کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

دانلود پروژه شکل دهی در حالت نیمه جامد یا Thixo forming

اختصاصی از کوشا فایل دانلود پروژه شکل دهی در حالت نیمه جامد یا Thixo forming دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه شکل دهی در حالت نیمه جامد یا Thixo forming


دانلود پروژه شکل دهی در حالت نیمه جامد یا Thixo forming

 

 

 

 

 

 

 



فرمت فایل : PDF

چکیده:

پروژه شکل دهی در حالت نیمه جامد یا Thixo forming توسط دوست عزیزمون shayan1989 تهیه شده که به سایت علمی آموزشی نواندیشان ارسال شده است و فایل PDF اون رو با ورود به لینک داده شده می تونید دانلود کنید.

هدف از انجام پروژه شکل دهی در حالت نیمه جامد معرفی یکی از روش های فرم دهی فلزات با عنوان THIXO FORMING یا در واقع شکل دهی به صورت نیمه جامد می باشد. این تکنولوژی پیشرفته تولید قطعات در کشور ما آنطور که باید بکار گرفته نشده است. که این خود ضعف در تولید قطعات با کیفیت و تلرانس های بالا در فرآیندهایی است که در دماهای بالا انجام می شود. در این فعالیت علمی سعی بر آن است تا بتوانیم با معرفی این تکنولوژی پیشرفته و مقایسه آن با دیگر روشهای تولید از قبیل ریخته گری که در حرارت های بالا انجام می شود ذهن دانشمندان و صنعت گرانی که در این شاخه از صنعت فعالیت می کنند را به این تکنولوژی معطوف کنیم. تا با بررسی شرایطی مثل (روش های ساخت، مواد اولیه، هزینه های راه اندازی خط تولید و بازارهای فروش) بتوانند خطوط این فرآیند را در تولیدات کشور راه اندازی کنند. اولین گام در راه این هدف بالا بردن میزان علم و آگاهی محققان این تکنولوژی است که پروژه آن را دنبال می کند. در این پروژه به شرح فرآیند فرم دهی نیمه جامد و فرآیندهای ریخته گری پرداخته و سپس آنها را با یکدیگر مقایسه می کنیم.

پروژه شکل دهی در حالت نیمه جامد رو به صورت یک فایل PDF در ۱۰۶ صفحه تهیه شده که شامل ۳سه فصل زیر می باشد:

فهرست مطالب:

فصل اول: THIXO FORMING

فصل دوم: ریخته گری

فصل سوم: مقایسه THIXO FORMING و ریخته گری های رایج


دانلود با لینک مستقیم

دانلود پایان نامه شیمی -فرآیندهای حالت ناپایدار و انبوه

اختصاصی از کوشا فایل دانلود پایان نامه شیمی -فرآیندهای حالت ناپایدار و انبوه دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه شیمی -فرآیندهای حالت ناپایدار و انبوه


دانلود پایان نامه شیمی -فرآیندهای حالت ناپایدار و انبوه

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:166

فهرست مطالب:
فصل اول    4
فرآیندهای حالت ناپایدار و انبوه    4
مایعات سرد کننده و گرم کننده    6
1) دمای مایع انبوه    6
حجم های تکان داده  شده خنک ساز و گرم کن    9
کویل در تانک یا محفظة پوشانده شده، واسطه خنک سازی ایزوترمال    11
کویل در تانک یا محفظة پوشانده شده، واسط گرم ساز غیر ازوترمال    12
کویل در تانک، واسط خنک ساز غیر ایزوترمال    12
مبدل حرارت خارجی، واسط گرم کنندة ایزوترمال    12
مبدل خارجی مایع تدریجاً اضافه شده به تانک، واسط خنک کنندة ایزوترمال    16
مبدل خارجی، مایع تدریجاً اضافه شده ه تانک، واسط خنک کنندة ایزوترمال    17
مبدل خارجی 2-1، گرم کردن    17
مبدل خارجی 2-1، مایع تدریجاً اضافه شده به تانک، خنک سازی    18
حجم های متلاطم خنک کردن و گرم کردن، جریان موازی- جریان متقاطع    19
خنک کردن و گرم کردن بدون تلاطم (تکان دادن)    19
مبدل جریان متقابل خارجی، واسط گرم کنندة ایزوترمال    20
مبدل جریان مقابل خارجی، واسط خنک کنندة ایزوترمال    21
مبدل جریان متقابل خارجی، واسط گرم کنندة غیر ایزوترمال    21
مبدل جریان مقابل خارجی، واسط خنک کنندة غیر ایزوترمال    22
مبدل 2-1 خارجی، خنک سازی و گرم کردن    22
مبدل خارجی 4/2 گرم کردن و سرد کردن    22
دوباره گرم ساز و چگالنده:    27
جامدات خنک کننده و گرم کننده    28
دیوار با ضخامت متناهی از یک طرف گرم شده    37
روش نیومن برای شکلهای رایج و ترکیبی    51
تعیین تصویر برای توزیع دما- زمان    57
توزیع دما- زمان با مقاومت تماسی    63
تغییر متناوب دمای سطح    67
تغییرات دما در پس سازها:    73
فصل دوم    85
محاسبات کوره    85
بویلرهای بخارساز    87
کوره های پالایش نفت    91
عوامل انتقال حرارت تابشی    95
چاه حرارتی    96
منبع گرما    102
سطوح بسته    109
روشهای طراحی    112
کاربردها    113
فصل 3    134
9- مواد دانه‎دانه در لوله‎ها    167
10- گرمایش با مقاومت الکتریکی    171
کاربردهای ضمیمه:    176
فصل 4    179
متغیرهای فرآیند:    179
گرم‎کننده‎ها:    192
تقطیر پیوسته    197
 فصل اول 
فرآیندهای حالت ناپایدار و انبوه 
 
مقدمه: 
روابط فصل های قبل فقط در حالت پایدار به کار می روند که در آن جریان گرما و دمای منبع با زمان ثابت بودند. فرآیندهای حالت ناپایدار آنهایی هستند که در آنها جریان گرما، دما و یا هر دو در یک نقطة ثابت با زمان تغییر می کنند. فرآیندهای انتقال حرارت انبوه فرآیندهای حالت ناپایدار نمونه ای هستند که در آنها تغییرات حرارت ناپیوسته ای رخ می دهند همراه با مقادیر خاصی از ماده در هنگام گرم کردن مقدار داده شده ای از مایع در یک تانک یا در هنگامی که یک کورة سرد به کار افتاده است.
همچنین مسائل رایج دیگری نیز وجود دارند که مثلاً شامل می شوند بر نرخی که حرارت از میان یک ماده به روشی رسانایی انتقال می یابد در حالی که دمای منبع گرما تغییر می کند. تغییرات متناوب روزانة حرارت خورشید بر اشیاء مختلف یا سرد کردن فولاد در یک حمام روغن نمونه راههایی از فرآیند اخیر هستند. سایر تجهیزاتی که بر اساس روی خصوصیات حالتی ناپایدار ساخته شده اند شامل کوره های دوباره به وجود آورنده(اصلاحی) که در صنعت فولاد استفاده می شوند، گرم کنندة دانه ای(ریگی) و تجهیزاتی که در فرآیندهای بکار گیرندة کاتالیست دمای ثابت یا متغیر به کار می روند هستند.
در فرآیندهای کلان برای گرم کردن مایعات نیازمندیهای زمانی برای انتقال حرارت معمولاً می توانند بوسیلة افزایش چرخة سیال کلان و یا واسطة انتقال حرارت و یا هر دو  اصلاح شوند.
دلایل به کار گرفتن یک فرآیند کلان به جای به کارگیری دیگ عملیات انتقال حرارت پیوسته بوسیلة عوامل زیادی دیکته می شوند:
بعضی از دلایل رایج عبارتند از 1) مایعی که مورد فرآیند قرار می گیرد به صورت پیوسته در دسترس نیست 2) واسط گرم کردن یا سرد کردن به طور پیوسته در دسترس نیست 3)نیازمندیهای زمان واکنش یا زمان عملکرد متوقف شدن را ضروری می سازد 4) مسائل اقتصادی مربوط به مورد فرآیند قرار دادن متناوب یک حجم وسیع، ذخیره یک جریان کوچک پیوسته را توجیه می کند 5)تمیز کردن و یا دوباره راه‌اندازی کردن یک بخش برای دورة کاری است و 6)عملکرد سادة بیشتر فرآیندهای کلان سودمند و خوب است.
به منظور مطالعه کردن منظم و با قاعدة رایج ترین کابردهای فرآیندهای انتقال حرارت حالت ناپایدار و کلان ترجیح داده می شود که فرآیندها را به دسته های (aمایع (سیال) گرما دهنده یا خنک کننده و  b) جامد خنک کننده یا گرم کننده تقسیم کنیم.
رایج ترین نمونه ها در ذیل آورده شده اند:
1)مایعات سرد کننده و گرم کننده
a) مایعات کلان    b)تقطیر کلان
2)جامدات خنک کننده یا گرم کننده
a)دمای واسط ثابت    b)دمای متغیر دوره ای  c)دوباره تولید کننده ها(ژنراتورها)
d)مواد دانه ای در بسته ها
 
مایعات سرد کننده و گرم کننده
1) دمای مایع انبوه
مقدمه
بومی، مولر و ناگل رابطه ای برای زمان مورد نیاز را برای گرم کردن یک تودة تکان داده شده بوسیلة غوطه ورسازی یک کویل گرم کننده بدست آورده اند که برای زمان است که اختلاف دما معادل LMTD (اختلاف دمای میانی لگاریتمی) برای جریان روبه رو داده شده باشد.
فیشر محاسبات انبوه را گسترش داده است برای شامل شدن یک جدول خارجی جریان مقابل، چادوک و سادرنر حجم های تکان داده شده را مورد بررسی قرار داده اند که با مبدل های خارجی جریان مقابل همراه با اضافه سازی پیوستة مایع به تانک گرم شده اند همچنین به میزان حرارت در این راه حل پرداخته اند.
بعضی از روابطی که به دنبال می آیند برای کویل ها در تانک ها و محفظه های پوشانده شده به کار می روند. اگرچه روش بدست آوردن ضرائب انتقال حرارت برای این اجزاء تا فصل 20 به تعویق انداخته شده است.
تشخیص دادن حضور یا عدم حضور تکان در یک مایع کلان همیشه امکانپذیر نیست. گرچه دو مقدمة فوق منجر به نیازمندیهای متفاوتی برای نائل شدن به یک تغییر دمای کلان در یک دورة زمانی داده شده می شوند.
زمانی که یک محرک مکانیکی در یک تانک یا محفظه همانند شکل 1.‌18 نصب می‌شود نیازی به این پرسش که سیال تانک تکان داده شده یا نه نیست.
 
زمانی که محرک مکانیکی وجود ندارد ولی سیال به طور پیوسته در حال گردش است ما نتیجة این که حجم تکان داده شده است یک نوع احتیاط و دوراندیشی است.
در بدست آوردن معادلات کلان در ذیل T به مایع داغ انبوه یا واسط گرم کردن اشاره می کند. t به مایع سرد انبوه یا واسط خنک سازی اشاره دارد. موارد ذیل در این جا مورد بررسی قرار می گیرند.
حجم های خنک سازی یا گرم سازی متلاطم جریان متقابل
کویل در تانک یا محفظة پوشانده شده، واسط ایزوترمال
کویل در تانک یا محفظة پوشانده شده، واسط غیر ایزوترمال
مبدل خارجی، واسط ایزوترمال
مبدل خارجی، واسط غیر ایزوترمال
مبدل خارجی مایع پیوسته اضافه شده به تانک، واسط ایزوترمال
مبدل خارجی مایع پیوسته اضافه شده به تانک، واسط غیر ایزوترمال
حجم های خنک ساز یا گرم کننده متلاطم، جریان متقابل موازی
مبدل 2-1 خارجی
مبدل 2-1 خارجی، مایع تدریجاً اضافه شده به تانک
مبدل 4-2 خارجی
مبدل 4-2 خارجی، مایع تدریجاً اضافه شده به تانک
حجم های گرم ساز و خنک کننده بدون تکان دهی
مبدل جریان مقابل خارجی، واسط ایزوترمال
مبدل جریان مقابل خارجی، واسط غیر ایزوترمال
مبدل  2-1 خارجی
مبدل  4-2 خارجی
 
حجم های تکان داده  شده خنک ساز و گرم کن
چندین راه برای در نظر گرفتن فرآیندهای انتقال حرارت کلان وجود دارد. اگر تکمیل کردن یک عملکرد معین در زمان داده شده مطلوب باشد، سطح مورد نیاز معمولاً مجهول است. اگر سطح انتقال حرارت معلوم است، مانند نصب فعلی زمان مورد نیاز برای تکمیل کردن عملکرد معمولاً نامعین است و یک حالت سوم زمان پیش می آید که زمان و سطح هر دو معلوم هستند ولی دما در پایان زمان مورد نظر مجهول است. فرضیات زیرین در بدست آوردن معادلات 1/18 تا 23/18 در نظر گرفته شده اند:
1)برای فرآیند و تمام سطح ثابت است
2)نرخهای جریان مایع ثابت هستند
3)گرماهای ویژه برای فرآیند ثابت هستند
4)واسط گرم سازی یا خنک سازی یک دمای ورودی ثابت دارد
5)تکان دهنده یک دمای سیال انبوه  یکسان و یکنواخت فراهم می کند.
6)هیچ گونه تغییر فاز جزیی رخ نمی دهد
7)تلفات گرمایی قابل اغماض هستند.
 
حجم های تکان داده شدة خنک ساز یا گرم کنندة جریان متقابل
کویل در تانک یا محفظة پوشانده شده واسط گرم کننده ایزوترمال
ترتیب نشان داده شده در شکل 1/18 را در نظر بگیرید، شامل یک محفظة تکان داده شده شامل M پوند از مایع با گرمای ویژة c و دمای اولیة   که بوسیلة یک سیال متراکم شوندة با دمای   گرم می شود. دمای batch،   در هر زمان   بوسیلة تعادل گرمایی دیفرانسیلی داده می شود. اگر   مقدار کل btu انتقال یافته است در این صورت به ازای واحد زمان
 
18/4     
با انتگرال گیری از   تا   در هنگامی که زمان اثر به   می رسد،
18/5     
کاربرد یک رابطه مانند 5/18 نیازمند محاسبة مستقل V برای کویل یا محفظة پوشانده شده همانند فصل 20 است فصل 20 است. با Q و A ثابت بوسیلة شرایط فرآیند زمان گرم سازی مورد نیاز می تواند محاسبه شود.
کویل در تانک یا محفظة پوشانده شده، واسطه خنک سازی ایزوترمال
مسائل این نوع معمولاً در فرآیند دمای پایین رخ می دهد که در آنها واسط خنک کننده یک مبرد است که به جزء خشک سازی در دمای جوش ایزوترمالش تغذیه می‌شود. مطابق با همان ترتیب نشان داده شده در شکل 1/18 شامل M پوند از مایع با گرمای ویژة C و دمای اولیة   که با یک واسط بخار شونده با دمای   خنک می شود اگر   دمای توده در هر زمان   باشد.
18/6     
 
18/7     
 
کویل در تانک یا محفظة پوشانده شده، واسط گرم ساز غیر ازوترمال
واسط غیر ایزوترمال گرم کننده برج جریان ثابت W و دمای ورودی   دارد ولی دمای خروجی متغیر است.
18/8     
   
قرار می گذاریم که     و با دمای پنداشتی a و b را معادلة 8/18 در این I
 
18/9     
 
کویل در تانک، واسط خنک ساز غیر ایزوترمال
18/10     
 
18/11     
 
مبدل حرارت خارجی، واسط گرم کنندة ایزوترمال
ترتیب شکل 2/18 را در نظر بگیرید در آن سیال بوسیلة یک مبدل خارجی گرم می‌شود. از آنجایی که واسط گرم کننده ایزوترمال است، هر نوع مبدل با بخار در پوسته یا لوله می تواند به کار برده شود. امتیازات گردش اجباری برای هر دوره این ترتیب را پیشنهاد می کند.
 
دمای متغیر بیرون از مبدل   از دمای متغیر تانک t متمایز است و تعادل گرای دیفرانسیلی برای این وسیله داده می شود:
18/12     
 
با فرض  
 
مبدل بیرونی، واسط خنک کنندة ایزوترمال
18/14     
در مبدل بیرونی، مبدل گرماساز غیر ایزوترمال، تعادل حرارت دیفرانسیلی بدین وسیله داده می شود.
18/15     
دو دمای متغیر   و   وجود دارند که در LMTD ظاهر می شوند که باید در ابتدا حذف شوند.
با معادل گرفتن a و b در معادله 15/18
 
اجازه دهید که     باشد و
 
مبدل خارجی محل خنک کنندة غیر ایزوترمال
 
 
مبدل خارجی، مایع تدریجاً اضافه شده به تانک، واسط گرم کنندة ایزوترمال، اجزای فرآیند در شکل 3/18 نشان داده شده اند، مایع تدریجاً با نرخ    و سرمای ثابت   به تانک اضافه می شود فرض شده است که هیچگونه تأثیرات حرارتی شیمیایی همراه با اضافه سازی آب به تانک وجود ندارد.

 
از آنجا که M پوند مایع ابتدایی در توده   میزان پوند در ساعت است، مقدار مایع کلی در هر زمان   است. تعادل گرمایی و دیفرانسیلی به این صورت خواهد بود.
18/8     
و     
از آنجایی که     
با حل نسبت به  
 
با جانشینی در معادلة 18/18
 
 
اگر اضافه کردن مایع به تانک باعث ایجاد یک گرمای درونی یا بیرونی میانگین انحلال شود،   ترکیب  ، می توان آن را با اضافه کردن   به صورت عدد مخرج کسر سمت چپ در نظر گرفت زیرنویسی 0 به ترکیب اشاره دارد.
 


دانلود با لینک مستقیم

پایان نامه رنگ و حالت الکترونی مولکولها

اختصاصی از کوشا فایل پایان نامه رنگ و حالت الکترونی مولکولها دانلود با لینک مستقیم و پرسرعت .

پایان نامه رنگ و حالت الکترونی مولکولها


پایان نامه رنگ و حالت الکترونی مولکولها

 

 

 

 

 

 

 

 


فرمت:word(قابل ویرایش)

تعداد صفحات:244

مقدمه :
تاریخچه – امروزه از رنگهای طبیعی به ندرت استفاده می گردد زیرا به کمک روشهای سنیتک رنگهای ایده آلی از نظر کمی و کیفی تولید میشوند و چون ساختمان اصلی آنها را آروماتیکها تشکیل میدهند بنابراین ازذغال سنگ و نفت به عنوان مهمترین منابع طبیعی و اولیه برای آنها محسوب میشوند . بیش از یک قرن است که رنگهای آلی و مصنوعی برای بشر شناخته شده است . در سال ۱۸۵۶ وقتی شیمیدان ۱۸ ساله انگلیسی به نام ویلیام هندی پرکین سعی میکرد کینون راسنتز نماید به جای محصول سفید رنگی که او انتظار داشت یک ماده بد شکل سیاه رنگ تولید نمود که برایش قابل توجه و قابل مطالعه بود . از استخراج این ماده رنگ ارغوانی زیبایی به نام ماوین بدست آمد که بر حسب تصادف کهنه نخی که در کنار میز آزمایش او قرار داشت توسط آن رنگی گردید و این ماده تا آن زمان تنها ماده رنگی بود که از واکنش شیمیایی حاصل شده و جزو رنگهای گیاهی و ظبیعی نبود و بدین سان تحول بزرگی در تهیه مواد رنگی آلی شروع گردید واکنش تهیه رنگ مزبور بصورت زیر است :

سولفوریک اسید + آنیلین
این رنگ چنانچه بعدا خواهیم دید به دلیل وجود گروه آزین ( Azine ) جزو این نوع شیمیایی میباشد ولی در آن زمان به دلیل تهیه اش از آنیلین رنگ آنیلین نامش نهادند .
پرییکن رنگ بالا را در کارخانه ای نزدیک لندن از قطران ذغال سنگ در مقیاس صنعتی تهیه نمود البته قبل از آن در آزمایشگاه از اثر پتاسیم دی کرومات و سولفوریک اسید بر آنیلین ناخالص آنرا سنتز نموده بود از انجائیکه این رنگ در رنگرزی مزایای فراوانی نسبت به دیگر رنگهای طبیعی ، از نظر روشنی و ثبات داشت در اندک زمانی توجه رنگرزها را بخود جلب نمود . پریکن و دوستانش علاوه بر تهیه رنگ بالا فرایند ساده رنگرزی با تانیک اسید را نیز ابداع کردند و بالاخره بعد از مدتها تحقیق و بررسی اولین کارخانه رنگسازی توسط او تاسیس و به مرحله تولید رسید .
از انجا که در آغاز اغلب رنگهای مصنوعی اولیه از انیلین ساخته میشدند و انیلین در آن زمان فقط از منبع قطران ذغال سنگ تهیه میشد اینگونه رنگها به رنگهای آنیلین و رنگهای قطران ذغال سنگ معروف بودند هر چند که بعضی از این رنگها از آنیلین نیز مشتق نشده بودند . امروزه کلمه رنگهای مصنوعی با سینتیک ترجیح داده میشوند زیرا دیگر امروزه رنگها لزوما از منابع اولیه ذغال سنگ تهیه نمیشوند . بلکه منابع نفتی ( نفت خام و گاز طبیعی ) بجای آن جایگزین شده و این تعویض عمدتا در اثر جایگزینی گاز ذغال با گاز طبیعی در کشورهای صنعتی انجام گرفت .
در تهیه رنگها از نظر کلی فرایند عمومی زیر دنبال میشود :
نفت
مواد اولیه (هیدروکربنهای آروماتیک) منابع طبیعی
زغال سنگ
مواد حد واسط

رنگها

فصل ۱

رنگ و حالت الکترونی مولکولها

۱ – رنگ
رنگ نمودی از تاثیر متقابل نور مرئی و ماده است و ماده به این ترتیب رنگی به نظر میرسد . خود پدییده دید نیز نتیجه جذب نور توسط شبکیه چشم میباشد . جذب نور سبب میشود که ساختمان پروتوئینهای چشم در اثر یکسری واکنشهای شیمیایی تغییر یابد و یک ردیف پاسخهای شیمیایی داده شود و درنتیجه ، علامت دریافت شده بوسیله عصب نوری به مغز انتقال می یابد .
تابش نور سفید به ماده بر حسب ساختمان و حالت سطحی ماده با پدیده های زیر پاسخ داده میشود :
الف : تمامی پرتوهای تابیده شده بازتاب یا پخش میگردند بدین ترتیب ماده سفید به نظر میرسد .
ب : تمامی پرتوها جذب میشوند ، ماده سیاه به نظر میرسد .
ج : قسمتی از پرتو ها بطور انتخابی جذب میشوند ماده رنگی به نظر میرسد .
باید تصریح کرد که نور سفید منتشر شده توسط خورشید تابشهای الکترو مغناطیسی در ناحیه ۴۰۰ تا ۸۰۰ n m را در بر میگیرد . در دو سوی طیف مرئی نور از تابشهای غیر مرئی برای چشم انسان تشکیل یافته است طول موجهای بیشتر از ۸۰۰ n m نور در ناحیه زیر قرمز (I R ) و طول موجهای کمتر از ۴۰۰ n m در ناحیه فرا بنفش ( U V ) قرار دارد . بنابر این رنگ هر جسم یک حالت ویژه از پدیده ای بسیار عمومی ، یعنی پدیده جذب انتخابی است .
در داخل حوزه مرئی ، نوارهای خیلی باریک طول موجها به رنگهای کاملا معین مربوط میگردند . این رنگها نه تنها از ایجاد نوری با طول موج کاملا مشخص ناشی میشوند بلکه آنها از نور سفیدی که توسط جذب پرتوی که طول موج رنگ مورد نظر را در بر نداشته باشد نیز حاصل میگردند بدین ترتیب است که بر اثر جذب « رنگهای تکمیلی » ما رنگها یاجسامی که ما را احاطه کرده اند می بینیم جدول زیر رنگهای جذب شده و دریافت شده را نسبت به طوول موج نور جذب شده نشان میدهد .
رنگ جذب شده رنگ دریافت شده طول موج دریافت شده طول موج جذب شده به n m
بنفش زرد آبی n m 435 – ۴۰۰
آبی زرد ۴۸۰ – ۴۳۵
سبز – آبی پرتقالی ( نارنجی ) ۴۹۰ – ۴۸۰
آبی – سبز قرمز ۵۰۰ – ۴۹۰
سبز ارغوانی ۵۶۰- ۵۰۰
زرد – سبز بنفش ۵۸۰ – ۵۶۰
زرد آبی ۵۹۵ – ۵۸۰
نارنجی سبز – آبی ۶۰۵ – ۵۹۵
قرمز آبی – سبز ۷۵۰ – ۶۰۵

فصل ۲
شیمی رنگ

بررسی مواد رنگی از نظر شیمیایی ،. بخش جالبی از شیمی کاربردی را تشکیل میدهد به شیمی رنگ معروف است . در این قسمت انواع تقسیم بندی مواد رنگی ، مواد اولیه ( Primaries ) مواد حد واسط (‌ Intermediates ) بررسی میگردد .
۱ – طبقه بندی مواد رنگی

 


دانلود با لینک مستقیم

پرسشنامه حالت – رگه اضطراب اسپیلبرگر

اختصاصی از کوشا فایل پرسشنامه حالت – رگه اضطراب اسپیلبرگر دانلود با لینک مستقیم و پرسرعت .

پرسشنامه حالت – رگه اضطراب اسپیلبرگر


پرسشنامه حالت – رگه اضطراب اسپیلبرگر

پرسشنامه اضطراب اسپیلبرگر از 40 سوال تشکیل شده که 20 سوال اول حالت اضطراب و 20 سوال دوم رگه اضطراب را مورد سنجش قرار می دهد. مقیاس حالت اضطراب (اضطراب آشکار) شامل 20 جمله است که احساسات فرد را در «این لحظه و زمان پاسخگویی» ارزشیابی می کند. مقیاس رگه اضطراب (اضطراب پنهان) هم شامل 20 جمله است که احساسا ت عمومی و معمولی افراد را می سنجد.

 


دانلود با لینک مستقیم

پایان نامه فرآیندهای حالت ناپایدار و batch (پخت در کوره) (نرم کردن با روغن داغ)

اختصاصی از کوشا فایل پایان نامه فرآیندهای حالت ناپایدار و batch (پخت در کوره) (نرم کردن با روغن داغ) دانلود با لینک مستقیم و پرسرعت .

پایان نامه فرآیندهای حالت ناپایدار و batch (پخت در کوره) (نرم کردن با روغن داغ)


پایان نامه فرآیندهای حالت ناپایدار و batch (پخت در کوره) (نرم کردن با روغن داغ)

 

 

 

 

 

 

 

 

 


فرمت:word(قابل ویرایش)

تعداد صفحات:88

پایان نامه مقطع کارشناسی رشته مکانیک

فهرست مطالب

فرآیندهای حالت ناپایدار و batch (پخت در کوره) (نرم کردن با روغن داغ) ۴

مایعات سرد کننده و گرم کننده ۶

۱)batch دمای مایع.. ۶

مقدمه. ۶

batchهای تکان داده  شده خنک ساز و گرم کن.. ۹

Batchهای تکان داده شدة خنک ساز یا گرم کنندة جریان متقابل.. ۱۰

کویل در تانک یا محفظة پوشانده شده، واسطه خنک سازی ایزوترمال. ۱۱

کویل در تانک یا محفظة پوشانده شده، واسط گرم ساز غیر ازوترمال. ۱۲

کویل در تانک، واسط خنک ساز غیر ایزوترمال. ۱۲

مبدل حرارت خارجی، واسط گرم کنندة ایزوترمال. ۱۳

مبدل خارجی مایع تدریجاً اضافه شده به تانک، واسط خنک کنندة ایزوترمال. ۱۵

مبدل خارجی، مایع تدریجاً اضافه شده ه تانک، واسط خنک کنندة ایزوترمال. ۱۶

مبدل خارجی ۲-۱، گرم کردن. ۱۸

مبدل خارجی ۲-۱، مایع تدریجاً اضافه شده به تانک، خنک سازی.. ۱۹

خنک کردن و گرم کردن بدون تلاطم (تکان دادن) ۲۰

مبدل جریان متقابل خارجی، واسط گرم کنندة ایزوترمال. ۲۱

مبدل جریان مقابل خارجی، واسط خنک کنندة ایزوترمال. ۲۲

مبدل جریان متقابل خارجی، واسط گرم کنندة غیر ایزوترمال. ۲۲

مبدل جریان مقابل خارجی، واسط خنک کنندة غیر ایزوترمال. ۲۳

مبدل ۲-۱ خارجی، خنک سازی و گرم کردن. ۲۳

مبدل خارجی ۴/۲ گرم کردن و سرد کردن. ۲۴

دوباره گرم ساز و چگالنده: ۲۹

جامدات خنک کننده و گرم کننده ۳۲

۲a)دمای میانی ثابت… ۳۲

-دیوار با ضخامت نامتناهی، گرم شده روی یک طرف… ۳۴

دیوار با ضخامت متناهی از یک طرف گرم شده ۴۰

دیوار با ضخامت متناهی، گرم شده از هر دو طرف… ۴۱

دیوار با ضخامت متناهی که به وسیلة یک سیال با مقاومت تماسی گرم شده است. ۴۳

شکلهای متناهی و نیمه متناهی گرم شده بوسیلة سیال با مقاومت تماسی.. ۴۸

روش نیومن برای شکلهای رایج و ترکیبی.. ۴۹

تعیین تصویر برای توزیع دما- زمان. ۵۵

توزیع دما- زمان با مقاومت تماسی.. ۵۹

۲b. دماهای متغیر به صورت متناوب… ۶۱

تغییر متناوب دمای سطح.. ۶۱

c-پس سازها (رژنراتورها) ۶۵

مقدمه: ۶۵

تغییرات دما در پس سازها: ۶۶

۲d- انتقال حرارت مواد دانه ای بسترها ۷۲

فصل ۱۹٫ ۷۷

محاسبات کوره ۷۷

بویلرهای بخارساز. ۷۸

کوره های پالایش نفت… ۸۲

عوامل انتقال حرارت تابشی.. ۸۷

چاه حرارتی.. ۸۸

 

چکیده

 

مقدمه:

روابط فصل های قبل فقط در حالت پایدار به کار می روند که در آن جریان گرما و دمای منبع با زمان ثابت بودند. فرآیندهای حالت ناپایدار آنهایی هستند که در آنها جریان گرما، دما و یا هر دو در یک نقطه ثابت با زمان تغییر می کنند. فرآیندهای انتقال حرارت batch فرآیندهای حالت ناپایدار نمونه ای هستند که در آنها تغییرات حرارت ناپیوسته ای رخ می دهند همراه با مقادیر خاصی از ماده در هنگام گرم کردن مقدار داده شده ای از مایع در یک تانک یا در هنگامی که یک کوره سرد به کار افتاده است.

همچنین مسائل رایج دیگری نیز وجود دارند که مثلاً شامل می شوند بر نرخی که حرارت از میان یک ماده به روشی رسانایی انتقال می یابد در حالی که دمای منبع گرما تغییر می کند. تغییرات متناوب روزانه حرارت خورشید بر اشیاء مختلف یا سرد کردن فولاد در یک حمام روغن نمونه راههایی از فرآیند اخیر هستند. سایر تجهیزاتی که بر اساس روی خصوصیات حالتی ناپایدار ساخته شده اند شامل کوره های دوباره به وجود آورنده(اصلاحی) که در صنعت فولاد استفاده می شوند، گرم کننده دانه ای(ریگی) و تجهیزاتی که در فرآیندهای بکار گیرنده کاتالیست دمای ثابت یا متغیر به کار می روند هستند.

در فرآیندهای batch برای گرم کردن مایعات نیازمندیهای زمانی برای انتقال حرارت معمولاً می توانند بوسیله افزایش چرخه سیال batch واسطه انتقال حرارت و یا در اصلاح   شوند.

دلایل به کار گرفتن یک فرآیند batch به جای به کارگیری دیگ عملیات انتقال حرارت پیوسته بوسیله عوامل زیادی دیکته می شوند:

بعضی از دلایل رایج عبارتند از 1) مایعی که مورد فرآیند قرار می گیرد به صورت پیوسته در دسترس نیست 2) واسط گرم کردن یا سرد کردن به طور پیوسته در دسترس نیست 3)نیازمندیهای زمان واکنش یا زمان عملکرد متوقف شدن را ضروری می سازد 4) مسائل اقتصادی مربوط به مورد فرآیند قرار دادن متناوب یک batch وسیع ذخیره یک جریان کوچک پیوسته را توجیه می کند 5)تمیز کردن و یا دوباره راه‌اندازی کردن یک بخش برای دوره کاری است و 6)عملکرد ساده بیشتر فرآیندهای batch سودمند و خوب است.

به منظور مطالعه کردن منظم و با قاعده رایج ترین کابردهای فرآیندهای انتقال حرارت حالت ناپایدار و batch ترجیح داده می شود که فرآیندها را به دسته های Ca مایع (سیال) گرما دهنده یا خنک کننده و b) جامد خنک کننده یا گرم کننده تقسیم کنیم.

رایج ترین نمونه ها در ذیل آورده شده اند:

1)مایعات سرد کننده و گرم کننده

    a) batchهای مایع b)تقطیر batch

2)جامدات خنک کننده یا گرم کننده

a)دمای واسط ثابت      b)دمای متغیر دوره ای  c)دوباره تولید کننده ها

d)مواد دانه ای در بسته ها

مایعات سرد کننده و گرم کننده

1)batch دمای مایع

مقدمه

بومی، مولر و ناگل رابطه ای برای زمان مورد نیاز را برای گرم کردن یک batch تکان داده شده بوسیله غوطه ورسازی یک کویل گرم کننده بدست آورده اند که برای زمان که اختلاف دما معادل LMTD (اختلاف دمای میانی لگاریتمی) برای جریان روبه رو داده شده.

فیشر محاسبات batch را گسترش داده است برای شامل شدن یک جدول خارجی جریان مقابل، چادوک و سادرنر batchهای تکان داده شده را مورد بررسی قرار داده اند که با مبدل های خارجی جریان مقابل همراه با اضافه سازی پیوسته مایع به تانک گرم شده اند همچنین به میزان حرارت در این راه حل پرداخته اند.

بعضی از روابطی که به دنبال می آیند برای کویل ها در تانک ها و محفظه های پوشانده شده به کار می روند. اگرچه روش بدست آوردن ضرائب انتقال حرارت برای این اجزاء تا شکل 20 به تعویق انداخته شده است.

تشخیص دادن حضور یا عدم حضور تکان در یک مایع batch همیشه امکانپذیر نیست. گرچه دو مقدمه فوق منجر به نیازمندیهای متفاوتی برای نائل شدن به یک تغییر دمای batch در یک دوره زمانی داده شده می شوند.

زمانی که یک محرک مکانیکی در یک تانک یا محفظه همانند شکل 1.‌18 نصب می‌شود نیازی به این پرسش که سیال تانک تکان داده شده نیست.

زمانی که محرک مکانیکی وجود ندارد ولی سیال به طور پیوسته در حال گردش است ما نتیجه این که batch تکان داده شده است یک نوع احتیاط و دوراندیشی است.

در بدست آوردن معادلات batch در ذیل T به مایع داغ batch یا واسط گرم کردن اشاره می کند. T به مایع سرد batch یا واسط خنک سازی اشاره دارد. موارد ذیل در این جا مورد بررسی قرار می گیرند.

Batchهای خنک سازی یا گرم سازی متلاطم جریان متقابل

    کویل در تانک یا محفظه پوشانده شده، واسط ایزوترمال
    کویل در تانک یا محفظه پوشانده شده، واسط غیر ایزوترمال
    مبدل خارجی، واسط ایزوترمال
    مبدل خارجی، واسط غیر ایزوترمال
    مبدل خارجی مایع پیوسته اضافه شده به تانک، واسط ایزوترمال
    مبدل خارجی مایع پیوسته اضافه شده به تانک، واسط غیر ایزوترمال

batchهای خنک ساز یا گرم کننده متلاطم، جریان متقابل موازی

مبدل 2-1 خارجی

مبدل 2-1 خارجی، مایع تدریجاً اضافه شده به تانک

مبدل 4-2 خارجی

مبدل 4-2 خارجی، مایع تدریجاً اضافه شده به تانک

batchهای گرم ساز و خنک کننده بدون تکان دهی

مبدل جریان مقابل خارجی، واسط ایزوترمال

مبدل جریان مقابل خارجی، واسط غیر ایزوترمال

مبدل 2-1 خارجی

مبدل 4-2 خارجی

batchهای تکان داده شده خنک ساز و گرم کن

چندین راه برای در نظر گرفتن فرآیندهای انتقال حرارت batch وجود دارد. اگر تکمیل کردن یک عملکرد معین در زمان داده شده مطلوب باشد، سطح مورد نیاز معمولاً مجهول است. اگر سطح انتقال حرارت معلوم است، مانند نصب فعلی زمان مورد نیاز برای تکمیل کردن عملکرد معمولاً نامعین است و یک حالت سوم زمان پیش می آید که زمان و سطح هر دو معلوم هستند ولی دما در پایان زمان مورد نظر مجهول است. فرضیات زیرین در بدست آوردن معادلات 1/18 تا 23/18 در نظر گرفته شده اند:

1)برای فرآیند و تمام سطح ثابت است

2)نرخهای جریان مایع ثابت هستند

3)گرماهای ویژه برای فرآیند ثابت هستند

4)واسط گرم سازی یا خنک سازی یک دمای ورودی ثابت دارد

5)تکان دهنده یک دمای سیال batch یکسان و یکنواخت فراهم می کند.

6)هیچ گونه تغییر فاز جزیی رخ نمی دهد

7)تلفات گرمایی قابل اغماض هستند.

 

 


دانلود با لینک مستقیم