کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

تحقیق و بررسی در مورد میکروسکوپ الکترونی

اختصاصی از کوشا فایل تحقیق و بررسی در مورد میکروسکوپ الکترونی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 21

 

میکروسکوپ الکترونی

1- مقدمه

به طور کلی در میکروسکوپ های الکترونی سه نوع عدسی وجود دارد:

1-عدسی جمع کننده (Condenser Lens)

2-عدسی شیئی (Objective Lens)

3-عدسی تصویری (Projector Lens)

عدسی جمع کننده دسته الکترون را بر روی نمونه متمرکز می نماید. عدسی شیئی یک تصویر بزرگ شده اولیه ایجاد نموده، برای حصول بزرگنمایی بیشتر از عدسی تصویری استفاده می شود. تصویر نهایی بدست آمده بر روی یک صفحه فلورسنت قابل رویت است.

از انواع عدسی های شیئی مورد مصرف می توان به:

عدسی مخروطی (Conical Lens)

عدسی فروبر (Immersion Lens)

اشاره نمود. تصویری از این دو نوع عدسی در شکل مشاهده می شود. عمدتا عدسی های مخروطی در میکروسکوپ الکترونی روبشی Scanning Electron Microscope) عدسی های فروبر در میکروسکوپ الکترونی عبوری Transmission Electron Microscope یا TEM کاربرد دارند.

 

الف) عدسی مخروطی که اجازه می دهد یک نمونه بزرگ در بیرون آن قرار گیرد.

ب)عدسی فروبر که یک نمونه کوچک در داخل آن قرار می گیرد.

به دلیل وجود محدودیت طراحی، عدسی های الکترونی با روزنه های بسیار کوچکتری نسبت به عدسی های شیشه ای میکروسکوپ های نوری کار می کنند. میدان الکترونی که توسط روزنه عدسی قابل کنترل است، ستون میکروسکوپ (Microscope Column) نامیده می شود. بسیاری از میکروسکوپ های الکترونی جدید حاوی 4 تا 6 عدسی هستند.

یک عدسی مغناطیسی مشتمل بر پوسته ای آهنی و سیم پیچ هایی مسی است که درمیدان مغناطیسی خود به دسته الکترون های وارد شده نیرو وارد کرده و بر اساس قانون دست راست فلمینگ آن ها را از مسیر خود منحرف می سازد. در این صورت این امکان فراهم می آید که بتوان الکترون ها را در مسیر خاصی قرار داده همگرا نموده و بر جای مشخصی متمرکز نمود. فاصله نقطه همگرا شدن الکترون ها تا عدسی را فاصله کانونی (Focal


دانلود با لینک مستقیم


تحقیق و بررسی در مورد میکروسکوپ الکترونی

تحقیق در مورد میکروسکوپ الکترونی

اختصاصی از کوشا فایل تحقیق در مورد میکروسکوپ الکترونی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

میکروسکوپ الکترونی

1- مقدمه

به طور کلی در میکروسکوپ های الکترونی سه نوع عدسی وجود دارد:

1-عدسی جمع کننده (Condenser Lens)

2-عدسی شیئی (Objective Lens)

3-عدسی تصویری (Projector Lens)

عدسی جمع کننده دسته الکترون را بر روی نمونه متمرکز می نماید. عدسی شیئی یک تصویر بزرگ شده اولیه ایجاد نموده، برای حصول بزرگنمایی بیشتر از عدسی تصویری استفاده می شود. تصویر نهایی بدست آمده بر روی یک صفحه فلورسنت قابل رویت است.

از انواع عدسی های شیئی مورد مصرف می توان به:

عدسی مخروطی (Conical Lens)

عدسی فروبر (Immersion Lens)

اشاره نمود. تصویری از این دو نوع عدسی در شکل مشاهده می شود. عمدتا عدسی های مخروطی در میکروسکوپ الکترونی روبشی Scanning Electron Microscope) عدسی های فروبر در میکروسکوپ الکترونی عبوری Transmission Electron Microscope یا TEM کاربرد دارند.

 

الف) عدسی مخروطی که اجازه می دهد یک نمونه بزرگ در بیرون آن قرار گیرد.

ب)عدسی فروبر که یک نمونه کوچک در داخل آن قرار می گیرد.

به دلیل وجود محدودیت طراحی، عدسی های الکترونی با روزنه های بسیار کوچکتری نسبت به عدسی های شیشه ای میکروسکوپ های نوری کار می کنند. میدان الکترونی که توسط روزنه عدسی قابل کنترل است، ستون میکروسکوپ (Microscope Column) نامیده می شود. بسیاری از میکروسکوپ های الکترونی جدید حاوی 4 تا 6 عدسی هستند.

یک عدسی مغناطیسی مشتمل بر پوسته ای آهنی و سیم پیچ هایی مسی است که درمیدان مغناطیسی خود به دسته الکترون های وارد شده نیرو وارد کرده و بر اساس قانون دست راست فلمینگ آن ها را از مسیر خود منحرف می سازد. در این صورت این امکان فراهم می آید که بتوان الکترون ها را در مسیر خاصی قرار داده همگرا نموده و بر جای مشخصی متمرکز نمود. فاصله نقطه همگرا شدن الکترون ها تا عدسی را فاصله کانونی (Focal Distance) می نامند. فاصله کانونی در ارتباط مستقیم با مقدار ولتاژ شتاب دهنده الکترون ها و در ارتباط معکوس با تعداد دور سیم پیچ و شدت جریان عبوری قرار دارد.

 


دانلود با لینک مستقیم


تحقیق در مورد میکروسکوپ الکترونی

پایان نامه رنگ و حالت الکترونی مولکولها

اختصاصی از کوشا فایل پایان نامه رنگ و حالت الکترونی مولکولها دانلود با لینک مستقیم و پرسرعت .

پایان نامه رنگ و حالت الکترونی مولکولها


پایان نامه رنگ و حالت الکترونی مولکولها

 

 

 

 

 

 

 

 


فرمت:word(قابل ویرایش)

تعداد صفحات:244

مقدمه :
تاریخچه – امروزه از رنگهای طبیعی به ندرت استفاده می گردد زیرا به کمک روشهای سنیتک رنگهای ایده آلی از نظر کمی و کیفی تولید میشوند و چون ساختمان اصلی آنها را آروماتیکها تشکیل میدهند بنابراین ازذغال سنگ و نفت به عنوان مهمترین منابع طبیعی و اولیه برای آنها محسوب میشوند . بیش از یک قرن است که رنگهای آلی و مصنوعی برای بشر شناخته شده است . در سال ۱۸۵۶ وقتی شیمیدان ۱۸ ساله انگلیسی به نام ویلیام هندی پرکین سعی میکرد کینون راسنتز نماید به جای محصول سفید رنگی که او انتظار داشت یک ماده بد شکل سیاه رنگ تولید نمود که برایش قابل توجه و قابل مطالعه بود . از استخراج این ماده رنگ ارغوانی زیبایی به نام ماوین بدست آمد که بر حسب تصادف کهنه نخی که در کنار میز آزمایش او قرار داشت توسط آن رنگی گردید و این ماده تا آن زمان تنها ماده رنگی بود که از واکنش شیمیایی حاصل شده و جزو رنگهای گیاهی و ظبیعی نبود و بدین سان تحول بزرگی در تهیه مواد رنگی آلی شروع گردید واکنش تهیه رنگ مزبور بصورت زیر است :

سولفوریک اسید + آنیلین
این رنگ چنانچه بعدا خواهیم دید به دلیل وجود گروه آزین ( Azine ) جزو این نوع شیمیایی میباشد ولی در آن زمان به دلیل تهیه اش از آنیلین رنگ آنیلین نامش نهادند .
پرییکن رنگ بالا را در کارخانه ای نزدیک لندن از قطران ذغال سنگ در مقیاس صنعتی تهیه نمود البته قبل از آن در آزمایشگاه از اثر پتاسیم دی کرومات و سولفوریک اسید بر آنیلین ناخالص آنرا سنتز نموده بود از انجائیکه این رنگ در رنگرزی مزایای فراوانی نسبت به دیگر رنگهای طبیعی ، از نظر روشنی و ثبات داشت در اندک زمانی توجه رنگرزها را بخود جلب نمود . پریکن و دوستانش علاوه بر تهیه رنگ بالا فرایند ساده رنگرزی با تانیک اسید را نیز ابداع کردند و بالاخره بعد از مدتها تحقیق و بررسی اولین کارخانه رنگسازی توسط او تاسیس و به مرحله تولید رسید .
از انجا که در آغاز اغلب رنگهای مصنوعی اولیه از انیلین ساخته میشدند و انیلین در آن زمان فقط از منبع قطران ذغال سنگ تهیه میشد اینگونه رنگها به رنگهای آنیلین و رنگهای قطران ذغال سنگ معروف بودند هر چند که بعضی از این رنگها از آنیلین نیز مشتق نشده بودند . امروزه کلمه رنگهای مصنوعی با سینتیک ترجیح داده میشوند زیرا دیگر امروزه رنگها لزوما از منابع اولیه ذغال سنگ تهیه نمیشوند . بلکه منابع نفتی ( نفت خام و گاز طبیعی ) بجای آن جایگزین شده و این تعویض عمدتا در اثر جایگزینی گاز ذغال با گاز طبیعی در کشورهای صنعتی انجام گرفت .
در تهیه رنگها از نظر کلی فرایند عمومی زیر دنبال میشود :
نفت
مواد اولیه (هیدروکربنهای آروماتیک) منابع طبیعی
زغال سنگ
مواد حد واسط

رنگها

فصل ۱

رنگ و حالت الکترونی مولکولها

۱ – رنگ
رنگ نمودی از تاثیر متقابل نور مرئی و ماده است و ماده به این ترتیب رنگی به نظر میرسد . خود پدییده دید نیز نتیجه جذب نور توسط شبکیه چشم میباشد . جذب نور سبب میشود که ساختمان پروتوئینهای چشم در اثر یکسری واکنشهای شیمیایی تغییر یابد و یک ردیف پاسخهای شیمیایی داده شود و درنتیجه ، علامت دریافت شده بوسیله عصب نوری به مغز انتقال می یابد .
تابش نور سفید به ماده بر حسب ساختمان و حالت سطحی ماده با پدیده های زیر پاسخ داده میشود :
الف : تمامی پرتوهای تابیده شده بازتاب یا پخش میگردند بدین ترتیب ماده سفید به نظر میرسد .
ب : تمامی پرتوها جذب میشوند ، ماده سیاه به نظر میرسد .
ج : قسمتی از پرتو ها بطور انتخابی جذب میشوند ماده رنگی به نظر میرسد .
باید تصریح کرد که نور سفید منتشر شده توسط خورشید تابشهای الکترو مغناطیسی در ناحیه ۴۰۰ تا ۸۰۰ n m را در بر میگیرد . در دو سوی طیف مرئی نور از تابشهای غیر مرئی برای چشم انسان تشکیل یافته است طول موجهای بیشتر از ۸۰۰ n m نور در ناحیه زیر قرمز (I R ) و طول موجهای کمتر از ۴۰۰ n m در ناحیه فرا بنفش ( U V ) قرار دارد . بنابر این رنگ هر جسم یک حالت ویژه از پدیده ای بسیار عمومی ، یعنی پدیده جذب انتخابی است .
در داخل حوزه مرئی ، نوارهای خیلی باریک طول موجها به رنگهای کاملا معین مربوط میگردند . این رنگها نه تنها از ایجاد نوری با طول موج کاملا مشخص ناشی میشوند بلکه آنها از نور سفیدی که توسط جذب پرتوی که طول موج رنگ مورد نظر را در بر نداشته باشد نیز حاصل میگردند بدین ترتیب است که بر اثر جذب « رنگهای تکمیلی » ما رنگها یاجسامی که ما را احاطه کرده اند می بینیم جدول زیر رنگهای جذب شده و دریافت شده را نسبت به طوول موج نور جذب شده نشان میدهد .
رنگ جذب شده رنگ دریافت شده طول موج دریافت شده طول موج جذب شده به n m
بنفش زرد آبی n m 435 – ۴۰۰
آبی زرد ۴۸۰ – ۴۳۵
سبز – آبی پرتقالی ( نارنجی ) ۴۹۰ – ۴۸۰
آبی – سبز قرمز ۵۰۰ – ۴۹۰
سبز ارغوانی ۵۶۰- ۵۰۰
زرد – سبز بنفش ۵۸۰ – ۵۶۰
زرد آبی ۵۹۵ – ۵۸۰
نارنجی سبز – آبی ۶۰۵ – ۵۹۵
قرمز آبی – سبز ۷۵۰ – ۶۰۵

فصل ۲
شیمی رنگ

بررسی مواد رنگی از نظر شیمیایی ،. بخش جالبی از شیمی کاربردی را تشکیل میدهد به شیمی رنگ معروف است . در این قسمت انواع تقسیم بندی مواد رنگی ، مواد اولیه ( Primaries ) مواد حد واسط (‌ Intermediates ) بررسی میگردد .
۱ – طبقه بندی مواد رنگی

 


دانلود با لینک مستقیم

پایان نامه مطالعه خواص الکترونی و اپتیکی نانو صفحات چند لایه شش‌ضلعی بورن- نیترید: از نظریه تابعی چگالی تا اثرات بس- ‌ذره‌ای

اختصاصی از کوشا فایل پایان نامه مطالعه خواص الکترونی و اپتیکی نانو صفحات چند لایه شش‌ضلعی بورن- نیترید: از نظریه تابعی چگالی تا اثرات بس- ‌ذره‌ای دانلود با لینک مستقیم و پرسرعت .

پایان نامه مطالعه خواص الکترونی و اپتیکی نانو صفحات چند لایه شش‌ضلعی بورن- نیترید: از نظریه تابعی چگالی تا اثرات بس- ‌ذره‌ای


پایان نامه مطالعه خواص الکترونی و اپتیکی نانو صفحات چند لایه شش‌ضلعی بورن- نیترید: از نظریه تابعی چگالی تا اثرات بس- ‌ذره‌ای

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:130

رساله دکتری
فیزیک ماده چگال نظری

فهرست مطالب:
چکیده    1
پیش گفتار    2

فصل اول: نظریه تابعی چگالی
1-1 نظریه تابعی چگالی    9
1-2 مسئله بس- ذرهای    9
1-3 بررسی مختصر DFT    13
1-3-1 نظریه هوهنبرگ-کوهن    13
1-3-2 معادلات کوهن- شم    16
1-3-3 مقدار Exc    20
1-3-3-1 تقریب میدان موضعی    21
1-3-3-2 تقریب چگالی اسپین موضعی    23
1-3-3-3 گامی فراتر: تقریب بسط شیب و تقریب شیب تعمیم یافته(GGA)    24
1-4 مفهوم ویژه مقادیر کوهن- شم    29
1-4-1 ویژه مقادیر ساختگی کوهن- شم    29
1-4-2 مسئله ناپیوستگی XC    30
1-4-3 روش موج تخت و تقریب شبه‌پتانسیل    35
1-4-3-1 موج تخت    35
1-4-3-2 شبه پتانسیل    38
1-5 نظریه هلمن- فاینمن    42

فصل دوم: نظریه اختلال بس- ذره‌ای
2-1 مقدمهای بر طیف‌نمایی‌های نظری    47
2-1-1 اختلال خارجی و تابع دیالکتریک    49
2-1-1-1 پاسخ خطی طیف اپتیکی    51
2-1-2 طیف الکترونی در KS-DFT    55
2-2 شبه- ذرات و روش توابع گرین    56
2-2-1 نمایش شبه- ذرات و تابع طیفی    59
2-2-2 پنج ضلعی هدین    60
2-2-3 تقریب GW    63
2-3 روش بته- سالپیتر: معادله‌ی دو- ذرهای مؤثر    66
2-3 -1 اجزاء و تقریب‌های BSE    71

فصل سوم: مطالعه ساختار الکترونی نانو صفحه تک لایه و دو لایه شش¬ضلعی بورن- نیترید
3-1 خواص ساختاری و الکترونی دو لایه شش‌ضلعی بورن- نیترید    78
3-2 مدل بستگی قوی برای تک لایه و دو لایه بورن- نیترید    81
3-2-1 شبکه لانه زنبوری h-BN    82
3-2-2 روش کلی    83
3-2-2-1 ماتریس انتقال H    84
3-2-2-2 ماتریس همپوشانی S    86
3-3 نظریه تابعی چگالی    87
3-4 نتایج انطباق طیف انرژی بین DFT و TB برای تک لایه و دو لایه بورن- نیترید    88

فصل چهارم: مطالعه خواص الکترونی و اپتیکی دو لایه شش-ضلعی بورن- نیترید، نتایج
4-1 مقدمه    99
4-2 روش محاسبات    99
4-3 بررسی خواص الکترونی و اپتیکی    102
4-4 جمعبندی    113
پیوست
فعالیتهای پژوهشی    116

 
فهرست جدول‌ها

جدول 1- 1: خطاءهای نوعی برای اتم ها، مولکول ها، و جامدات از محاسبات کوهن- شم در تقریب‌های LSD و GGA در روشی که در این بخش توضیح داده شد.    27
جدول 1- 2: گاف انرژی محاسبه شده برای مواد مختلف در LDA و روش تابع گرین بس- ذرهای که با مقادیر تجربی مقایسه شده است. مقادیر انرژی در eV هستند.    31
جدول 1- 3:  ناپیوستگی XC، Δxc، و گاف نواری محاسبه شده برای نیمرساناها و عایق‌ها که با مقادیر تجربی مقایسه شده است. مقادیر انرژی در eV هستند.    35
جدول 3- 1: پارامترهای TB محاسبه شده از بهترین انطباق به دادههای DFT برای تک لایه و دو لایه بورن- نیترید. همه مقادیر در eV هستند.    92
جدول 4- 1:  فاصله بین اتمی و فاصله بین لایه‌ای محاسبه شده بورن- نیترید    100
جدول 4- 2: مقادیر گاف نواری (برحسب eV) در روش DFT(LDA) و GW(RPA)    105
جدول 4- 3: مکان اولین قله و انرژی اکسیتون دو لایه h-BN نشان داده شده است    111
جدول 4- 4: ثابت دیالکتریک استاتیک الکترونی و ضریب شکست واقعی دو لایه h-BN برای قطبش نور موازی (راستای x) و قطبش نور عمود (راستای z) به سطح صفحه    111

 
فهرست شکل‌ها

شکل 1- 1. الگوریتم خود سازگار اصلی    20
شکل 1- 2: اهمیت Δxc مربوط به ساختار نواری کوهن- شم یک نیمرسانا    33
شکل 1- 3: نمایشی از مفهوم شبه پتانسیل    39
شکل 1- 4: شبه تابع موج (خطوط پیوسته) که بشدت داخل منطقه هسته قله دارد و شبه تابع موج فوق نرم که توسط طرح وندربیلت (خطوط خط چین) اصلاح شده است.    42
شکل 2- 1: (الف) فرایند تابش مستقیم (بررسی حالتهای اشغال شده) (ب) فرایند تابش معکوس    48
شکل 2- 2: (الف) فرایند جذب اپتیکی (فوتون hυ بوسیله نمونه جذب شده و باعث برانگیخته شدن یک الکترون از نوار ظرفیت به نوار رسانش میشود) (ب) فرایند طیفنمایی اتلاف انرژی الکترون (بر پایه پراکندگی الکترونها توسط سامانه تحت بررسی)    48
شکل 2- 3: پاسخ محیط قطبیده به پتانسیل خارجی    52
شکل 2- 4: تغییر مقادیر قابل اندازه گیری در مقیاس ماکروسکوپی    53
شکل 2- 5: طرحوارهای از یک سامانه ذرات برهمکنشی قوی که می توان آنرا به یک سامانه از ذرات غیر برهمکنشی KS (سمت چپ) یا یک سامانه از شبه- ذرات برهمکنشی ضعیف (سمت راست)، شبه- ذرات، از طریق معادله توابع گرین نگاشت.    58
شکل 2- 6: نمایش طرحوارهای از تابع طیفی A با گسترش لورنتسی آن، که با تابع طیفی ذرات مستقل، تابع دلتا، مقایسه شده است.    60
شکل 2- 7: طرحی از انتگرال معادله هدین زوج شده.    61
شکل 2- 8: تقریب GW    63
شکل 2- 9: مینیمم انرژیهای گاف انرژی برای انواعی از مواد جامد    65
شکل 2- 10: طرحوارهای برای تعیین طیف اپتیکی در BSE.    73
شکل 3- 1. (الف) نمای بالا و (ب) نمای جانبی از دو لایه h-BN.    79
شکل 3- 2: (الف) نمایشی از شبکه لانه زنبوری با زیر شبکه های A و B، سلول واحد، و بردارهای اصلی a1 و a2    80
شکل 3- 3: نمایشی از پنج امکان انباشته شدن دو لایه BN    81
شکل 3- 4: هیبریداسیون sp2 در گرافن    82
شکل 3- 5: سه بردار ml، اشاره به نزدیکترین همسایه های اتم B دارد.    85
شکل 3- 6: سلول واحد در نظر گرفته شده در این بخش برای (الف) تک لایه و (ب) دو لایه بورن- نیترید.    88
شکل 3- 7: ساختار نواری تک لایه شش ضلعی بورن- نیترید برای (الف) DFT و (ب) TB.    89
شکل 3- 8: ساختار نواری دو لایه شش ضلعی بورن- نیترید برای (الف) DFT و (ب) TB.    90
شکل 3- 9: انطباق ساختار نواری DFT و TB برای (الف) تک لایه و (ب) دو لایه  ششضلعی بورن- نیترید.    91
شکل 3- 10: (الف) نمایش طرحوارهای از ساختار ZGNR/BNAM/ZGNR (ب) نمایش طرحوارهای از مولکولهای آروماتیک بورن- نیترید (BNAMs) برای N=1, 2, 3    93
شکل 3- 11: (الف) و (ج) احتمال گسیل (Tr) و چگالی حالت الکترونی (DOS) بر حسب انرژی برای ساختار ZGNR/AM/ZGNR    95
شکل 3- 12: احتمال گسیل (Tr) برحسب تابعی از تغییرات در تعداد مولکولهای آروماتیک بورن- نیترید (N=1, 2… 10) برای انرژی فرودی (الف)E=2eV  و (ب) E=2.5eV  متصل شده به نانو نوار گرافن زیگ- زاگ.    96
شکل 4- 1:  (الف) یاخته اولیه نمای جانبی و (ب) نمای بالا دو لایه h-BN. (ج) ابر یاخته و فاصله بین لایهای d و فاصله بین دو لایه b برای دو لایه h-BN.    100
شکل 4- 2: نمودار تغییرات انرژی کل برحسب تغییرات ثابت شبکه با تقریب LDA برای دو لایه h-BN.    101
شکل 4- 3: نمایشی از طرح انجام گرفته در محاسبات.    102
شکل 4- 4: همگرایی گاف نواری مستقیم و غیر مستقیم شبه- ذرات بر حسب (الف) و (ب) تعداد شبکه سازی منطقه وارون، (ج) و (د) تعداد باندهای در نظر گرفته شده در محاسبات.    103
شکل 4- 5: ساختار نواری الکترونی دو لایه بورن- نیترید در طول راستاهای تقارنی که در روش DFT(LDA) (خط پر) و تقریب GW(RPA) (خط چین) رسم شده است    104
شکل 4- 6: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور موازی (راستای x) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است    106
شکل 4- 7: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور موازی (راستای y) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است    107
شکل 4- 8: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور عمود (راستای z) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است    107
شکل 4- 9: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید، برای قطبش نور موازی (راستای x) و قطبش نور عمود (راستای z) به سطح صفحه، با استفاده از روش LDA-RPA محاسبه شده است    108
شکل 4- 10: (الف) قسمت موهومی (طیف جذب اپتیکی) و (ب) قسمت حقیقی تابع دیالکتریک دو لایه بورن- نیترید    110
شکل 4- 11: توزیع‌های بار اکسیتونی از حالتهای اکسیتونی (الف) روشن و (ب) تاریک در دو لایه h-BN، با حفره قرار گرفته در نقطه سیاه    112
 


چکیده

امروزه بطور گسترده‌ای نانو صفحات چند لایه شش¬ضلعی بورن- نیترید، بعلت خواص الکترونی و اپتیکی بسیار جذاب آن¬ها، بطور تجربی و نظری مورد مطالعه قرار گرفته-اند. هدف اصلی این پروژه بررسی خواص الکترونی و اپتیکی نانو ساختارهایی همچون، نانو صفحات بورن- نیترید، با استفاده از نظریه¬های GW و BSE در محدوده پاسخ خطی می¬باشد. در مبحث خواص الکترونی ما به محاسبه انرژی و ساختار نواری و طیف چگالی حالت شبه- ذرات خواهیم پرداخت. همچنین، از یک مدل بستگی قوی برای ساختار نواری تک- لایه و دو- لایه بورن- نیترید استفاده می¬کنیم و شاخص¬های جهش و انرژی¬های جایگاهی را با استفاده از انطباق طرح بستگی قوی و داده¬های نظریه تابعی چگالی بدست خواهیم آورد. در مبحث خواص اپتیکی، قسمت¬های حقیقی و موهومی (جذب اپتیکی) تابع دی¬الکتریک، در اثر قرار دادن نانو صفحه در دو راستای میدان موازی (قطبش موازی) و میدان عمودی (قطبش عمودی)، و همچنین انرژی و اثرات  اکسیتونی و تابع توزیع احتمال الکترون در اثر قرار دادن مکان حفره در جایگاه ثابت، را بدست خواهیم آورد.
 بنابراین، با توجه به این¬که محاسباتی در زمینه¬ی تاثیر آثار بس- ذره¬ای برای نانو صفحات چند لایه شش¬ضلعی بورن- نیترید انجام نشده است، این نتایج برای مطالعات تجربی و نظری آینده روی این¬چنین ساختارها می¬تواند مفید باشد.

کلمات کلیدی: اثرات بس-ذره¬ای، تقریب GW، نانو صفحات چند لایه شش¬ضلعی بورن- نیترید، اثرات اکسیتونی، شبه- ذرات،


پیش گفتار
در سال¬های اخیر، پژوهش¬های گسترده¬ای در زمینه¬ی سامانه-های نانو ساختار انجام شده است، بخصوص با کوچک¬تر شدن اجزای تشکیل دهنده¬ی قطعات الکترونیکی، بررسی نانو ساختارها اهمیت زیادی در زمینه¬ی علوم و صنعت پیدا کرده است. خواص فیزیکی این نانو ساختارها، بویژه خواص الکترونی و اپتیکی آن¬ها، به رفتار و حالت¬های الکترونی آن¬ها بستگی دارد. از این¬رو، محاسبه حالت های الکترونی مواد و تعیین ساختار نواری انرژی در آن¬ها از مهمترین مباحث پژوهشی نظری و تجربی در فیزیک ماده چگال است. با توجه به این که  بطور کلی گاز الکترون در یک جامد یک سامانه برهم‌کنش¬گر است، بنابراین راه حل اساسی برای محاسبه حالت¬های الکترونی مواد به حل مسئله بس- ذره¬ای منتهی می¬شود. از این¬رو، از آغاز پایه گذاری علم فیزیک ماده چگال، تلاش پژوهشگران بر این بوده است تا بعنوان یک تقریب، مسئله بس- ذره¬ای گاز الکترون جامد را به یک مسئله قابل حل تبدیل نمایند. کلیه متون مربوط به زمینه ماده چگال و روش¬های مختلف و گوناگون محاسبات ساختار نوارهای انرژی الکترونی جامدات، حکایت از به کارگیری انواع تقریب¬هایی است که برای حل معادله شرودینگر انجام می¬شود. خوشبختانه علی¬رغم تقریبی بودن روش¬های بس¬- ذره¬ای، این روش¬ها موفقیت عملی فوق¬العاده¬ای را از خود نشان داده¬اند و بنابراین در مواردی که پیچیدگی¬های ناشی از آثار برهم¬کنش الکترون¬ها در رفتار نهایی سامانه مؤثر باشند باید در حد امکان و با روش-های مختلف حداکثر آثار بس- ذره¬ای را در محاسبات دخالت داد. در هر صورت باید توجه داشت که هر روش تقریبی گستره اعتبار خاصی دارد.
اما امروزه، هدف اغلب پژوهش¬های نظری بر پایه مکانیک کوانتوم، در زمینه مباحث فیزیک ماده چگال و شیمی، یافتن برهم¬کنش¬های اصلی نمی¬باشد بلکه پرداختن به حل معادله شرودینگر از یک تابع هامیلتونی مشهور است که از حل آن اطلاعات مفیدی حاصل می¬شود. به¬ هرحال این هامیلتونی یک مسئله بس- ذر¬ه¬ای را توضیح می¬دهد و برای تعداد بیشتر از 10 الکترون، حل دقیق آن از لحاظ عددی عملاً امکان پذیر نیست. بعلاوه حل دقیق آن، شامل مجموعه-ای از اطلاعات است که بدون ساده¬سازی و تجزیه و تحلیل، به سختی قابل فهم است و برای یک مسئله و شرایط مشخص حاوی تعداد زیادی جزئیات است، که احتمالاً مورد علاقه نیست [1]. بنابراین بازنویسی مجدد مسئله و کار با توابع هامیلتونی مؤثر یا مقادیر انتظاری انتخاب شده که برای حل یک مسئله کاهش یافته مناسب می¬باشند، اغلب بهتر است. این روش بطور ایده¬ال هم محاسبه و هم تجزیه و تحلیل مقادیر مدنظر را ساده خواهد نمود.
نظریه تابعی چگالی  (DFT) [2و3] یکی از متداول¬ترین روش¬هایی است که برای محاسبات خواص حالت پایه طراحی شده است و بر پایه اطلاع از تابع چگالی n(r) بجای تابع موج بس- ذره¬ای کامل  از یک سیتم N ذره¬ای پایه¬گذاری شده است. مبانی نظریه DFT بر اساس نظریه هوهنبرگ-کوهن- شم [2] بصورت زیر است:
1. چگالی الکترونی حالت پایه از یک سامانه برهم¬کنشی از الکترون¬، می¬تواند بطور کامل، پتانسیل خارجی¬ v(r)، که الکترون¬ها تجربه می¬کنند و بنابراین هامیلتونی، تابع موج بس- ذره¬ای، و همه کمیت¬های مشاهده پذیر از سامانه، را تعیین ¬کند.
2. یک تابعی  F[n]وجود دارد بطوری¬که انرژی کل E[n] می-تواند بصورت زیر نوشته شود:
 (1-1)                                                                        
این F یک تابعی عمومی است بطوری¬که وابستگی تابعی¬اش به چگالی برای همه سامانه¬های با برهم¬کنش ذره- ذره مشابه، یکسان است.


دانلود با لینک مستقیم

رنگ و حالت الکترونی مولکولها

اختصاصی از کوشا فایل رنگ و حالت الکترونی مولکولها دانلود با لینک مستقیم و پرسرعت .

رنگ و حالت الکترونی مولکولها


رنگ و حالت الکترونی مولکولها

 

 

 

 

 

 

مقدمه :

امروزه از رنگهای طبیعی به ندرت استفاده می گردد زیرا به کمک روشهای سنیتک رنگهای ایده آلی از نظر کمی و کیفی تولید میشوند و چون ساختمان اصلی آنها را آروماتیکها تشکیل میدهند بنابراین ازذغال سنگ و نفت به عنوان مهمترین منابع طبیعی و اولیه برای آنها محسوب میشوند . بیش از یک قرن است که رنگهای آلی و مصنوعی برای بشر شناخته شده است . در سال 1856 وقتی شیمیدان 18 ساله انگلیسی به نام ویلیام هندی پرکین سعی میکرد کینون راسنتز نماید به جای محصول سفید رنگی که او انتظار داشت یک ماده بد شکل سیاه رنگ تولید نمود که برایش قابل توجه و قابل مطالعه بود . از استخراج این ماده رنگ ارغوانی زیبایی به نام ماوین بدست آمد که بر حسب تصادف کهنه نخی که در کنار میز آزمایش او قرار داشت توسط آن رنگی گردید و این ماده تا آن زمان تنها ماده رنگی بود که از واکنش شیمیایی حاصل شده و جزو رنگهای گیاهی و ظبیعی نبود و بدین سان تحول بزرگی در تهیه مواد رنگی آلی شروع گردید ....

متن کامل را می توانید دانلود کنید ........


دانلود با لینک مستقیم