کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

مقاله زمان و حرکت در آثار تجسمی

اختصاصی از کوشا فایل مقاله زمان و حرکت در آثار تجسمی دانلود با لینک مستقیم و پرسرعت .

مقاله زمان و حرکت در آثار تجسمی


مقاله زمان و حرکت در آثار تجسمی

 

 

 

 

 

 




فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:41

فهرست مطالب:

زمان و حرکت در آثارتجسمی   ۳
گذشت زمان   ۳
حرکت واقعی   ۴
تصور حرکت   ۵
فهم و نظم بصری   ۸
تعادل   ۸
تناسب   ۱۰
حرکت   ۱۱
اقتصاد   ۱۳
۱- زیبایی   ۱۴
نظریه عشق گرایی   ۲۶
مکتب جامعه شناسی   ۲۹
فلسفة اصالت وجود یا اگزیستانسیالیسم   ۳۷
فهرست منابع   ۴۰

 

زمان و حرکت در آثارتجسمی
درک و خلاقیت تصویری یا فقدان آن، در کیفیت هنرهای تجسمی و آثار تصویری و حجمی، عامل فوق العاده مؤثری است که هنرمند می تواند برای خلق اثر خویش آن ار به کار گیرد و بی تردید در صورت پختگی هنرمند ابزارها و نشانه های بکارگیری آن برای او مشخص تر و شناخته شده تر شده و شمارشان فزونی می یابد. اما هنرمند هر قدر هم که ماهر باشد به وجود آوردن یک نقاشی که دقیقاً مشابه صحنه واقعی باشد غیر ممکن است. به یک دلیل ساده: دنیای ما هیچ وقت ساکن نیست. در هر لحظه، گذشت زمان احساس می شود. اما بعضی از کارهای هنری بیشتر از آثار دیگر با زمان و حرکت سرو کار دارند و به بیان دیگر، نشان دادن گذر زمان و حرکت از اهداف مهم آن آثار و هنرمندان آنهاست. مصریان قدیم بدون شک در مباحثات هنری در پی کشف معمای زمان و حرکت بوده اند. در فرهنگ مصر و در خیلی دیگر از فرهنگ ها همیشه این تصور وجود داشت که هنر تصویری فاقد عناصر زمان و حرکت است. دنیای خود ما به طور قابل ملاحظه ای پویا و دینامیک است. بیشتر ما به ویژه در کشورهای صنعتی، ذهنمان درگیر زمان است و حرکت یک عامل و فاکتور در زندگی روز مره ما به شمار می رود. هر دو عامل زمان و حرکت باید به عنوان عناصر مهم هنری تلقی شوند، اگر معتقد هستیم که آثار هنری در روند زندگی معاصر ما نقش کارسازی دارند.
گذشت زمان
در هنر سه بعدی به خصوص هنر مجسمه سازی و معماری، زمان همیشه یک عنصر است. در واکنشهای بیننده هنگامی که دور یک ساختمان یا مجسمه قدم می زنید، نقطه دید شما با هر لحظه ای که می گذرد عوض می شود. معمولاً شما نمی توانید تمام جنبه های سازه را در آن واحد یا در یک لحظه تجربه کنید و مجبورید نقاط مختلف دید را جمع آوری و سرهم کنید تا دید کلی ای از آن به دست آورید. این مقوله در مورد بسیاری از مجسمه های معاصر به ویژه تندیس ها و سازه های دارای فضاها و حجم های خالی و سطوح مرکب، بیشتر صدق می کند و مجسمه های هنرمندی چون « لوئیز نولسون» از آن جمله اند.
یک عکس از مجسمة « شهر روی یک کوه بلند» City on a high mountain ساخته نولسون، فقط یک جهت و نقطه دیدی  واحد از آن را به ما نشان می دهد ولی مسلماً این منظور سازنده مجسمه نبوده و این کار به منظور نمایش در بیرون درست شده و خیلی بزرگ و عظیم است. بیشتر از 20 فوت ارتفاع دارد و عریض ترین قطرش 23 فوت است نولسون طوری آن را طراحی کرده که از هر زاویة دیدی، جالب باشد. یک دور کامل اطراف مجسمه و مطالعة جوانب مختلف آن، ترکیب ها و تلفیق های مختلففی از شکل، خط فضا، بافت و نور را ارائه می کند. با اینکه این مجسمه رنگ تیرة مایل  به سیاه زده شده انگاره های نور و سایه با گذشت زمان رنگ ها  و تیرگی های رنگی مجزایی ایجاد می کنند. زمانی که یک نفر اطرافش حرکت می کند یا حتی زمانی که خورشید در عرض آسمان می گذرد همین رنگ ها بر سطوح مجسمه به وجود می آید.
حرکت واقعی
دراثر نولسون و همین طور در خیلی از کارهای هنری دیگر، زمان یک فاکتور است،  برای اینکه بیننده در اطراف مجسمه در حرکت است. در مواردی نیز خود حرکت در هنر به کار برده می شود یکی از کسانی که وجود حرکت مخصوصاً در کارهایش به کار برده شده است « جرج ریکی» است. د رمجسمه ریکی « بنام جفت L نا متقارن چرخان»
Double L Excentric Grratory  شکل شی از حرکتی که به وسیله شی ایجاد می شد اهمیت کمتری دارد. ای مجسمه، تندیس تقریباً متقارنی است که بر بلندای منظره ای ساخته شده است. دو تا بخش یا بالة L شکل آن به حالت ثابت تعبیه شده ولی حرکات تفسیری به وسیله باد در آنها ایجاد می شود. تعادل این باله های غیر متمرکز، آنها ار پذیرای هر جریانی می کند که ملایم ترین نسیم های تابستان آن ها را به حرکت در می آورد. آنها  را پذیرایی هر جریانی می کند  و ملایم ترین نسیم های تابستان آن ها را به حرت در می آورد آنها به نوعی با محاسبه و مقاوم طراحی و ساخته شده اند، حتی در برابر بادهایی با سرعت 80 مایل در ساعت آسیبی نبینند. هیچکی نمی تواند پیش بینی کند که این باله های L  شکل مرتعش، در هر لحظه و در برابر هر وزش بادی که بر آنها می وزد، چه شکلی خواهند گرفت. صفحه های براق آن، نور را به اطراف منعکس می کنند و انعکاس نور از سطح آن ها تشعشعات رنگین متغیری به وجود می آورد.
همانطور که هنرمندان برای مدت زیادی سعی کرده اند تصور عمق و فضای سه بعدی را روی یک صفحه صاف و دو بعدی به وجود آورند، بعضی ها هم سعی کرده اند که تصور حرکت و عمق را به انتخاب خود در جایی که حرکت وجود ندارد به وجود آورند.


دانلود با لینک مستقیم

دانلود ترجمه حرکت ماورای برنامه‌ریزی سنتی -VISPOT Shop Floor System

اختصاصی از کوشا فایل دانلود ترجمه حرکت ماورای برنامه‌ریزی سنتی -VISPOT Shop Floor System دانلود با لینک مستقیم و پرسرعت .

دانلود ترجمه حرکت ماورای برنامه‌ریزی سنتی -VISPOT Shop Floor System


دانلود ترجمه حرکت ماورای برنامه‌ریزی سنتی -VISPOT Shop Floor System

 

 

 

 

 

 

 

عنوان انگلیسی :
Visopt ShopFloor: Going Beyond Traditional Scheduling

عنوان فارسی :
VISPOT Shop Floor System : حرکت ماورای برنامه‌ریزی سنتی

تعداد صفحات فایل اصلی مقاله : 13 صفحه

تعداد صفحات فایل ترجمه شده : 11 صفحه


ترجمه چکیده :
Visopt Shop Floor  یک سیستم زمان‌بندی برای حل مسائل برنامه‌ریزی پیچیده را ارائه می‌دهد، وجود برخی امکانات ویژه برنامه‌ریزی، این سیستم را از سیستم‌های برنامه‌ریزی متداول متمایز می‌کند. به ویژه که در طول زمان‌بندی برای رسیدن به هدف، فعالیتها، به صورت پویا برنامه‌ریزی می‌شوند. ما در این مقاله یکپارچه‌سازی برنامه‌ریزی و زمان بندی را به وسیله این سیستم را تشریح کرده و چگونگی دست یافتن به  این یکپارچگی را در سیستم برنامه‌ریزی کف کارگاهی ویسپوت را  شرح خواهیم داد.

 


دانلود با لینک مستقیم

دانلود تحقیق حرکت سیمانتیک (بدون شکل )

اختصاصی از کوشا فایل دانلود تحقیق حرکت سیمانتیک (بدون شکل ) دانلود با لینک مستقیم و پرسرعت .

دانلود تحقیق حرکت سیمانتیک (بدون شکل )


دانلود تحقیق حرکت سیمانتیک (بدون شکل )

 

 

 

 

 

 

 



فرمت فایل :docx(قابل ویرایش)

تعداد صفحات:26

فهرست مطالب:

۱٫ ۱) سینماتیک.. ۳

۲٫ ۱) دینامیک.. ۳

۱٫۵) مکانیزم. ۳

۶٫ ۱) حرکت در صفحه. ۴

۷٫ ۱) انتقال. ۴

۸٫ ۱) دوران.. ۵

۱۰٫ ۱) حرکت مارپیچی.. ۵

۱۱٫ ۱) حرکت کروی.. ۵

بخش دوم: مکانیزمهای میله ای Linkage. 5

2) مکانیزمهای چهار میله ای.. ۵

۲) مکانیزم چهار میله ای با لنگهای موازی.. ۶

۲) مکانیزم چهار میله ای با لنگهای مساوی و غیر موازی.. ۶

۲) مکانیزم لنگ – آونگ Crank and rocker. 6

2) مکانیزم با لنگهای دورانی دوبل یا لنگ لنگ drang Link. 6

2) مکانیزم لنگ – لغزنده Slider-Crank meckanism… 6

2) مکانیزم رفت و آمدی Scotchy yoke. 7

2) انواع مکانیزمهای برگشت سریع Quick return Mechanism… 7

8. 2) مکانیزم ویت ورث With worth. 7

8. 2) مکانیزم با لنگهای دورانی دوبل drong Link. 7

8. 2) مکانیزم لنگ – آونگ انحرافی Ofset Slider Crank. 8

12. 2) کوپلینگ الدهم Oldham Coupling. 9

14. 2) مکانیزمهای نوبه ای Intermittent – motion mechanisms. 9

15. 2) مکانیزم ژنوا Geneva wheel 9

16. 2) جغجغه ها Ratchets. 9

17. 2) پرگار بیضی کش Elliptic trommel 9

بخش سوم: بادامک ها ۱۰

پیش گفتار. ۱۱

۱٫۱) آوردن یک مدل ۳D.. 11

مرحله ۱٫۲) اتصال مجموعه ها ۲۰

مرحله ۱٫۳) افزودن موتور. ۲۲

مرحلة ۱٫۴) تنظیم مفصل ها ۲۳

۱٫۵) استفاده از شرکت پذیری.. ۲۵

مرحله ۱٫۶ استفاده از زیرمجموعه ها ۲۶

 

چکیده:
1. 1) سینماتیک
سینماتیک ماشینها عبارت از مطالعه و تجزیه و تحلیلی راجع به حرکت نسبی اجزاء ماشینها می باشد. در این تجزیه و تحلیل تغییر مکان، سرعت و شتاب مورد نظر قرار خواهد گرفت.
2. 1) دینامیک
دینامیک ماشین با نیروهای وارد بر اجزاء یک ماشین و حرکات ناشی از این نیروها سر و کار دارد.
3. 1) ماشین
یک ماشین وسیله ای است برای تغییر فرم و انتقال انرژی. این ماشین اغلب اوقات از ترکیب تعدادی قطعات ثابت و متحرک مشخص می گردد که به منظور تنظیم قدرت منشاء و کاری که می بایست انجام شود بین آنها قرار می گیرد.
4. 1) دیاگرام سینماتیکی
در مطالعه حرکات اجزاء یک ماشین معمولاً دیاگرامی از اجزاء به گونه ای رسم می گردد که در رسم آنها از اندازه هایی استفاده می گردد که در حرکت اجزاء مؤثر می باشند. دیاگرام نشان داده شده در شکل 1.1 اجزاء اصلی موتور دیزل نشان داده می شود.
1.5) مکانیزم
یک زنجیره سینماتیکی عبارت از یک مجموعه میله های صلب می باشد که ضمن اتصال یا تماس به یکدیگر می توانند نسبت به یکدیگر دارای حرکت نسبی باشند. اگر یکی از میله ها ثابت بوده و حرکت یکی از میله های دیگر به وضعیت جدید موجب حرکت سایر میله ها در وضعیتهای مشخص و قابل پیش بینی گردد مجموعه را زنجیره سینماتیکی مقید می نامند، اگر یکی از میله ها ثابت درنظر گرفته شده و حرکت یکی از میله های دیگر به وضعیت جدید موجب حرکت سایر میله ها در وضعیتهای مشخص و قابل پیش بینی نگردد آنگاه مجموعه را زنجیره سینماتیکی غیرمقید می نامند. یک زنجیرة سینماتیکی مقید را موقعی یک مکانیزم می نامند که اگر مثلاً مطابق شکل 1.1 میله 1 ثابت بوده باشد پیستون و میله رابط (شاتون) به ازای هر موقعیت مشخص لنگ دارای موقعیتی مشخص و معین بوده باشند. بنابراین مجموعه یک زنجیره سینماتیکی مقید و یا یک مکانیزم می باشد.
6. 1) حرکت در صفحه
موقعی یک جسم دارای حرکت در صفحه خواهد بود که تمام نقاط آن در صفحاتی موازی با یک صفحه مبنا حرکت نماید. این صفحه مبنا، را صفحه حرکت می نامند. حرکت در صفحه می تواند یکی از سه نوع انتقالی، دورانی و ترکیب انتقالی و دورانی باشد.
7. 1) انتقال
اگر جسمی طوری حرکت کند که تمام خطوط مستقیم واقع برروی آن همواره وضعیت هایی موازی همدیگر داشته باشند جسم دارای انتقال خواهد بود. حرکت انتقالی مستقیم الخط حرکتی است که در آن تمام نقاط واقع برروی جسم در امتداد خطی مستقیم حرکت می نمایند.
8. 1) دوران
در دوران فاصله تمام نقاط واقع برروی جسم نسبت به خط عمود بر صفحه حرکت ثابت باقی خواهد ماند.
9. 1) انتقال و دوران
اغلب قطعات ماشینها حرکتی مرکب از دوران و انتقال می باشند.
10. 1) حرکت مارپیچی
یک نقطه که در فاصله ثابت از محوری دوران نموده و همزمان در امتداد این محور حرکت نماید دارای حرکت مارپیچی می باشد. یک جسم موقعی دارای حرکت مارپیچی می باشد که هر نقطه آن یک مارپیچ را طی نماید.
11. 1) حرکت کروی
یک نقطه موقعی دارای حرکت کروی می باشد که ضمن حرکت در فضای سه بعدی فاصله اش نسبت به نقطه یا ثابت تغییر ننموده و ثابت باقی بماند. یک جسم موقعی دارای حرکت کروی است که هر نقطه آن دارای حرکت کروی باشد.
بخش دوم: مکانیزمهای میله ای Linkage
2) مکانیزمهای چهار میله ای
یکی از متداولترین و مفیدترین مکانیزمها مکانیزم چهار میله ای است. در شکل 1. 2 یک مکانیزم چهار میله ای نشان داده شده
2) مکانیزم چهار میله ای با لنگهای موازی
لنگهای 2 و 4 در شکل 2.2 دارای طولهای مساوی بوده و طول میله رابط 3 برابر خط المرکزین 4O2O می باشد.
2) مکانیزم چهار میله ای با لنگهای مساوی و غیر موازی
لنگهای 2 و 4 از شکل 3. 2 درای طولهای مساوی بوده و طول میلة رابط 3 برابر طول خط المرکزین 4O2O می باشد.
2) مکانیزم لنگ – آونگ Crank and rocker
لنگ شماره 2 از مکانیزم نشان داده شده در شکل 4. 2 حول محور2O دوران کامل نموده و از طریق میلة رابط شماره 3 موجب نوسان لنگ شماره 4 حول نقطه 4O می گردد.
2) مکانیزم با لنگهای دورانی دوبل یا لنگ لنگ drang Link
شکل 5. 2 یک مکانیزم چهار میله ای را نشان می دهد که کوتاهترین عضو آن میلة ثابت است. چنین مکانیزمی با لنگهای دورانی موسوم می باشد.
2) مکانیزم لنگ – لغزنده Slider-Crank meckanism
مکانیزم لنگ – لغزنده دارای موارد استعمال متعدد می باشد. یک نمونه متداول از کاربرد این مکانیزم در موتورهای دیزل و بنزین یافت شده که در آنها فشار گاز به پیستون یعنی عضو شمارة 4 وارد می گردد.
2) مکانیزم رفت و آمدی Scotchy yoke
مکانیزم رفت و آمدی نشان داده در شکل 7. 2 برگردانی از یک مکانیزم لنگ – لغزنده می باشد. این مکانیزم رفت و آمدی معادل مکانیزم لنگ و لغزنده ای است که طول میلة رابط آن بینهایت می باشد. بدین ترتیب لغزندة آن دارای حرکات نوسانی ساده خواهد بود. از این مکانیزم در ماشینهای آزمایش به منظور نشان دادن ارتعاشی که دارای حرکات نوسانی ساده می باشد استفاده می گردد.
2) انواع مکانیزمهای برگشت سریع Quick return Mechanism
این مکانیزم ضمن ثابت بودن سرعت زاویه ای لنگ قادر است ابزار برش ماشین را که دارای حرکت رفت و آمدی است خیلی آرام به جلو برده ولی سریع به عقب برگرداند. بعضی از انواع متداول آن پایین شرح داده خواهد شد.
8. 2) مکانیزم صفحه تراش Crank Shaper
8. 2) مکانیزم ویت ورث With worth
این مکانیزم که در شکل 9. 2 نشان داده شده است.
8. 2) مکانیزم با لنگهای دورانی دوبل drong Link
میله های 1، 2، 3 و 4 از این مکانیزم که در شکل 10. 2 نشان داده شده است. یک مکانیزم با لنگهای دورانی دوبل را نشان می دهند.
8. 2) مکانیزم لنگ – آونگ انحرافی Ofset Slider Crank
مکانیزم لنگ را می توان مطابق شکل 11. 2 به گونه ای طراحی نمود که ابتدا حرکت لغزنده از محور لنگ مرور محور لنگ دارای انحراف y بوده باشد که بدین ترتیب امتداد مسیر حرکت لغزنده از محور لنگ مرور نخواهد کرد.
2) مکانیزمهای خط مستقیم Srtaight-Line Mechanisms
مکانیزمهای خط مستقیم مکانیزمهایی می باشند که یک نقطة واقع بر آنها بدون آنکه به وسیلة قیدی هدایت شوند در امتداد خطی مستقیم و یا تقریباً مستقیم حرکت می کند.
برخی از انواع متداول مکانیزم های خط مستقیم:
10. 2) مکانیزمهای موازی Parallel Mechanism
این دسته از مکانیزمها حرکتهای موازی را پدید می آورند. دستگاه کپیه (pantograph) نشان داده شده در شکل 17. 2 برای بزرگ کردن و یا کوچک کردن حرکتها مورد استفاده قرار می گیرد.
کاربرد دیگر مکانیزمهای موازی که همه ما کم و بیش با آن آشنا می باشیم دستگاههای نقشه کشی است که یک نمونه آن در شکل 18. 2 نشان داده شده است.
11. 2) مکانیزمهای تاگل Toggle Mechanisms
از این مکانیزم در مواردی استفاده می گردد که می بایست نیرویی نسبتاً زیاد در فاصله ای کوتاه انتقال یابد. در شکل 19. 2 میله های شماره 4 و 5 دارای طولهای مساوی می باشند.


دانلود با لینک مستقیم

دانلود پروژه بررسی سیگنالهای الکترو مایوگرافی در حرکت دست

اختصاصی از کوشا فایل دانلود پروژه بررسی سیگنالهای الکترو مایوگرافی در حرکت دست دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه بررسی سیگنالهای الکترو مایوگرافی در حرکت دست


دانلود پروژه بررسی سیگنالهای الکترو مایوگرافی در حرکت دست

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:168

چکیده :

الکترومایوگرافی (EMG) مطالعه عملکرد عضله از طریق تحلیل سیگنال‌های الکتریکی تولید شده در حین انقباضات عضلانی است که اندازه‌گیری آن همراه با تحریک عضله است که میتواند شامل عضلات ارادی و غیرارادی شود این سیگنال به طور کلی به دو دسته‌ی بالینی وKine Siological EMG تقسیم‌بندی می شود که خود دسته‌ی دوم باز دونوع سوزنی وسطحی را در خود جای می‌دهدکه هر کدام درجای خود بسته به نوع ماهیچه و بیماری مورد استفاده قرار می گیرند در الکترومایوگرافی آنچه از اهمیت ویژه‌ای برخوردار است نوع طراحی الکترود است که در این مقاله به سه نوع طراحی الکترود اشاره شده است . برای اندازه‌گیری و ثبت سیگنال الکترومایوگرافی مکان قرار دادن الکترود بسیار مهم میباشد . الکترومایوگرافی موضوع تحقیقی بسیار گسترده‌ای می‌باشد و پرداختن به هر قسمت آن خود به زمان بسیار زیادی احتیاج دارد در اینجا به بررسی این سیگنال در حرکت دست می‌پردازیم . برای شناسایی سیگنال دست از طبقه‌بندی الگوی EMG استفاده می‌کنند که این طبقه‌بندی روش‌های گوناگونی از جمله swids ، هوش مصنوعی sofms و غیره می باشد که روش مورد بررسی در این تحقیق طبقه بندی الگوی EMG با استفاده از نقشه‌های خود سازمانده می باشد sofm یک شبکه رقابتی یادگیری بدونکنترلی است که دارای الگوی طبقه‌بندی می‌باشد . گر چه طبقه‌ بندی الگوهای EMG بسیار مشکل می‌باشد اما به حرکت دست کمک زیادی می‌کند بیشترین استفاده EMG برای نوسازی دست است نوسازی دست اصولاً با استخوان بندی کنترل شده انجام می‌شود . فعالیت الکتریکی ماهیچه‌ها به ما این اجازه را می‌دهد که بدانیم آیا بیمار در سعی در تکان دادن انگشت‌ها می‌کند یا نه .

هدف از ارائه استخوان بندی خارجی برای این است که بیمار احساس استقلال بیشتری داشته باشد برای کنترل‌ دست‌های مصنوعی مدار ‌آنالوگی طراحی شده است که برای کمک به افراد مقطوع العضو مناسب است که ما در این جا همه این مباحث گفته شده را مورد تحلیل و بررسی قرار می‌دهیم .

مقدمه:

مشکلات عصبی وحرکتی همواره محققان را واداشته تا بدنبال یافتن روشهایی برای رفع این مشکلات برایند .استفاده از الکترومایو گرافی یکی از این روش ها میباشد .الکترو مایو گرافی در لغت به معنی برق نگاری ماهیچه ای است.واز نظر علمی روشی تجربی در زمینه بسط ،ثبت وانالیز سیگنالهای الکتریکی عضله می باشد ،که این سیگنال ها بوسیله دگرگونی های فیزیولوپیکی در غشا فیبر عضلانی شکل می گیرد .این تحقیق ابتدا به بررسی این سیگنال انواع ان ومفاهیم اساسی در به دست اوردن ان وسپس به بررسی این سیگنال در حرکت دست میپردازد،در اینجا ما سعی کده ایم مطالب را به گونه ای ساده وقابل فهم توضیح دهیم.هدف از این کار اشنایی مختصری با استفاده از الکترونیک در علم پزشکی میباشد.همانطور که در این تحقیق خواهیم خوتند این سیگنال کمک بسیاری به حرکت دست های مصنوعی وکسانی که مقطوع العضوند می کند .دنیای الکترومایو گرافی دنیای بسیار گستر دهای می باشد وما در اینجا مختصری از ان را بیان کرده ایم ،امیدواریم که توانسته باشیم مطالب را به گونه ای مفید ارائه کرده باشیم .

فهرست مطالب:

عنوان                                                                                                                صفحه

چکیده

مقدمه ………………………………………………………………………………………………………. ۱

 

فصل اول : ‌آشنایی با الکترومایوگرافی

۱-۱ مقدمه ……………………………………………………………………………………………….. ۳

۲-۱ الکترومایوگرافی چیست ؟…………………………………………………………………….. ۳

۳-۱ منشأ سیگنال EMG کجاست ؟…………………………………………………………….. ۷

۱-۳-۱ واحد حرکتی ………………………………………………………………………………….. ۷

۴-۱ آناتومی عضله…………………………………………………………………………………….. ۸

۱-۴-۱ رشته عضلانی واحد………………………………………………………………………… ۸

۲-۴-۱ ساختار سلول ماهیچه …………………………………………………………………….. ۸

۵-۱ انقباض عضلانی …………………………………………………………………………………. ۹

۶-۱ تحریک‌پذیری غشاء عضله …………………………………………………………………. ۱۱

۷-۱ تولید سیگنال EMG………………………………………………………………………….. 12

1-7-1 پتانسیل عمل ………………………………………………………………………………… ۱۲

۸-۱ ترکیب سیگنال EMG………………………………………………………………………… 14

1-8-1 انطباق واحدهای حرکتی ………………………………………………………………… ۱۴

۹-۱ فعال سازی عضله ……………………………………………………………………………. ۱۵

۱۰-۱ طبیعت سیگنال MMG…………………………………………………………………….. 16

11-1 فاکتورهای موثر بر سیگنال EMG……………………………………………………. 18

 

فصل دوم :انواع سیگنال‌های الکترومایوگرافی و روشهای طراحی

۱-۲ انواع EMG …………………………………………………………………………………….. 21

2-2 الکترومایوگرافی سطحی : ردیابی و ثبت ……………………………………………… ۲۲

۱-۲-۲ ارتباطات کلی ……………………………………………………………………………….. ۲۲

۲-۲-۲ مشخصه‌های سیگنال EMG………………………………………………………….. 23

3-2 مشخصه‌های نویز الکتریکی ………………………………………………………………. ۲۴

۱-۳-۲ نویزمحدود شده …………………………………………………………………………… ۲۴

۲-۳-۲ آرتی فکت‌های حرکتی …………………………………………………………………… ۲۴

۳-۲-۲ ناپایداری ذاتی سیگنال ………………………………………………………………….. ۲۵

۳-۲ بیشینه سیگنال EMG………………………………………………………………………… 25

4-2 طراحی الکترود و ‌آمپلی فایر ……………………………………………………………… ۲۶

۵-۲ تقویت تفاضلی ………………………………………………………………………………….. ۲۶

۶-۲ امپدانس داخلی …………………………………………………………………………………. ۲۸

۷-۲ طراحی الکترودفعال ………………………………………………………………………….. ۲۹

۸-۲ فیلترینگ ………………………………………………………………………………………….. ۲۹

۹-۲ استقرار الکترود ……………………………………………………………………………….. ۳۰

۱۰-۲ روش مرجح مصرف ………………………………………………………………………. ۳۰………..

۱۱-۲ هندسه الکترود………………………………………………………………………………… ۳۰

۱-۱۱-۲ نسبت سیگنال به نویز …………………………………………………………………. ۳۱

۲-۱۱-۲ پهنای باند…………………………………………………………………………………… ۳۲

۳-۱۱-۲ سایر ماهیچه نمونه …………………………………………………………………….. ۳۲

۴-۱۱-۲ قابلیت cross talk………………………………………………………………………. 33

12-2 بار موازی الکترود …………………………………………………………………………. ۳۳

۱۳-۲ قرار دادن الکترود EMG………………………………………………………………… 34

1-13-2 تعیین مکان و جهت‌یابی الکترود ……………………………………………………. ۳۴

۲-۱۳-۲ نه روی نقطه محرک …………………………………………………………………… ۳۵

۳-۱۳-۲ نه روی نقطه محرک …………………………………………………………………… ۳۶

۴-۱۳-۲ نه در لبه‌ی بیرونی ماهیچه ………………………………………………………….. ۳۷………..

۱۴-۲ موقعیت الکترود نسبت به فیبرهای ماهیچه ………………………………………… ۳۷

۱۵-۲ قرار دادن الکترود مقایسه ……………………………………………………………….. ۳۸

۱۶-۲ پردازش سیگنال EMG…………………………………………………………………… 39

17-2 کاربردهای سیگنالEMG………………………………………………………………… 40

18-2 الکترومایوگرافی سوزنی………………………………………………………………….. ۴۱

۱۹-۲ مزایا و معایب الکترودهای سطحی و سوزنی …………………………………….. ۴۳

۱-۱۹-۲ مزیت‌های الکترود سطحی ……………………………………………………………. ۴۳

۲-۱۹-۲ معایب الکترودهای سطحی …………………………………………………………… ۴۳

۳-۱۹-۲مزایای الکترودهای سوزنی ………………………………………………………….. ۴۳………..

۴-۱۹-۲ معایب الکترودهای سوزنی ………………………………………………………….. ۴۴

۲۰-۲ تفاوت موجود بین الکترودهای سطحی وسوزنی ………………………………… ۴۵

۲۱-۲ انواع طراحی ………………………………………………………………………………….. ۴۵

فصل سوم :مفاهیم اساسی در بدست آوردن سیگنال EMG

1-3 مقدمه ……………………………………………………………………………………………… ۴۸………..

۲-۳ معرفی …………………………………………………………………………………………….. ۴۸………..

۱-۲-۳ نمونه‌برداری دیجیتال چیست ؟……………………………………………………….. ۴۸………..

۲-۲-۳ فرکانس نمونه‌برداری …………………………………………………………………… ۴۹………..

۳-۲-۳ فرکانس نمونه‌برداری چقدر باید بالا باشد ؟…………………………………….. ۴۹………..

۴-۲-۳ زیر نمونه‌برداری – وقتی که فرکانس نمونه‌برداری خیلی پائین باشد …. ۵۲………..

۵-۲-۳ فرکانس نایکوئیست ………………………………………………………………………. ۵۳………..

۶-۲-۳ تبصره‌ی کاربردی DELSYS……………………………………………………….. 54………..

3-3 سینوس‌ها و تبدیل فوریه …………………………………………………………………… ۵۴………..

۱-۳-۳ تجزیه سیگنال‌ها به سینوس‌ها ……………………………………………………….. ۵۵

۲-۳-۳ دامنه فرکانس ………………………………………………………………………………. ۵۷………..

۳-۳-۳ مستعارسازی – چطور از آن دوری کنیم ؟……………………………………… ۵۹………..

۴-۳-۳ فیلترپارمستعاد …………………………………………………………………………….. ۶۱

۵-۳-۳نکته کاربردی DELSYS……………………………………………………………….. 63

4-3 فیلترها …………………………………………………………………………………………….. ۶۴

۱-۴-۳ انواع فیلترهای ایده‌ آل …………………………………………………………………… ۶۵

۲-۴-۳ پاسخ فاز ایده‌آل …………………………………………………………………………… ۶۷

۳-۴-۳ فیلتر کاربردی ……………………………………………………………………………… ۶۸

۴-۴-۳پاسخ فاز غیر خطی ……………………………………………………………………….. ۷۱

۵-۴-۳ اندازه‌گیری ولتاژ – دامنه ، توان ودسی بل ……………………………………… ۷۲

۶-۴-۳ فرکانس ۳ Db………………………………………………………………………………. 74

7-4-3 مرتبه فیلتر …………………………………………………………………………………… ۷۵

۸-۴-۳ انواع فیلتر ……………………………………………………………………………………. ۷۶

۹-۴-۳ فیلترهایdigital – Analog Vs ……………………………………………………. 80

10-4-3 نکته کاربردی Delsys………………………………………………………………… 84

5-3 رسیدگی به مبدل‌های آنالوگ به دیجیتال ……………………………………………… ۸۵

۱-۵-۳ کوانتایی سازی …………………………………………………………………………….. ۸۵

۲-۵-۳ رنج دینامیکی ……………………………………………………………………………….. ۸۷

۳-۵-۳ کوانتایی سازی سیگنال EMG……………………………………………………….. 90

4-5-3 مشخص ک ردن ویژگی‌های ADC…………………………………………………. 92

5-5-3 نکته کاربردی Delsys…………………………………………………………………… 95

6-3 نتیجه‌گیری ………………………………………………………………………………………. ۹۵

 

فصل ۴: بکارگیری مناسبت نیرویgrip مبنی بر سیگنال EMG

1-4 مقدمه ……………………………………………………………………………………………… ۹۸

۲-۴دید کلی پایه‌ای یک سیستم ………………………………………………………………….. ۹۸

۳-۴ منطقی برای تولید نیروی گریپ ………………………………………………………….. ۹۹

۴-۴ دستاورد ……………………………………………………………………………………….. ۱۰۲

۵-۴ نتیجه …………………………………………………………………………………………….. ۱۰۳

 

فصل پنجم : طبقه‌بندی سیگنال EMG برای شناسایی سیگنال دست

۱-۵  مقدمه ……………………………………………………………………………………………. ۱۰۵

۲-۵ سیگنال‌های EMG و سیستم اندازه‌گیری ………………………………………….. ۱۰۷

۳-۵ طرح ویژگی‌ خود سازمان دهی ………………………………………………………… ۱۰۷

۴-۵ روش طبقه بندی سیگنال EMG پیشنهادی ……………………………………….. ۱۰۹

۵-۵ نتیجه‌گیری …………………………………………………………………………………….. ۱۱۷

 

فصل ۶: ارتباط بین نیروی ماهیچه‌ای ایزومتریک و سیگنال EMG به
عنوان هندسه بازو

۱-۶  مقدمه ……………………………………………………………………………………………. ۱۱۹

۲-۶  نتایج ……………………………………………………………………………………………… ۱۲۱

۳-۶ بحث ……………………………………………………………………………………………… ۱۲۳

۱-۳-۶ ارتباط EMG- Force…………………………………………………………………. 127

2-3-6 رابط نیروی MF………………………………………………………………………… 129

3-3-6 رابطه‌ی درصد نیروی DET………………………………………………………… 131

4-3-6 نتایج …………………………………………………………………………………………. ۱۳۱

۴-۶ روش تجربی ………………………………………………………………………………….. ۱۳۲

۱-۴-۶ اشخاص ……………………………………………………………………………………. ۱۳۲

۲-۴-۶ مجموعه تجربی ………………………………………………………………………….. ۱۳۲

۳-۴-۶ مدارک EMG و نیرو………………………………………………………………….. ۱۳۳

۴-۴-۶ تحلیل‌های EMG غیر خطی …………………………………………………………. ۱۳۵

۵-۴-۶ تحلیل‌های ‌آماری و پارامترها ………………………………………………………. ۱۳۶

۵-۶ نتیجه‌گیری …………………………………………………………………………………….. ۱۳۶

 

فصل ۷: طبقه‌بندی سیگنال EMG برای کنترل دست مصنوعی

۱-۷ مقدمه ……………………………………………………………………………………………. ۱۳۸

۲-۷ روش‌ها …………………………………………………………………………………………. ۱۴۰

۳-۷ آزمایش و نتایج………………………………………………………………………………. ۱۴۱

۱-۳-۷ نتیجه‌گیری ………………………………………………………………………………… ۱۴۲

 

فصل ۸ : یک استخوان‌بندی کنترل شده توسط EMG برای نوسازی دست

۱-۸ مقدمه ……………………………………………………………………………………………. ۱۴۴

۲-۸ سیستم اصلاح دست ……………………………………………………………………….. ۱۴۸

۱-۲-۸ استخوان‌بندی خارجی …………………………………………………………………. ۱۴۸

۲-۲-۸ الکترونیک و نرم افزار ………………………………………………………………… ۱۴۹

۳-۸ پردازش EMG………………………………………………………………………………. 151

4-8 تستهای اولیه دستگاه ……………………………………………………………………… ۱۵۳

۱-۴-۸ نتیجه‌گیری ………………………………………………………………………………… ۱۵۵

۲-۴-۸ کارهای آینده …………………………………………………………………………….. ۱۵۶………..

 

فصل نهم : یک مدار ‌آنالوگ جدید بر ای کنترل دست مصنوعی

۱-۹ مقدمه ……………………………………………………………………………………………. ۱۵۸

۲-۹ چکید‌ه‌ای از سیستم ………………………………………………………………………… ۱۶۰

۳-۹ پیاده‌سازی مدار …………………………………………………………………………….. ۱۶۳

۴-۹ نتایج شبیه سازی …………………………………………………………………………… ۱۶۶

۵-۹ نتیجه‌گیری …………………………………………………………………………………….. ۱۶۸

نتیجه‌گیری کلی ……………………………………………………………………………………… ۱۶۹

فهرست تصاویر

فصل ۱

شکل ۱ : نمونه‌ای از سیگنالEMG ……………………………………………………………… 7

شکل ۲: واحد حرکتی …………………………………………………………………………………. ۸

شکل ۳: مدل آناتومی عضله ……………………………………………………………………….. ۹

شکل ۴: اکتین و میوزین و باندهای مربوط به آن ………………………………………… ۱۱

شکل ۵: پروسه انقباض عضله ………………………………………………………………….. ۱۲

شکل ۶: شماتیک تصویری سیکل دپلاریزاسیون / پلاریزاسیون درون
غشاهای تحریک شونده ……………………………………………………………………………. ۱۳

شکل ۷: نمودار پتانسیل عمل …………………………………………………………………….. ۱۳

شکل ۸: ناحیه‌ی دپلاریزاسیون در غشاء فیبرعضلانی ………………………………….. ۱۴

شکل ۹: پتانسیل عمل واحدهای حرکتی متعدد …………………………………………….. ۱۴

شکل ۱۰: بکارگیری و فرکانس شروع واحدهای حرکتی نیرو………………………… ۱۵

شکل ۱۱: ثبت سیگنال خام سه انقباض برای عضله سه سر …………………………. ۱۶

شکل ۱۲: سیگنال خام EMG با تداخل سنگین ECG……………………………………. 19

فصل ۲

شکل ۱ :طیف فرکانسی سیگنال EMG آشکار شده جلوی ماهیچه ………………… ۲۳

شکل ۲: طرح‌های شکل تقویت کننده تفاضلی ……………………………………………….. ۲۸

شکل ۳: ارائه طرح کلی بارو ترکیبات مدور بر الکترود …………………………………. ۳۴

شکل ۴: مکان مرجع الکترود بین تاندون و بخش حرکتی ……………………………… ۳۵

فصل۳

شکل ۱: سیگنال آنالوگ کشف شده توسط الکترود DE2.1………………………………………………………………… 49

شکل ۲: A) نمونه‌برداری از سینوس ۱ ولت ، ۱ هرتز در ۱۰ هرتز ……………….. ۵۱

B) بازآفرینی سینوس نمونه‌برداری شده در ۱۰ هرتز …………………………………. ۵۱

شکل ۳: A) نمونه‌برداری یک سینوس ۱ ولت ، ۱ هرتز در ۲ هرتز ………………… ۵۲

B) بازآفرینی سینوس نمونه برداریشده در ۲ هرتز …………………………………….. ۵۲

شکل ۴: A) نمونه‌برداری یک سینوس ……………………………………………………….. ۵۳

شکل ۵: تجزیه‌ی فوریه‌ی یک پتانسیل عمل واحد حرکتی نمونه‌برداری شده …… ۵۶

شکل ۶ : هیستوگرام دامنه ۱۰ سینوس شکل ۵ …………………………………………… ۵۸

شکل۷: طیف موج فرکانسی سیگنال نمونه در شکل ۶……………………………………. ۶۰

شکل ۸ : مستعار سازی نویز ۱۳ ………………………………………………………………. ۶۱

شکل ۹ : پاد مستعارسازی ……………………………………………………………………….. ۶۲

شکل ۱۰: انواع فیلترها ……………………………………………………………………………… ۶۶

شکل ۱۱: طرح فاز یک فیلترایده آل …………………………………………………………….. ۶۸

شکل ۱۲: خصوصیات فیلترهای کاربردی …………………………………………………… ۷۲

جدول ۱: فاکتورهای تضعیف وگین نمونه …………………………………………………… ۷۴

شکل ۱۳: فیلتر پائین گذر مرتبه اول و دوم …………………………………………………. ۷۶

شکل ۱۴: اندازه ومقایسه انواع فیلترهای بالاگذر …………………………………………. ۷۹

شکل ۱۵: فیلتر پائین گذر تک قطبی …………………………………………………………….. ۸۲

شکل ۱۶: نمونه‌برداری و فیلتر دیجیتالی سیگنال آنالوگ………………………………… ۸۳

شکل ۱۷: مراحل کوانتایی سازی مبدل آنالوگ به دیجیتال …………………………….. ۸۶

شکل ۱۸: تحلیل رنج A/D ………………………………………………………………………… 89

فصل ۴

شکل ۱: بلوک دیاگرام دستگاه …………………………………………………………………… ۹۹

شکل ۲: سطوح و شماتیک‌ها ……………………………………………………………………. ۱۰۰

شکل ۳: نیروهای گریپ ………………………………………………………………………….. ۱۰۲

فصل ۵

شکل ۱: بلوک دیاگرام سیستم اندازه‌گیری سیگنال EMG…………………………… 110

 شکل ۲ : موقعیت الکترودها…………………………………………………………………….. ۱۱۰

شکل ۳: بلوک دیاگرام روش‌ های پیشنهادی …………………………………………….. ۱۱۱

شکل ۴: سیگنال‌های دست برای کاراکترهای کره‌ ای …………………………………. ۱۱۲

شکل ۵: نرون‌های خروجی …………………………………………………………………….. ۱۱۳

شکل ۶: بلوک دیاگرام ترتیب آزمایشگاهی ………………………………………………… ۱۱۴

شکل ۷: عکس وضعیت آزمایش ………………………………………………………………. ۱۱۴

شکل ۸: سیگنال EMG اندازه‌گیری شده و سیگنال داخلی قابل استفاده ……….. ۱۱۵

شکل ۹: نرون‌های خروجی sofm1 بعد از مرتب کردن ………………………………. ۱۱۵

جدول ۱: نرون‌های خروجی بعد از یادگیری …………………………………………….. ۱۱۶

جدول ۲: نتایج ‌آزمایش ………………………………………………………………………….. ۱۱۶

فصل ۶

شکل ۱ : مقادیر میانگین نیروهای ارادی ماکزیمم در ANT و POST…………. 123

شکل ۲ : رابطه‌ی نیروی EMG……………………………………………………………….. 124

شکل ۳: رابطه‌ی نیروی MF……………………………………………………………………. 125

شکل ۴: رابطه‌ی درصد نیروی DET……………………………………………………….. 126

شکل ۵: دیاگرام‌های ارتباط بین فرکانس متوسط و DET…………………………… 127

فصل ۸

شکل ۱: طرح هندسی سیستم توانبخشی دست …………………………………………… ۱۴۶

شکل ۲: نمای سیستم توانبخشی دست ……………………………………………………… ۱۴۷

شکل ۳: نمای جانبی استخوان‌بندی بیرونی ……………………………………………….. ۱۴۸

شکل ۴: دست‌مجازی وواسط درمان ……………………………………………………….. ۱۵۰

شکل ۵: محل قرارگ

دانلود با لینک مستقیم

پایان نامه معماری شیشه ای و حرکت های نوین

اختصاصی از کوشا فایل پایان نامه معماری شیشه ای و حرکت های نوین دانلود با لینک مستقیم و پرسرعت .

پایان نامه معماری شیشه ای و حرکت های نوین


پایان نامه معماری شیشه ای و حرکت های نوین

 

 

 

 

 

 

 

 

 فرمت:WORD(قابل ویرایش)

مقدمه :

اختراع شیشه تحولی عظیم در معماری دنیا ایجاد کرد. به گونه ای که امروزه شهرهای جهان زیبایی خود را مدیون این تحول بزرگ درصنعت تولید می دانند

شیشه به واسطه حرارت دادن و سرد کردن ترکیبی از شن، کربنات سدیم و آهک تولید می شود.

 

 تاریخچه شیشه

تاریخچه تولید و کاربرد شیشه به حدود بیش از 4 هزار سال پیش بر می گردد. ولی تقریبا 2 هزار سال پس از کشف آن بود که کاربرد شیشه در پنجره ها مطرح شد. روش تولید شیشه به روش بادی امکان ایجاد شیشه های ظریف برای پنجره ها را میسر کرد که در قطعات مستطیلی با ابعاد حداکثر400 در 300 میلیمتر درصفحات مدور تولید می شد.بلافاصله پس از کشف این روش ونیزی ها متد استوانه ای را کشف کردند که این روش حدود 800 سال برای تولید شیشه به کار برده می شد. در این روش درون یک استوانه شیشه ای توخالی دمیده، از طول برش داده و سپس صاف و صیقل داده می شد. با این روش ورقه های بزرگتری تولید می شد ولی حرارت مجدد و صاف کردن شیشه منجر به خرابی سطح شیشه می شد. به هر حال همراه با پیشرفت تکنولوژی روش هایی برای تولید شیشه هایی که در ساختمان ها کارایی داشته باشند ابداع شد. آنها به صورت عنصری طبیعی و لازم در کلیساهای بزرگ درشمال اروپا به کار برده می شدند که تا اواخر هزاره اول پس از میلاد نیز این روند ادامه داشت.

 

در جستجوی نور:

با تغییرسبک معماری از رومی به گوتیک، کاربرد شیشه در دنیای معماری جایگاه خود را تا ابد پیدا کرد. شاید بتوان معماری سبک گوتیک در شمال اروپا را دوره اول معماری شیشه ای نامید. جابه جایی قسمت هایی از دیوارهای سنگی بزرگ معماران را قادر به خلق آثار چشمگیری در تاریخ کرد. شیشه خود به خود جایگاه خود را در معماری پیدا کرد و شیشه های بسیار زیبا کم کم در معماری بناها دیده شدند. معماری سبک گوتیک به منظور جستجو ی نور به وجود آمد، جستجوی درخشش ، سبکی و بی وزنی. پنجره هایی که در سبک گوتیک به کار برده می شد معمولا با شیشه های رنگی توسط هنرمندان نقاشی و تزیین می شد.

در اواخرقرن شانزدهم به کار گیری شیشه به عنوان سمبلی از ثروت و تجمل در انگلستان در نظر گرفته می شد. شیشه وسیله ای بسیار گران قیمت بود و بنابراین استفاده از آن در ساختمان و حتی گاهی اوقات به کار بردن آن به جای دیوارحالت تظاهر به ثروت و توانمندی بود. بدین ترتیب در انگلستان شیوه های غیر متعارف استفاده از شیشه رایج شد.

در نیمه اول قرن نوزدهم بود که مراکز هنری به راه افتادند و بدین ترتیب زبان نوینی در معماری به وجود آمد، پنجره هایی که نوربه راحتی و فراوانی از آنها عبور کند و معماری از آن حالت سنتی خارج شد و شیشه جایگاه و کاربرد واقعی خود را پیدا کرد. به دنبال انقلاب صنعتی در بریتانیا و به موازات آن به کارگیری آهن در ساختمان ها، پروژه هایی مثل کاخ کریستال پاکستون اجرا شد.

  معماری شیشه ای و حرکت های نوین:

آغاز قرن بیستم در واقع عصر فضا و زمان نام گذاری شده است، عصرزیبایی شناسی در حرکت، متغیر بودن و هیجان در ماشین. پل شبارت در کتاب معماری شیشه ای خود در سال 1914 می نویسد.

ما بیشتر زندگیمان را در اتاق های بسته سر کرده ایم. این فرهنگی است که با آن بزرگ شده ایم و خو گرفته ایم. سبک معماری ما تا حد زیادی تحت تاثیر فرهنگ ما بوده است. چنانچه بخواهیم تغییری در فرهنگمان ایجاد کنیم به ناچار باید در سبک معماریمان تغییر ایجاد کنیم و این امر تنها به وسیله ترک اتاق های بسته و تغییر دادن آنها حاصل می شود. با نهادینه شدن و معرفی معماری شیشه ای، راه برای عبور نورطبیعی خورشید ، ماه و ستارگان نه فقط از طریق پنجره ای کوچک بلکه از طریق دیوارها که صرفا از شیشه و آن هم شیشه های رنگی ساخته می شوند هموار می شود. بدین ترتیب محیط جدیدی که به وجود می آوریم ،فرهنگی نوین را با خود به همراه می آورد.

غرفه های شیشه ای برونو تات نیز به همین منظور طراحی شد و هدفی مشابه را دنبال می کرد که آن به کار گیری بهینه شیشه و استفاده از شفافیت و روشنایی آن درآینده معماری بود. البته شیشه جزو لا ینفک کارهای معماران بزرگ ازجمله مایس وان دور روحه،لو کوربوسیر و فرانک لیود است.

طی نیمه اول قرن بیستم، به جهت توسعه صنعت و تکنولوژی، بهبود و پیشرفت هایی در ساختار کارهای شیشه ای پدید آمد. و بالاخره در اوایل دهه 1950 پیشرفتی در صنعت تولید شیشه حاصل شد که تا به امروز ادامه دارد. آلیستار پیلکینگتون روش شناوری شیشه مذاب بر سطح فلز مذاب را ابداع کرد، که امروزه از آن به عنوان فرآیند شناور یاد می شود. با این روش ورقه های شیشه ای کاملا صاف و هموار تولید می شود که امروزه روشی غالب درتولید شیشه در سراسر جهان است.

استفاده از شیشه معمولی (غیر سکوریت) در ساختمانهای بلند مرتبه در صورت بروز حادثه اعم از طبیعی مانند زلزله یا حوادث ناشی از دخالت بشر ، خطر آسیب دیدگی جدی و حتی مرگ به همراه دارد، چرا که شیشه شکسته شده به صورت قطعات بزرگ در هوا شناور می شود و شعاع زیادی را در معرض خطر قرار می دهد . بکار گیری شیشه های سکوریت بعلت شدن شیشه در صورت شکست و ریزش پای ساختمان خطرات احتمالی را به حداقل ممکن کاهش می دهد.

شیشه:

شیشهماده‌ای است که به دلیل آرایش اتمی/ملکولی خاص خود حالت جامد دارد ولی بر خلاف دیگر جامدها بلوری نیست. این حالت هنگامی رخ می‌دهد که ماده مذاب قبل از رسیدن به نقطه انتقال به شیشه به سرعت سرد می‌شود.

تعاریف مختلفی برای شیشه وجود دارد که هنوز توافق کلی بر روی آنها حاصل نشده‌است:

تعریف کلی: شیشه یک جامد آمورف است.

تعریف انجمن آزمون و مواد آمریکا: شیشه ماده‌ای معدنی است که از حالت مذاب طوری سرد شده‌است که بدون تبلور به حالت صلب درآمده‌است.

تعریف آکادمی ملی علوم آمریکا: شیشه ماده‌ای است که در پراش اشعه ایکس آمورف بوده و از خود رفتار انتقال به حالت شیشه نشان بدهد.

معروف‌ترین شیشه‌هایی که در مقیاس صنعتی تولید می‌شوند، عبارتند از شیشه‌های سودالایم (شیشه جام)، شیشه‌های بوروسیلیکاتی و شیشه‌های کریستال.

شیشه سودا لایم:

بیشتر از ۹۵ درصد از میزان کل شیشه تولیدی در جهان، شیشه سودالایم است. شیشه‌های در و پنجره ساختمان، شیشه‌های خودرو، بطری‌ها و بسیاری دیگر از محصولات شیشه‌ای روزمره از جنس شیشه سودالایم هستند. مهمترین اجزای تشکیل‌دهنده این نوع شیشه عبارتند از اکسید سیلیسیوم، اکسید کلسیم و اکسید سدیم.

شیشه بوروسیلیکاتی:

این نوع شیشه‌ها ضریب انبساط حرارتی کم تا متوسط داشته، رفتار ویسکوزیته-دمای بلند و چگالی کمی دارند. بسیاری از ظروف شیشه‌ای آزمایشگاهی، صنعتی و خانگی با استفاده از این نوع شیشه ساخته می‌شوند. این شیشه‌ها در بازار با نام‌های تجارتی مانند پیرکس، سیماکس، ترکس و … شناخته می‌شوند.

شیشه کریستال:

شیشه کریستال یا شیشه سرب‌دار یکی از انواع شیشه‌های سیلیکاتی است که در ترکیب خود حاوی اکسید سرب است. این نوع شیشه‌، دارای ظاهری درخشنده و شبیه به کریستال‌های کوارتز است و به نظر می‌رسد علت نامگذاری آن نیز همین شباهت باشد. این شیشه‌ها همچنین سختی کمی دارند و امکان تراشکاری این شیشه‌ها وجود دارد. بنابراین ظروف تزیینی موسوم به ظروف کریستال از این جنس ساخته می‌شوند.

سایر انواع:

سایر انواع شیشه عبارتند از: شیشه فتوکرومیک، شیشه اپال و شیشه سیلیسی. همچنین انواع مختلفی از شیشه نیز وجود دارد که در مقیاس صنعتی تولید نمی‌شوند.

 انواع شیشه و کاربرد آنها:

شیشه به اشکال مختلف مورد استفاده قرار می‌گیرد. در ساخت لوازم تزیینی مانند گل ، تابلو و غیره در ساختن ظروف آزمایشگاهی و یا ظروف آشپزخانه مانند لیوان ، بطری و غیره و بالاخره در ساختن شیشه‌های مسطح که در دو نوع ساده و مشجر عرضه می‌گردد و مصارف مختلفی دارد که عمده ترین کاربرد آن به عنوان در و پنجره در کارهای ساختمانی است که به شکلهای مختلف اعم از شیشه‌های شفاف ، نیمه شفاف و رنگی ، جاذب حرارت ، ایمنی ، دوجداره ، سکوریت و… وجود دارد.

همچنین در آینه سازی ، صنایع نشکن ، صنایع یخچال سازی ، میزهای شیشه‌ای ، انواع شیشه رومیزی و تیغه کاری ساختمان کاربرد دارد.

 


دانلود با لینک مستقیم