکاری مناسب تولید شد که در ترکیب آنها از مقادیر اندک آلومنیوم برای ریزسازی دانه ها استفاده شده بود. ریز کردن دانه ها در فولادهای فریتی –پرلیتی اکنون نیز مهمترین پارامتر متالوژیکی برای اصلاح فولادهای سازه به شمار می آید برای دستیابی به استحکام بالاتر مکانیزم های دیگری را مانند تشکیل رسوبات ریز می توان به کار گرفت. با افزودن مقادیر کم (تا حدود 15/0 درصد) عناصر نیوبیم، وانادیم و تیتانیم به فولادهای ساختمانی می توان استحکام تسلیم را تا حوالی Mpa 500 بالا برد این عناصر را میکروآلیاژی می نامند و آلیاژ حاصل در گروه فولادهای کم آلیاژ استحکام بالا (HSLA) قرار می گیرد.

در تحقیقات بعدی فرایند تولید فولاد HSLA نیز مورد توجه قرار گرفت و نورد کنترل شده به عنوان مکمل ترکیب شیمیایی برای دستیابی به سطوح استحکام بالاتر تعریف شد. به این ترتیب توانستند فولادهای ریزدانه را در حالت نورد شده و بدون نیاز به عملیات هزینه بر نرماله کردن به استحکام مورد نظر برسانند.نکته قابل توجه ان است که با حذف این عملیات حرارتی خواص مکانیکی بهتری هم در فولاد ایجاد می شد. تحقیقات دهه های 1970 به بعد نشان داد که علاوه بر حضور عناصر میکروآلیاژی و نورد کنترل شده،نحوه سرد شدن را نیز می توان چنان اجرا نمود که باز هم مشخصات مکانیکی را ارتقا دهد و به این ترتیب فرآوری ترمومکانیکی وارد صنعت تولید فولاد شد.

فولادهای کم آلیاژی استحکام بالا اولین کاربردهای خود را در آغاز دهه 1960 به صورت ورق و مقاطع ساختمانی به دلیل توانایی جوشکاری آسان کسب نمودند. در اوایل دهه 1970 این فولادها در خطوط لوله گرم همچنین شرایط سخت قطبی مورد استفاده قرار گرفتند و در اواخر این دهه، همزمان با بروز بحران انرژی فولادهای HSLAجهت کاهش وزن اتومبیل و کامیون به کار گرفته شد. در دهه 1980 فولادهای HSLA به صورت تیرچه و قطعات فورج شده توسعه یافته و کاربردهای خاص خود را پیدا کردند و بدون نیاز به عملیات حرارتی مورد استفاده قرار گرفتند. مراحل پیشرفت و توسعه تکنولوژی ساخت فولادهای HSLA را تا سال 1989 می توان در جدول 1 ملاحظه کرد.

علی رغم گسترش چشمگیر فولادهای استحکام بالا در ممالک توسعه یافته، این فولادها در کشور به خوبی معرفی نشده اند و به دلیل عدم آشنایی کافی مصرف کنندگان و مهندسین طراح با خواص آنها جایگاه خود را کسب ننموده اند. این در حالی است که استفاده از فولادهای کم آلیاژ استحکام بالا به جای فولادهای ساختمانی معمولی در صنعت سازه از نظر اقتصادی اهمین فوق العاده ای دارد. با توجه به این واقعیت و در نظر گرفتن اینکه گروهی از فولادهای استحکام بالا در کشور تولید می شود، در مقاله حاضر خواص این فولادها ارزیابی می شود و خصوصیات لازم برای سازه های مهندسی با مشخصات فولادهای استحکام بالا مقایسه و مورد بحث قرار می گیرد.

2- استحکام بخشی فولادهای سازه

در صنعت سازه با توجه به اهمیت پایین نگهداشتن قیمت تمام شده ، از مکانیزمهای چند گانه برای افزایش استحکام استفاده شده است. اعمال این مکانیزم ها نه تنها از دیدگاه هزینه تولید در خور توجه است بلکه در ارتباط با خصوصیات دیگر مورد نیاز در سازه ها مانند جوش پذیری باید در نظر گرفته شود. همانطور که در شکل 1 دیده می شود، مکانیزمهای عمده شامل تشکیل محلول جامد، ریزکردن دانه ها و ایجاد رسوبات با عناصر میکروآلیاژی است.

افزایش استحکام ناشی از تشکیل محلول جامد چندان زیاد نیست، کربن در فریت حلالیت اندکی دارد و عناصر آلیاژی زیادی نیز در فولادهای ساختمانی یافت نمی شود به این دلیل اثر استحکام بخشی محلول جامد نسبتاً کم است و در شکل 1 به صورت نوار سیاه رنگی به استحکام زمینه اضافه شده است. بر اساس آنچه درشکل دیده می شود اگر دانه های فریت خیلی درشت باشند،‌استحکام تسلیم فولاد تنها حدود MPa 100 خواهد بود، مشروط بر آنکه مکانیزم دیگری در ساختار فعال نشده باشد.

استحکام حاصل از ریز شدن دانه ها بسیار شاخص است و در شرایط بهینه به MPa 300 می رسد بدون آنکه انعطاف پذیری را کاهش دهد و یا به ضربه پذیری فولاد آسیب وارد سازد. رابطه ای که ارتباط اندازه دانه را با استحکام تسلیم نشان می ده (Hall – petech equation) از مهمترین روابط متالوژی است.

3- عوامل کلیدی در انتخاب فولاد

عوامل تعیین کننده در انتخاب فولاد مناسب برای مصارف ساختمانی را می توان بدین صورت بیان نمود

(1)- استحکام تسلیم (strength)

(2)- قابلیت جوشکاری (Weldability)

(3)- ضربه پذیری در دمای کاری (Toughness)

(4)- قیمت (price)

3-1- استحکام یک سازه کمیت قابل تغییری است زیرا می توان مقاطعه فولادی را بزرگتر و ضخیم تر درنظر گرفت و استحکام را افزایش داد، در حالی که خواص دیگر مانند قابلیت جوشکاری حد مشخصی دارد که به نوع فولاد مربوط می شود. از سوی دیگر، بالا بردن استحکام آلیاژ به سه دلیل مطلوب است؛ کاهش حجم، کاهش وزن، و کاهش قیمت. براین اساس هر قدر بتوان از فولادهایی که استحکام تسلیم بالاتری دارند در صنعت سازه استفاده نمود، حجم کمتری اشغال می شود و بار ساکن بعنی وزن سازه کاهش می یابد.

مقادیر زیادی میله گرد فولاد برای تقویت بتن در ساختمان ها و پل ها و اسکله ها مصرف می شود. در سال های گذشته از فولادهای نامرغوب برای میله گرد استفاده می شد تا قیمت پایین تری داشته باشد، حتی در مواردی ذوب های برگشتی خارج از استاندارد را بدین منظور به کار می بردند. با این حال تمایل به سمت فولادهای استحکم بالا افزایش یافته و تولیدات مرغوب با استاندارد بالاتر اکنون مورد توجه قرار گرفته است به این ترتیب میله گردهایی که از فولاد ساده کربنی با استحکام تسلیم MPa 250 ساخته می شوند به تدریج جای خود را به فولادهای قوی تر با نقطه تسلیم در حد MPa 500 می دهند. صرفه جویی وزنی به دلیل استفاده از میله گردهای استحکام بالا بسیار قابل توجه است. طبق استاندارد( (BS4449 حداقل استحکام تسلیم برای میله های ساده و آجدار به ترتیب MPa250 و MPa460 است و ترکیب شیمیایی آنها در جدول 2 دیده می شود. کربن معادل این دو نوع میله گرد حداکثر 42/0 درصد (گرید 250) و 51/0 درصد (گرید 460) است تا قابلیت جوشکاری کافی را داشته باشند. حداقل انعطاف پذیری آنها به ترتیب 22٪ و12٪ قید شده است و باید خم 180 درجه را در قطرهایی مشخص تحمل کنند. مشخصه پیر شدن آنها نیز طبق استاندارد تعریف شده است.

3-2- قابلیت جوشکاری

از ویژگی های صنعت سازه استفاده از فرآیندهای جوشکاری است که برای ایجاد اتصالات مطمئن به کار می رود. جوشکاری که از دهه 1940 به تدریج جایگزین روش های دیگر اتصال سازه های فولادی شد، در ابتدا با مشکل ترک خوردگی قطعات مواجه بود زیرا فولادهای ساختمانی درصد کربن نسبتا بالایی داشتند. تولید انواع فولادهای کم کربن به خصوصدر خلال جنگ جهانی دوم برای ساخت کشتی های تجارتی ضرورت یافته که سازه آنها یک پارچه جوشکاری می شد.

تعریف کلی جوش پذیری آلیاژ یا فلز قابلیت آن برای ایجاد جوشکاری سالم با خواص مورد نظر است جوش پذیری فولاد در حالت کلی با افزایش سختی پذیری کم می شود زیرا ایجاد ساختارهای سخت حساسیت فولاد را به ترک خوردن افزایش می دهد. برای بررسی جوش پذیری فولادهای کربنی و آلیاژی تاثیر عناصر موجود را به صورت عددی به کربن معادل تبدیل می کنند.

+   +   CE = %C + (کربن معادل)

فولادهایی با CE تا 35/0 درصد نیازی به پیشگرم یا پسگرم ندارند. اگر CE بین 35/0 تا 55/0 باشد عملیات پیشگرم لازم است و اگر CE بیشتر از 55/0 درصد باشد هم پیشگرم و هم عملیات حرارتی پس از جوشکاری ضرورت دارد. این محاسبه تقریبی است زیرا تنها بر اساس ترکیب شیمیایی فولاد پایه محاسبه می شود و تاثیر سایر عوامل در آن منظور نشده است. کربن معادل فولاد شاخصی برای جوش پذیری یا احتمال ترک خوردن جوش است.

فولادهای HSLA را می توان به خوبی با روش هایی که در مورد فولادهای ساده کربنی ساختمانی استفاده می شود جوشکاری نمود. این روشها شامل جوشهای SMAW، زیر پودری،‌FCW ، GMAW ، GTAW و جوشکاری مقاومتی است به لحاظ استحکام بالای این فولادها روش هایی که محافظت بیشتری در برابر هیدروژن استفاده شود، ترجیح داده می شود. به طور مثال در روش SMAW اگر از الکترودهای کم هیدروژن استفاده شود، جوشکاری را می توان بدون عملیات پیش گرم آغاز کرد. پیش گرم عموماً‌در ضخامت های بیش از MM25 و اتصال تحت تنش بالا مورد نیاز است و بسته به گرید فولاد و ضخامت و روش جوشکاری مورد استفاده در محدوده 40 تا 200 درجه سانتیگراد است. یکی از دلایل مهم استفاده از فولادهای HSLA جوش پذیری خوب در کنار استحکام بالاست. باید توجه نمود که عامل تعیین کننده در انتخاب الکترود جوشکاری استحکام فلز جوش است و ترکیب شیمیایی فاکتور فرعی به شمار می آید. در جدول 3 می توان چگونگی انتخاب الکترود مناسب جوشکاری فولادهای HSLA را ملاحظه نمود.

و...

NikoFile


دانلود با لینک مستقیم

دانلود پایان نامه تاثیرات تقویت تراکمی بر روی استحکام برشی تیرهای پل بتن مسلح

اختصاصی از کوشا فایل دانلود پایان نامه تاثیرات تقویت تراکمی بر روی استحکام برشی تیرهای پل بتن مسلح دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه تاثیرات تقویت تراکمی بر روی استحکام برشی تیرهای پل بتن مسلح


دانلود پایان نامه تاثیرات تقویت تراکمی بر روی استحکام برشی تیرهای پل بتن مسلح

تاًثیرات تقویت تراکمی بر روی استحکام برشی تیرهای پل بتن مسلح

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:99

چکیده :

ظرفیت برشی پیش بینی شده از تیرهای بتن مسلح موجود یک موضوع مهمی است که لازم است به تفصیل بیشتری ذکر شود. توجه در خصوص اینکه آیا کد ارزیابی پل جاری برای انگلستان خیلی محافظه کارانه است هنگامی که مقاومت برش تیرهای بتن موجود ارزیابی می گردد که حاوی مقادیر قابل ملاحظه ای از فولاد می باشد در طی ارزیابی نا دیده گرفته می شود. این مقاله به تاثیرات سودمند چنین فولاد تراکمی ای بر روی استحکام برش تیرهای بتن مسلح توجه دارد. نتایج بررسی آزمایشگاهی با پیش بینی های کد جاری برای استحکام برش تیرهایی مقایسه می شوند که فرض می شوند صرفاً حاوی فولاد کشش می باشد. فشردگی های بعدی با یک راه حل پلاستیسیتة حدّ بالایی انجام می شوند که قادر است تمام تقویت فولاد را در یک تیر بتن در نظر بگیرد. دلایل متعددی وجود دارند که چرا پل ها مخازن پنهان استحکام را، نشان می دهند و عمل غشاء فشاری احتمالاً از همه مهمتر است. با این حال، دلایلی از قبیل حضور فولاد فشاری به استحکام پنهان کمک می کند طوری که تحقیق از این نوع، برای ارزیابی درست و انجام پیش بینی های استحکام لازم است. و نشان داده می شود که حضور فولاد با فشردگی زیاد دارای تأثیر چشمگیری بر روی ظرفیت تیرهای پل بتن مسلح است که دارای تقویت نهایی برش می باشد.

نمادها(نمادگذاری):

Abs مساحت فولاد تحتانی در تیر                d عمق مؤثر تیر

Ats مساحت فولاد فوقانی در تیر                   a طول دهانه برش

                D نرخ پراکندگی یا پراکنش انرژی در واحد حجم    

               bs d فاصله از نقطة دوران تا فولاد کف(تحتانی)

               ts d فاصله از نقطه دوران تا فولاد سر(فوقانی)

ED               نرخ پراکنش انرژی کل در سیستم

EDc              پراکنش انرژی ناشی از بتن (صرفاً)

               EDci پراکنش انرژی ناشی از بتن در هر نقطه در امتداد خط     ناپیوستگی

EDs             پراکنش انرژی ناشی از فولاد (صرفاً)

                  fc استحکام فشاری مؤثر بتن ( ( fc=yfcu                 fcn                   استحکام مکعب فشاری بتن

ft استحکام کشش بتن                                    

fy استحکام تسلیم فولاد

Pهر بار بکار رفته (N )

aزاویة بین جهت     Si و خط ناپیوستگی

Sبردار جابجایی نسبی در عرض یک خط ناپیوستگی

Siبردار جابجایی نسبی در هر نقطه در امتداد یک خط از ناپیوستگی

IPفاصله از خط دوران تا بار نقطة اول(mm)

Lstirrap طول دهانة برش که بر روی آن رکاب ها(Stirrups) بطور مؤثر لنگر می شوند.

nتعداد رکاب هایی که ناپیوستگی مفروض را قطع می کند

Uجابجایی افقی نمادی از بخش صلب

WDکار خارجی کل انجام شده بر روی سیستم

Xعمق تا محور خنثی بصورت یک تناسب از d  

aزاویةبین   S   و خط ناپیوستگی

¦دوران بفش صلب

Æزاویة داخلی اصطحکاک برای بتن

Vضریب تأثیر برای بتن

PS                 درصد فولاد طولی در تیر

Psv                         درصد فولاد رکاب (Stirrup)در تیر

به دلیل افزایش ترافیک و وزن بالاتر کامیونها،هر پل ای در انگلستان از لحاظ استحکام برش و انعطاف پذیری اش ،بصورت بخشی از برنامة ارزیابی پل انگلستان مورد ارزیابی قرار می گیرد. مؤسسةبزرگراه ها،ناحیه(مساحت) ای از بتن را تعریف کرده است. موسوم به ارزیابی استحکام برش تیرهای پل بتن، که حاوی مقادیر قابل توجهی از فولاد (متراکم) است. راهنمای ارزیابی پل انگلیسی BD 44/95 حضور فولاد(متراکم) فوقانی را نادیده می گیرد هنگامی که استحکام برشی یک تیر بتن مسلح را پیش بینی می نماید این موارد در طی یک فرآیند طراحی قابل بررسی می باشند.با این حال، ارزیابی فعلی با استفاده از نظریة الاستیک یک درک محافظه کارانه از استحکام یک پل بتن موجود را ارائه می کند اکثر پل های بتنی موجود دارای مقادیر کافی از فولاد برای ایجاد یک قفسه برای ساختمان Stirrup هستند. اما این فولاد(ثانویه)در طی ارزیابی نادیده گرفته میشود.این امر منجر به ترمیز غیرضروری شده و از لحاظ بالقوه برای جامعه در طی ارزیابی یک پل موجود،گران قیمت است.

کار زیادی برای چندین دهه به صورت ضرایب گوناگون انجام شده است که بر روی استحکام برشی تیرهای بتن تأثیر می گذارد(استحکام بتن،درصد تقویت کششی،درصد تقویت Itirrup ).

با این حال، کار کمی برای تعیین تأثیرات فولاد بر استحکام برشی تیرهای بتن انجام شده است کانینر و گروه محققان تمام فولاد را در تحلیل های خودشان با توسعة نظریة میدان فشرده انجام داده اند.

آنها متوجه شده انداستحکام فشار بتن در ارتباط با پهنا و تعداد ترک های کششی از بین میرود که موازی با تنش فشاری می باشد . Kemp وalsafi استفاده از راه حل پلاستیک ـ صلب مرز بالایی را پیشنهاد کردند که توسط نیلسن و براستروپ بدست آمد. امّا از یک روش دیگر استفاده کرد که پیشنهاد می کند که: دوران های بلوک های صلب در نقص برشی رخ می دهد شبیه به روش توسعه یافته توسط Ibell I .

روش پلاستیسیته مرز بالایی ، ارتباط خوب با نتایج آزمایش را فراهم می کند، هنگامی که ضریب تأثیر صحیح برای بتن انتخاب می شود .

Hamadi وRegan   بیان کرده اند که منطقة فشردگی در تیر های بتن تا 40 % مقاومت برش کل را فراهم می نماید. بنابراین:شخص انتظار دارد که از تأثیرات سودمند بهره ببرد. با این حال،این امر در تحلیل آنها نادیده گرفته شد. تایلور انتقال نیرو را در ترک ها مطالعه کرد و پیشنهاد کرد که مقاومت برشی یک تیر توسط سه مؤلفه شکل گرفت:

عمل (dowel )،اصطحکاک ترک و برش منطقة فشاری. برش منطقة فشاری 20 الی %40 مقاومت برشی است. Anderson و Ramiret نشان دادند که فولاد top بالایی در معرض خمیدگی (buckling ) در غیاب رکاب (stirrups ) می باشد اما مجدداً این امر در تحلیل نادیده گرفته شد. Wilby نتیجه گرفت که وقتی میله های تقویت کننده در مناطق فشردگی از تیر های مستطیلی لحاظ شدند که بطور ناکافی با stirrup ها دوباره کرنش دار شدند، خمیدگی تمایل دارد تا رخ دهد.

Regan یک بررسی جامع انجام داد که نشان می دهد که آنالوژی فرپای Morsch 45 چگونه توسط محققان گوناگون در بررسی رفتار برشی در بتن توسعه یافته و تمام تأثیرات فولاد بالایی نادیده گرفته شد. روشهای تحلیلی بکار رفته برای ارزیابی برش پله های بتن باید واقع بینانه و دقیق باشد شاید استفاده از یک روش پلاستیسیتة ارزیابی مناسب باشد نظریه توسط Ibell توسعه می یابد و رفتار واقعی پل را در هنگام فروریزش با نتایج خوب نشان می دهد. یک مدل پلاستیسیته مرز بالایی در اینجا پذیرفته می شود و سعی دارد نشان دهد که حضور تقویت در تیرهای بتن تأثیر چشمگیر بر روی استحکام برش تیر دارد. با بررسی انواع فولاد و برش ها، اعتبار پیش بینی های نظریة پلاستیسیته شرح داده شد.

یافته های مفیدی بدست آمدندو تأثیرات فولاد بررسی شد،و پل ها ارزیابی شدند.

نظریة پلاستیسیته مرز بالایی ـ مفروضات تحلیلی مقدماتی:

فرض شد که a در مدل ازکارافتادگی برخورد پلاستیک رخ دهد و استحکام کامل موجود باشد، فقط ناحیة پلاستیک از رفتار تغییر شکل در نظر است. تغییر شکل الاستیک کم می باشد و نادیده گرفته می شود

(b) معیار کرامب ـ موهر اصلاح شده با برش کششی غیر صفر برای بتن در نظر می باشد.زاویة داخلی اصطحکاک     Æ   برای تمام ترکیبات تنشی°37 است.

(C) میله های فولاد نیروهای تنش محوری دارند و هر تأثیر dowel نادیده گرفته میشود.

(d) به ضریب V برای استحکام فشردگی بتن بکار می رود.

برنامةآزمایش:

چهار تیر بررسی گردید هر کدام دارای کمیت های گوناگون تقویت کف،پایین و برش بودند. یک آزمایش چهار نقطه ای بر روی هر کدام از تیر ها انجام گرفت . شکل 5 ابعاد نمونه های تیر را نشان می دهد. حداکثر بار مورد نیاز برای تمام آزمایشات با استفاده از یک سیستم بار گذاری کف افقی بدست آمد ( شکل 6 ) .

دو بلوک الوار نمونه را پشتیبانی ( تکیه گاه ) کردند و دو ورق P T FE ( برای حداقل سازی اصطکاک ) ، برای رابط های فصل مشترک ها ، تکیه گاه استفاده شدند. بیست های تکیه گاه در داخل ریل ها بر روی کف ،ثابت شدند که یک متر فاصله داشتند بار بکار رفته توسط دیوار قوی مقاوم شد.

یک جک هیدرولیک برای بکارگیری بار به ( تیر انتقال) استفاده شد که دو بار نقطه ای مورد نیاز برای تیر را انتقال داد. بارهای ( نقطه ای ) و تکیه گاه ها از طریق یاتاقان های صفحة فولادی به ابعاد100* 100 * 25 mm بدست آمدند بالشتک های لاستیکی نیز بین یاتاقان های صفحه و بتن قرار گرفتند، تا بار را به طور یکنواخت در سطح تیر توزیع کنند. زیرا بطور کامل هموار نبود . همچنین، این بالشتک های لاستیکی اجازة حرکت جانبی ، و جلوگیری از تأثیرات غشاء را داد. شکل 7 یک راه اندازی دستگاه آزمایش را نشان می دهد .

نمونه های آزمایش:

تمام تیرها دارای سطح مقطع کلی یکسان بودند. تقویت فولاد کشش طولی در تیرهای دو نمونة اول شامل، میله های با استحکام زیاد T16 بودند اولین تیر حاوی فولاد کف و دومین تیر حاوی،فولاد بالا و پایین برابر (2 . 30 % ) بود. سومین نمونه حاوی دو میله T16 برای فولاد پایین با سیم های فولاد ملایم 3 mm برای فولاد فشاری بود . این امر برای ایجاد یک قفسه برای فولاد S tirrup برش بود و حضور فولاد بالایی در این نمونه می تواند ناچیز فرض شود . Stirrup ها شامل سیم فولادی ملایم 3 mm بودند و در فاصله 75 mm مرکز تا مرکز در سراسر طول تیر ،با Stirrup های اضافی بود که در هر سر تیر قرار داشت تا از خرابی احتمالی جلوگیری کند.

نمونه چهارم حاوی دو میله T16 با تسلیم زیاد برای فولاد کف و دو میله T16 با تسلیم زیاد برای فولاد بالایی بود. Stirrup ها حاوی سیم فولاد ملایم 3 mm بود و در فاصلة 75 mm مرکز تا مرکز در سراسر طول تیر قرار داشت . مجدداً ،Stirrup های اضافی در انتهای هر تیر قرار داشت تا از خرابی جلوگیری گردد. شکل 8 جزئیات تقویت را برای چهار آزمایش نشان می دهد. دامنة لازم برای استحکام فشاری مکعب بتن  4 0 _ 5 0

mpa بود که بطور ایده آل به Sompa نزدیکتر است زیرا اکثریت پل های موجود دارای استحکام بتن در این محدوده است . مخلوط طراحی شده و بکار رفته به شرح زیر بود: ( بصورت تناسبی از مقدار سیمان به ازای وزن ): نتایج و بحث آزمایش

آزمایش 1 :

ترک های انعطافی آغاز شد تا در امتداد کف تیر در بار بکار رفتة کلی از I SKN   ظاهر گردد. تحت بار KN 45 ، ترک های برشی آغاز شد تا در دهانه های برش شکل بگیرد. بار تا KN 53 ، افزایش یافت، تا اینکه خرابی برش رخ داد. هشدار خیلی کوچک قبل از فروپاشی کل، داده شد که خیلی       بود و یک صدای بلند و تیز تولید گردید. نمونه های از کار افتاده علائم حرکت جسم صلب را نشان داد. همانطور که در شکل 9 می توان ملاحظه کرد خرابی سنگر کردن نهایی نیز پس از رسیدن به بار اوج رخ داد، که به سبب ترک در امتداد خط تقویت تا انتهای تیر بود. بار پس مانده توسط تیر ، هنگامی که تیر شکسته شد رخ داد که فقدان چکش خواری را نشان می دهد. این بار باقیمانده KN 9.8 بود بنابراین ،بار باقیمانده در از کارافتادگی فقط 20 % بار اوج بود . طرح خمیدگی بار برای آزمایش 1 در شکل 10 دیده می شود.

آزمایش 2:

ترک های انعطافی مجدداً در امتداد کف تیر تحت بار بکار رفتة ISKN ظاهر گردید. جهت ترک ها مشابه با جهت آنها در آزمایش 1 بود. ترک های برشی، که شبیه به موارد پیش آمده در آزمایش 1 بود. تحت بار KN 40 مشهود گردید ( شکل 1 ). خرابی، که در بار KN 50 رخ داد، تردی کمتری داشت و بیش از مورد در آزمایش 1 کنترل شد. یک ناپیوستگی برشی سوم و دوم در محدوده دهانة برشی در طی خرابی نهایی طبق شکل 11 ملاحظه گردید. چون فولاد بالایی در تحت فشردگی قرار گرفت، تمایل به خمیدگی تحت بار از کارافتادگی بکار رفته قرار گرفت که به سبب فقدان Stirrup ها بود. این امر توسط آندرسن و رامیرز بحث شده است. لذا، یک تمایل برای بتن برای فشرده شدن به طرف خارج و بالا در سر تیر وجود دارد، که باعث تشکیل ترک در امتداد خط تقویت ( فشردگی) بالایی تیر می شود این مکانیزم فروپاشی مقداری چکش خواری را به آزمایش 2 اضافه کرد و الگوی ناپیوستگی را تا حدی تغییر داد.

( شکل 9 و 11 ) .

آزمایش 3:

ترک های انعطاف پذیر در کف تیر در یک نیروی KN 20 ظاهر گردید. ترک ها بطور قابل توجهی عمیق تر از آزمایش های قبلی بود که به دلیل حضور تقویت Stirrup است . این ترک ها بطرف بالای نمونه تحت بار گذاری زیاد، منتشر گردید و در سراسر تیر نسبتاً متقارن بودند. ( شکل 12 ) که نشان دهندة رفتار چکش خوار است. ترک های برشی پس از یک بار KN 55 ظاهر گردید و از تکیه گاه ها تا بارهای نقطه ظاهر شد هنگامی که بار تا KN 60 زیاد شد ( شکل 12 )، تیر تا خرابی در KN 95 بارگذاری گردید . تیر چکش خواری زیادی را نمایش داد ( در طرح خمیدگی برای این آزمایش در شکل 13 ملاحظه می شود ). با بار به تدریج به یک KN 84 کاهش می یابد. یک ترک برشی بزرگ تحت یک بار KN 60 و ناپیوستگی در امتداد این ترک

در بار شکستگی KN 95 رخ داد. حضور Stirrup ها بتن را محدود کرد و اجازه داد که یک خرابی کنترل شده و چکش خوار از نمونه پیش آید. خمیدگی ها از نوع متقارن بود.

آزمایش 4 :

استحکام بتن برای چهار نمونه کمتر از نمونة 3 بود این تیر همان ویژگی در آزمایش 3 را نشان داد. و ترک های انعطاف پذیر پس از یک نیروی KN 20 ظاهر گردید. مجدداً این ترک ها تیز بودند . تیر، ترک خوردن متقارن را بار دیگر نشان داد. ترک های برشی پس از KN 45 در هر دو انتهای نمونه ظاهر گردید و این امر تحت بارگذاری زیاد انتشار یافت ( شکل 14 ).

تیر سپس تا از کارافتادگی در KN 96 بارگیری شد. تیر رفتار چکش خوار را نمایش داد که مشابه با نمونة 3 بود . از جدول 1 ، مقایسة نمونه های 1 و 2 بنظر می رسد که هیچ استفاده ای از حضور فولاد بالایی بدون Stirrup های برشی بدست نیامد. با این حال، از مقایسة 3 و 4 ، فواید بسیاری بنظر می رسد که از حضور فولاد بالایی ، با حضور Stirrup ها بدست آید. این امر ممکن است لحاظ شود زیرا، اگر چه توانایی های شکست تا حدّی مشابه هستند، استحکام های بتن نمونه ها بطور فاحشی تفاوت دارند.

مقایسة بین پیش بینی های پلاستیسیته و نتایج آزمایش :

جدول 2 یک سری نتایج را برای هر نمونه نشان می دهد. مقدار در پرانتز تفاوت درصد بین نتایج آزمایش واقعی و پیش بینی شده را نشان می دهد.

آزمایش 1 :

B D 44 / 95 و نظریة پلاستیسیته حدّ بالایی با دقت ظرفیت بار شکست آزمایش 1 را نشان می دهد. پیش بینی از کد کمی دقیق تر از نظریة پلاستیسیته است . اما، آنها هر ارزیابی خوبی از ظرفیت بارگذاری از یک تیر حاوی فولاد کششی را می دهند. یک دلیل احتمالی برای پیش بینی کمتر، از نظریة پلاستیسیته آن است : که متکی بر چکش خواری کامل است. در حالیکه یک تیر بدون تقویت S tirrup ، مانند مورد در آزمایش 1 ، که مستعد به خرابی ترد است.

آزمایش 2 :

پیش بینی کد بسیار دقیق است و یک برآورد عدد 2   . 5 % از بازار خرابی واقعی را می دهد. نظریة پلاستیسیته حدّ بالایی، یک بار خرابی پیش بینی شدة 2 4 % را بالاتر از نتیجة آزمایش واقعی را می دهد. دلیل اصلی برای این امر آن است که فولاد فوقانی مستعد به خمیدگی در غیاب تقویت Stirrup می باشد.

و...

NikoFile


دانلود با لینک مستقیم