کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

ایمنی معادن زغال سنگ در ایران

اختصاصی از کوشا فایل ایمنی معادن زغال سنگ در ایران دانلود با لینک مستقیم و پرسرعت .

ایمنی معادن زغال سنگ در ایران


ایمنی معادن زغال سنگ در ایران

 

 

 

 

 

مقدمه :

­­زغال ماده ای غیر متجانس است که از تجزیه گیاهان در تحت شرایط مختلف از نظر رطوبت،حرارت و فشار بوجود می اید.بسته به نوع گیاه ،میزان تجزیه و شرایط محیط محصولی که تولید می شود یکسان نبوده بلکه از طیف گسترده ای برخوردار می باشد.این محصولات می توانند شامل اسید هیومیک پیت لیگناتیک (زغال قهوه ای لیگنایت) ساب بیتومنوس بیتومنوس و زغال سنگ آنتراسیت (نیمه انتراسیت مافوق اننتراسیت و نهایتا گرافیت باشند. در تحت شرایط یکسان از نظر رطوبت ، حرارت ،میزان تجزیه و نوع گیاهان اولیه ، زغال سنگی که تولید می شودقاعدتا بایستی از ترکیب و خواص مشابه برخوردار باشنداما غالبا در مراحل اولیه و به هنگام انباشت و شکل گیری گیاهان یا در مراحل بعدی که به مرور زمان تحت تاثیر حرارت و فشار قرار می گیرد عوامل دیگری مانند کسل ، درزه و شکاف ،سنگهای در بر گیرنده که معمولا به همراه زغال سنگ هستند موجب می شوند تا زغال از بخش های مختلف یک لایه از نظر بعضی از غواص عمدتا مقدار سلفور با یکدیگر متفاوت باشند . آن قسمت از لایه زغال سنگ که بیرون زدگی آن در سطح قابل روئت است به دلیل هوازدگی دارای کیفیت متفاوت از آن بخشی است که در درون زمین قرار گرفته است.

فهرست مطالب :

چکیده     1
مقدمه     2
فصل اول ـ آشنـایی  بـا زغال سنگ و بـررسی  اهمیت آن در بـازار و جهان
1 ـ 1 ـ آشنایی     5
1 ـ 2 ـ چگونگی تجمع مواد گیاهی     5
1 ـ 3 ـ چگونگی تبدیل مواد گیاهی به زغال     7
1 ـ 4 ـ مشخصات زغال     9
1 ـ 4 ـ 1 ـ خاکستر     9
1 ـ 4 ـ 2 ـ مواد فرار     9
1 ـ 4 ـ 3 ـ ارزش حرارتی     9
1 ـ 4 ـ 4 ـ خواص کک دهی     10
1 ـ 5 ـ انواع زغال سنگ     10
1 ـ 6 ـ آشنایی با زغال سنگ و مسائل آن     12
1 ـ 7 ـ اهمیت زغال و مقایسه آن با سایر منابع انرژی     17
1 ـ 8 ـ تکنولوژی های بهره برداری از زغال سنگ     20
1 ـ 9 ـ تاریخچه زغال سنگ در ایران     22
1 ـ 10 ـ زمین شناسی زغال سنگ در ایران     23
1 ـ 11 ـ مقدار ذخایر زغالی ایران     25
1 ـ 12 ـ منابع و ذخایر زغال سنگ ایران     26
1 ـ 13 ـ نهشته های زغال سنگ جهان     32
فصل دوم ـ حادثه و تحلیل آن     44
2 ـ 1 ـ حادثه از دیدگاه قانون     44
2 ـ 2 ـ حادثه از دیدگاه ایمنی     44
2 ـ 3 ـ طبقه بندی حوادث در معادن زغال سنگ    45
2 ـ 4 ـ جمع حادثه ساز و پیشگیری به عمل آورده     47
2 ـ 5 ـ ایمنی در معادن زغال سنگ ایران چگونه است ؟    49
2 ـ 6 ـ شرح حوادثی که در معادن کرمان ( معدن باب نیزو ) منجر به کشته شدن چند نفر شده و توضیح علل حوادث     50
2 ـ 6 ـ 1 ـ گزارش حادثه 28/5/1372 کارگاه 57 تونل 1 معدن باب نیزو     50
2 ـ 6 ـ 2 ـ  مشخصات کارگاه 77 در لایه 16    50
2 ـ 7 ـ پیشنهاد مناسب جهت کاهش میزان حوادث     51
2 ـ 8 ـ عواملی که باعث خطر وقوع حادثه در معدنکاران بر حسب گروه سنی می شود. 52
2 ـ 9 ـ عواملی که باعث خطر وقوع حادثه در معدنکاران بر حسب سابقه کار می شود. 53
2 ـ 10 ـ  عوامـلی که بـاعث خـطر وقوع حادثه در معدنکاران آمـوزش ندیده می شود.53
2 ـ 11 ـ عـواملی که بـاعث خـطر وقوع حادثه در معدنکاران آمـوزش دیده می شود.54
2 ـ 12 ـ عواملی که باعث تقلیل وقوع حادثه می شود.     54
فصل سوم ـ تکنیک ایمنی در معدن زغال    
3 ـ 1 ـ مسائل کلی مربوط به حفاظت کار و مقررات ایمنی     57
3 ـ 2 ـ خدمات مقررات ایمنی در معدن     57
3 ـ 3 ـ وظایف اصلی معاون مهندس کل     57
3 ـ 4 ـ حمل و نقل افراد در طول گالری های معدنی     58
3 ـ 5 ـ مقررات ایمنی به هنگام انتقال افراد در گالری های افقی     59
فصل چهارم ـ قوانین ایمنی در معادن زغال سنگ
4 ـ 1 ـ سرویس کنترل و مراقبت     61
4 ـ 2 ـ باز کردن مناطقی که در آنها آتش سوزی خاموش شده     61
4 ـ 3 ـ نظم و ترتیب کارهای منطقه آتش سوزی     62
4 ـ 4 ـ پرسنل کارهای انفجاری     62
4 ـ 5 ـ مواد انفجاری مورد استفاده     63
4 ـ 6 ـ رساندن مواد منفجره به محل کار     64
فصل پنجم ـ خطرات و عوامل مخرب و زیان بار در معادن
5 ـ 1 ـ آشنایی     66
5 ـ 2 ـ خطرات برق     68
5 ـ 3 ـ سیستم حمل و نقل     68
5 ـ 4 ـ خطرات معدن کاری     69
5 ـ 5 ـ خطرات ماشین آلات     70
5 ـ 6 ـ سر و صدا در معادن     71
5 ـ 7 ـ گاز رادون در معادن     71
5 ـ 7 ـ 1 ـ آشنایی     71
5 ـ 7 ـ 2 ـ پیدایش     72
5 ـ 7 ـ 3 ـ خطرات رادون     72
5 ـ 7 ـ 4 ـ واحدهای اندازه گیری     73
5 ـ 8 ـ آتشباری     74
5 ـ 8 ـ 1 ـ آشنایی     74
5 ـ 8 ـ 2 ـ آتشباری در سنگ     74
5 ـ 8 ـ 3 ـ آتشباری در زغال     75
5 ـ 9 ـ آتش گرفتن گاز متان     76
5 ـ 9 ـ 1 ـ منابع آتش     76
5 ـ 10 ـ انفجار گرد زغال     77
5 ـ 11 ـ خودسوزی     82
5 ـ 12 ـ  سایر خطرات معادن زیر زمینی زغال     87
5 ـ 12 ـ 1 ـ کنترل طبقات     87
5 ـ 12 ـ 2 ـ ماشین آلات     89
5 ـ 12 ـ 3 ـ ایمن سازی حمل بار     89
5 ـ 12 ـ 4 ـ حمل و نقل افراد    90
5 ـ 12 ـ 5 ـ پیاده رفتن افراد     90
فصل ششم ـ راه های پیشگیری از وقوع خطرات و حوادث در معادن
6 ـ 1 ـ پیش گیری و خاموش کردن آتش سوزی معدن     92
6 ـ 1 ـ 1 ـ قواعد کلی     92
6 ـ 1 ـ 2 ـ پیش گیری از بروز آتش سوزی های زیر زمینی به علت خودسوزی زغال 93
6 ـ 1 ـ 3 ـ خاموش کردن آتش سوزی های زیر زمینی     93
6 ـ 2 ـ احتیاطات عمومی     94
6 ـ 3 ـ استفاده از آب در معادن     96
6 ـ 4 ـ آب و هوای زیر زمینی     97
6 ـ 4 ـ 1 ـ آشنایی     97
6 ـ 4 ـ 2 ـ دمای هوا     97
6 ـ 4 ـ 3 ـ رطوبت     97
6 ـ 4 ـ 4 ـ سرعت هوا     98
6 ـ 4 ـ 5 ـ اثر مجموعه دما ، سرعت و رطوبت     98
6 ـ 4 ـ 6 ـ کنترل آب و هوا     99
6 ـ 5 ـ جدا کردن و تصفیه گرد و غبار در زیر زمین     102
6 ـ 5 ـ 1 ـ آشنایی     102
6 ـ 5 ـ 2 ـ مراکز تولید گرد و غبار     103
6 ـ 5 ـ 3 ـ روش مکشی     103
6 ـ 5 ـ 4 ـ تصفیه گرد و غبار     105
6 ـ 5 ـ 5 ـ صافی های پارچه ای     107
6 ـ 5 ـ 6 ـ صافی های استوانه ای     107
6 ـ 5 ـ 7 ـ نصب ماشین آلات     109
6 ـ 6 ـ آتشباری با تزریق آب     109
6 ـ 7 ـ آمپول های آب برای آتشباری     114
6 ـ 8 ـ تزریق آب     115
6 ـ 8 ـ 1 ـ عملی بودن این روش     116
6 ـ 8 ـ 2 ـ تزریق آب در جبهه کار طولانی     117
6 ـ 9 ـ پیدایش گازها     117
6 ـ 10 ـ تشخیص گازها     119
فصل هفتم ـ چگونگی رعایت مسائل ایمنی
7 ـ 1 ـ ایمنی شخصی و تجهیزات ایمنی     122
7 ـ 1 ـ 1 ـ آشنایی     122
7 ـ 1 ـ 2 ـ محافظت گوش     122
7 ـ 1 ـ 3 ـ محافظت چشم     123
7 ـ 1 ـ 4 ـ ماسک گرد و غبار     124
7 ـ 1 ـ 5 ـ ماسک انفرادی     124
7 ـ 1 ـ 6 ـ دستکش     125
7 ـ 1 ـ 7 ـ چکمه     125
7 ـ 1 ـ 8 ـ لباس     125
7 ـ 1 ـ 9 ـ نوبت کاری و اثر آن بر ایمنی و تندرستی کارکنان     126
فصل هشتم ـ آتش سوزی های زیر زمینی و تشریح عملیات اطفاء حریق در تونل بیست معادن کارمزد    
8 ـ 1 ـ آشنایی     130
8 ـ 2 ـ ویژگی های حریق زیر زمینی     130
8 ـ 3 ـ راه های اطفاء حریق های زیر زمینی     131
8 ـ 4 ـ نحوه عملیات اطفاء حریق در تونل بیست     132
8 ـ 5 ـ شرح عملیات اطفاء حریق     132
8 ـ 6 ـ علت آتش سوزی     134
8 ـ 7 ـ مشکلات در حین اطفاء حریق     135
نتیجه گیری     137
پیشنهادات     138
منابع و مآخذ     139

 


دانلود با لینک مستقیم

بررسی و مقایسه معادن دولومیت ایران

اختصاصی از کوشا فایل بررسی و مقایسه معادن دولومیت ایران دانلود با لینک مستقیم و پرسرعت .

بررسی و مقایسه معادن دولومیت ایران


بررسی و مقایسه معادن دولومیت ایران

 

 

 

 

 

مقدمه :

با توجه به اهمیت کانسارهای غیر فلزی در این پروژه به یکی از کانسارهای غیر فلزی مهم یعنی دولومیت که مصارف عمده‌ای در صنعت دارد پرداخته شده است.

دولومیت با فرمول شیمیایی Camg(Co3)2 شناخته می شود.

در این پروژه اطلاعاتی راجع به شناخت دولومیت، کانی شناسی، موارد کاربرد، ذخایر، بررسی آماری معادن دولومیت (شامل 10 معدن) و همچنین بررسی کلی دولومیت آورده شده است. سپس به بررسی ذخایر دولومیت در جهان پرداخته و اطلاعاتی در مورد معادن دولومیت ایالات متحده آورده شده است، همچنین توضیحاتی در مورد مراحل اکتشاف و استخراج دولومیت آورده شده است.

استخراج دولومیت در دنیا گاهی بسیار پیچیده و با روشهای زیر زمینی صورت می‌گیرد. در صورتی که استخراج دولومیت در ایران اغلب بسیار ساده بوده و کلاً به صورت روباز استخراج می شود.

در پایان به بررسی یکی از معادن دولومیت ایران بنام معدن دولومیت شهرضا پرداخته و سعی شده است توضیحاتی درباره منطقه معدن، ذخیره، طرز کار، مراحل و چگونگی استخراج دولومیت در این معدن در اختیار خوانندگان قرار داده شود.

در کتابهای علمی هر جا که صحبت از سنگ آهک می شود دولومیت نیز در کنار آن می باشد که این دو ارتباط تنگاتنگی با یکدیگر دارند. بطور کلی واژه سنگ آهک فقط در مورد آن دسته از سنگهایی به کار می رود که ذرات کربناته آن نسبت به اجزای تشکیل دهنده غیر کربناته بیشتر باشد (ذرات کربناته آنها بیشتر از کلسیت یا آراگونیت تشکیل شده است) در صورتی که واژه دولومیت در مورد سنگهایی به کار می رود که عمدتاً از کانی دولومیت تشکیل شده اند. هر چند که دولومیت خود یک سنگ حاوی آهک است. علاوه بر این سنگهای دیگری نیز وجود دارد که حاوی هر دو کانی کلسیت و دولومیت می باشند سنگهای آهکی و دولومیت ها با هر سنی حتی در اوایل پرکامبرین (آرکئن) مشاهده می شوند. هرچند که فراوانی آنها در رسوبات قدیمی تر نسبت به سنگهای جوانتر به مراتب کمتر است.

سنگهای آهکی و دولومیت های با ضخامت و گسترش زیاد در پرکامبرین پسین (پروتروزوئیک) نسبتاً فراوان بوده و در رسوبات اوایل دوران اول به ویژه در آمریکای شمالی، نیز بسیار فراوان است. به طور کلی رسوبات کربناته اولیه بیشتر به صورت دولومیتی هستند و نسبت Ca به Mg با کاهش سن رسوبات در امریکای شمالی به طور فزاینده ای افزایش می یابد.

سنگهای آهکی و دولومیت های مربوط به مناطق پایدار کریتونیکی نازک (Cratonuc) و بسیار گسترده بوده و تقریباً تمام پهنه کریتونیکی آمریکای شمالی را در دوره اردویسین می پوشانده اند. ضخامت این سنگها در حاشیه مایوژئوسنکلینال بسیار قابل توجه است و در بعضی موارد ضخامت توالیهای رسوبی به بیش از 15000 فوت (5000متر) می رسد. این سنگها معمولاً در گودیهای ایوژئوسنکلینال وجود ندارند. اما گاهی اوقات به صورت سنگهای آهکی نازک توربیدیتی یا آلوداپبک دیده می شوند. دولومیت در بعضی از سنگهای آهکی همراه با کلسیت یافت می شود. معمولاً تشخیص این دو کانی از یکدیگر مشکل است. اختلاف های مهم این دو کانی در جدول A دولومیت Ca (Mg , Fe) (Co3)2

فهرست مطالب :

مقدمه

فصل اول: شناخت دولومیت

فصل دوم: بررسی دولومیت

فصل سوم: تاریخچه دولومیت

فصل چهارم: بررسی و مقایسه معادن دولومیت ایران (با استفاده از اطلاعات اداره آمار

ایران)

فصل پنجم: دولومیت در دیگر قاره ها

فصل ششم: مراحل استخراج دولومیت

فصل هفتم: درباره معدن و کارخانه کانه آرایی دولومیت شهرضا


دانلود با لینک مستقیم

روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

اختصاصی از کوشا فایل روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی دانلود با لینک مستقیم و پرسرعت .

روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی


روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

 

این فایل در قالب ورد و قابل ویرایش در 120 صفحه می باشد .             

 

 

 روشهای اندازه گیری و تمهیدات پایداری شیب در معادن سطحی

 

تحلیل پایداری شیب با بهره گیری از

 

تکنیکهای عددی پیشرفته

 

خلاصه :

 

علی رغم پیشرفتهایی که در اندازه گیری و پیش بینی صورت گرفته ، خاکریزه ها خسارات اجتماعی ، اقتصادی و محیطی سنگینی را در فضاهای کوهستانی وارد میکند. قسمتی از آن بخاطر پیچیدگی فرایندها، عدم موفقیت شیب رانش و اطلاعات ناکافی ما از مکانیزم های اساسی می باشد. در هر صورت بطور افزاینده ای کارشناسان برای تحلیل و پیش بینی پایداری شیب ، تعیین ریسک آن ، مکانیزمهای شکست پتانسیلی و سرعتهای آن مناطق پر خطر حاضر شده و برای تعیین اندازه های چاره ساز ممکن فراخوانده می شوند.

 

این مقاله به معرفی موضوع تحلیل پایداری شیب سنگ و هدفی که این تحلیل در بررسی مکانیزمهای ریزش بالقوه شیب دنبال میکند ، می پردازد . سپس به بحث در مورد پیشرفتهایی که در تحول تکنیکهای آنالیز شیب بر پایه کامپیوتر به نسبت روشهای معمولی مورد استفاده ، می پردازد . همچنین تعیین امکان اجرای سینماتیک برای مدهای معمول متفاوت به اضافه راه حلهای تحلیلی و تعادلی محدود برای فاکتورهای ایمنی در برابر ریزش شیب ارایه شده است .

 

قسمت دوم به معرفی روشهای مدلسازی عددی و کاربردهای آنها در تحلیل پایداری شیب سنگ می پردازد . بحث روی پیشرفتهای استفاده از کدهای مدلسازی عددی پیوسته و ناپیوسته متمرکز می شود . همچنین مشارکت و نفوذ فشارهای تخلخل و بارگذاری دینامیک ارایه شده اند . مراحلی که در تحلیل عددی اجرا می شوند با تاکید بر اهمیت یک تمرین خوب مدلسازی بازنگری می شوند .

 

مدلسازی عددی وقتی که به درستی بکار رود ، میتواند بطور مشخص در فرایند طراحی با تهیه کردن بینش های کلیدی به مسایل پایداری پتانسیل و مکانیزمهای شکست ، استفاده گردد . در عین حال تاکید می کنیم که مدلسازی عددی یک ابزار است نه جایگزین برای قضاوت بحرانی است . همینطور ، مدلسازی عددی وقتی توسط یک کاربر با تجربه و کنجکاو بکار رود بسیار موثر خواهد بود .

 

 

 

 

 

 

 

  1 .  معرفی

 

تحلیل پایداری شیب سنگ بطور معمول به سمت و سوی طراحی بنیادی و ایمن شیبهای حفر شده ( مانند حفاری گودال باز ، برشهای جاده ای و غیره ) و با شرایط تعادلی شیبهای طبیعی جهت داده می شود . تکنیک تحلیل انتخابی به هر دو ، شرایط سایت و حالت ریزش بالقوه با ملاحظات دقیقی که به قدرتهای متغیر ، ضعفها و محدودیتهایی که در هر روشی وجود دارد ، بستگی دارد .

 

بطور کل ، موضوعات ابتدایی آنالیز پایداری شیب صخره عبارتند از :

 

  • تعیین شرایط پایداری شیب صخره ؛
  • بررسی مکانیزمهای ریزش بالقوه ؛
  • تعیین حساسیت آسیب پذیری شیبها به مکانیزمهای تریگرینگ متفاوت ؛
  • آزمایش و مقایسه حمایتهای متفاوت و گزینه های مستحکم کردن ،
  • طراحی شیبهای حفر شده بهینه از نقطه نظرهای ایمنی ، معتبر بودن و اقتصادی ؛

 

مطالعات بررسی سایت باید شامل هرگونه مطالعات پایداری و شامل المانهای زمین شناسی و نقشه برداری ناپیوسته برای تهیه داده های ورودی لازم برای آنالیز پایداری باشد . مجموعه داده ها بصورت ایده آل شامل توصیف جرم سنگ و نمونه برداری مواد سنگ برای آنالیز آزمایشگاهی ( یعنی قدرت و رفتار متشکله ) ، مشاهدات میدانی و اندازه گیری های درجا باشد . نمایش فضایی درجا و تغییرات موقتی در فشارهای تخلخل ، نابجایی های شیب ، فشارها و تغییر شکل جرم زیر سطحی سنگ ، داده های ارزشمندی را برای ارزشگذاری آنالیز پایداری تهیه می کند .

 

برای مدیریت مناسب اینطور بررسی ها و آنالیز و ارزشگذار مواقع خطرساز بالقوه که به سنگهای ناپایدار مربوط می شود ، درک فرایندها و مکانیزم های ناپایداری ضروری می باشد . حرکتهای خاکریز بعنوان های ریزش ، واژگون شدن ، ریختن ، پراکنده شدن یا جریان یافتن تلقی می شود و در برخی موارد شامل ترکیبات مختلفی از مدهای شکست متعدد ( ارجاع شود به خاکریزهای کامپوزیتی ) ، می شود . این مکانیزم ها اغلب پیچیده اند و در عمق عمل می کنند و بررسی ها و  توصیف عوامل تشکیل دهنده را دچار مشکل می کنند . همانطوری که شک و تردید در مورد تکنیک تحلیل بکار گرفته شده و اینکه چه داده ورودی ای لازم است ، بالا می رود ؛ این در مرحله تحلیل مشکل ایجاد می کند .

 

امروزه محدوده وسیعی از ابزارهای آنالیز پایداری شیب برای هر دو نوع سنگ و مخلوط سنگ و خاک وجود دارد . این ابزارها محدوده شان از شیب نامحدود ساده و تکنیکهای تعادلی در ریزش تا کدهای المان محدود دوتایی است . به یاد داشته باشیم که تنها 25 سال از وقتی که بیشترین محاسبات پایداری شیب بصورت گرافیکی یا با استفاده از ماشین حساب دستی انجام می شد ، بجز یک استثنای آنالیز پیشرفته که شامل روشهای جستجوی سطح بحرانی که در یک پردازشگر مرکزی و یا کارتهای فورترن اجرا می شد . سیل عظیمی از برنامه های آنالیز استحکام با نرم افزار کوچکی که بصورت تجاری در دسترس است ، در خانه انجام می شد . امروزه هر مهندس زمین شناس با یک کامپیوتر شخصی می تواند ، آنالیز عددی نسبتا پیچیده شیب سنگ را بر عهده بگیرد .

 

امروزه از آنجایی که افق وسیعی از کاربردهای دسترس عددی روشن شده ، درک تغییر استحکام و محدودیت های هر یک از این روشها برای شاغلین ضروری است . برای مثال ، روشهای تعادلی محدود هنوز جزء معمول ترین راه حلهای سازگار در مهندسی شیب صخره باقی مانده ، ولو اینکه بیشتر سرازیری ها شامل تغییر شکل داخلی و شکافهایی که شباهت کمی دارند با فرضیات بلوک صلب دو بعدی که برای آنالیز تعادلی محدود معکوس لازم است ، می شوند .

 

مکانیزم های راه اندازی یا شروع ممکن است ، شامل حرکتهای اسلایدینگ که به عنوان یک مسأله تعادلی محدود می تواند تحلیل شود ، باشد ولی بعد از آن وارفتگی ، تغییر شکل تصاعدی و شکستگی وسیع داخلی جرم صخره بوجود خواهد آمد . فاکتورهایی که باعث ریزش احتمالی می شوند معمولا پیچیده اند و بسادگی در تحلیل استاتیک ساده وارد نمی شوند . در ادامه توضیحات بالا ، آنالیز تعادلی محدود ممکن است وابستگی شدیدی به ریزش ساده بلوک در طول ناپیوستگی ها داشته باشد . در نتیجه در جایی کارآیی دارد ، که برای ماکزیمم کردن فواید هر دوی آنها ، تکنیکهای تعادلی محدود باید در عطف مدلسازی عددی بکار رود .

 

در این مفاهیم ، شاغلین امروز باید از خود پشتکار نشان دهند و ثابت کنند که از هر دو ابزار ارایه شده در دسترس و از همه مهمتر ، از ابزارهای درست استفاده کنند . چن ( 2000 ) در مشاهدات خود روی استفاده از تمام تکنیکهای تحلیل در پایداری شیب مربوطه در طراحی یا تحلیل معکوس تاکید کرده است .

 

 " در روزگار قدیم ، ریزش شیب بعنوان قضابلا بشمار می رفت . امروزه ، حقوقدانان همیشه می توانند کسی را برای تقصیر کار شمردن یا کسی را برای پرداخت خسارت ، مخصوصا در هنگامی که خرابی شامل تلفات جانی یا مالی باشند ، پیدا کنند ."

 

طراحی شیب با استفاده از تنها آنالیز تعادلی محدود ، احتمالا ناکافی خواهد بود ؛ اگر شیب با مکانیزم های پیچیده ریزش کند ( بعنوان مثال ، لغزشهای تصاعدی ، تغییر شکل داخلی و شکافهای شکننده ، آبدار شدن لایه های ضعیفتر خاک و غیره ) . بعلاوه در حین تحلیل و طراحی مهندسی شیب ، بیشترین استفاده مربوط به مفاهیم ارزیابی مخاطرات و ریسکهاست . تخمین و برآورد خطرپذیری باید شامل هر دوی پیامد ریزش شیب و خطرات یا احتمال ریزش باشد . هر دو نیاز به درک مکانیزم ریزش دارند ، برای اینکه احتمالات موقتی و سه بعدی بتوانند در نظر گرفته شوند .

در قسمتهای بعدی ، به دوره تکنیکهای آنالیز پایداری شیب با تمرکز بر توسعه روشهای مدلسازی عددی می پردازیم . بعد از این قسمتها یک بازنگری روی روشهای قراردادی تحلیل پایداری برای مشخص کردن توسعه اخیر در تعادل محدود بر پایه برنامه های کامپیوتر که برای افزایش تجسم مسایل پایداری شیب طراحی شده اند ، انجام خواهیم داد .

فهرست

 

 

  قسمت اول

     تحلیل پایداری شیب با بهره گیری ازتکنیکهای عددی پیشرفته ....................................... 1

خلاصه ............................................................................................................................................ 2

فصل اول

1 . معرفی.................................................................................................................................3

فصل دوم

2 . روشهای قراردادی تحلیل شیب سنگ....................................................................... 6

1 – 2 .  مقدمه................................................................................................................. 6

2 – 2 . آنالیز سینماتیک............................................................................................... 6

3 – 2 . آنالیز تعادل محدود.......................................................................................... 7

1 – 3 – 2 . تحلیل انتقالی................................................................................... 8

2 – 3 – 2 . تحلیل واژگونی................................................................................ 9

3 –  3 – 2 . تحلیل چرخشی............................................................................11

 4 – 2 . شبیه سازهای ریزش سنگ.........................................................................16

فصل سوم

3 . شیوه های عددی تحلیل شیب سنگ.....................................................................19

1 – 3 . روش پیوسته...................................................................................................20

2 – 3 . روش غیرپیوسته.............................................................................................23

1 – 2 – 3 . شیوه اجزای ناپیوسته...................................................................24

2 – 2 – 3 . تحلیل تغییر شکل ناپیوستگی....................................................32

3 – 2 – 3 . کدهای جریان ذره.........................................................................33

3 – 3 . روش هیبریدی...............................................................................................36

فصل چهارم

4 . توسعه و کاربرد مدل چندگانه.................................................................................37

فصل پنجم

5 . پیشرفتهای آینده.......................................................................................................42

قسمت دوم

شبیه سازی پایداری شیب از طریق رادارجهت استخراج معادن به طور روباز................44

خلاصه........................................................................................................................................45

فصل اول

1 . مقدمه..........................................................................................................................46

1 – 1 . پیش زمینه....................................................................................................46

2- 1 . احتیاجات کاربر..............................................................................................46

3 – 1 .  روش‌های ممکن........................................................................................46

1 - 3 – 1 .  نمایشگر زمین لرزه...................................................................47

 2 – 3 – 1 .  رادار...........................................................................................47

3 – 3 – 1 .  لیزر..............................................................................................48

4 – 3- 1 . عکس برداری................................................................................48

4 – 1 .  انگیزه برای استفاده از رادار....................................................................49

5 – 1 . کارهای سابق بر این برای نشان دادن شیب با استفاده از رادار.......49

6 – 1 .  شیب و محدودیت‌ها...............................................................................50

فصل دوم

2 . رادار با فرکانس مدرج..........................................................................................51

1 - 2 . مفهوم رادار با فرکانس مدرج.................................................................51

2 – 2 .  پارامترهای رادار.....................................................................................51

3 – 2 .  راه اندازی رادار.......................................................................................53

4 - 2 .  بررسی اجمالی از اینترفرومتری راداری.............................................53

فصل سوم

3 . شبیه سازی یک سلول منفرد، توسط اسکن...................................................56

1 – 3 . مفهوم شبیه سازی مطلب......................................................................56

1 – 1 – 3 . تولید نقاطی برای شبیه سازی یک هدف مسطح............56

2 – 1 – 3 . محاسبه مجموع انعکاس فرکانس........................................57

3 – 1- 3 – مدل سازی از طریق صدا.......................................................58

4 – 1 – 3 . مدل سازی یک تغییر و جابجایی در فاصله......................58

2 – 3 .  روش‌های به وجود آوردن محدوده فرکانس.....................................59

1 – 2 – 3 .  لایه گذاری از پایین‌ترین نقطه

                      برای افزایش رزولوشن تصویر......................................59

2 – 2 – 3 .  حذف زواید (بزرگنمایی) برای

                      پایین آوردن سطوح لبة فرعی....................................59

3 – 2 – 3 . پایه بندی برای حذف شیب فاز........................................60

3 – 3 .  تعیین تغییر در فاصله........................................................................61

1 – 3 – 3 .  انتقال به محدوده زمانی.......................................................61

2 – 3 – 3 .  پیوستگی فازی.......................................................................62

3 – 3 – 3 .  اختلاف فاز..............................................................................64

4 – 3 – 3 . ابهام در فاز اختلافی..............................................................65

5 – 3 – 3 . تعیین منطقه مورد نظر........................................................65

6 – 3 – 3 . حذف جهش‌های  در مقایر فاز...........................................66

7 – 3 – 3 .  محاسبه شیفت در دامنه....................................................66

 4 – 3 .  نتایج شبیه سازی...............................................................................68

5 -3 .  نتیجه گیری...........................................................................................70

فصل چهارم

4 . قرائت‌های آزمایشگاهی سلول منفرد............................................................71

1 – 4 .  پارامترهای رادار مورد استفاده برای قرائت‌ها...............................71

 2 – 4 .  اصطلاحات برای الگوریتم .............................................................73

1 – 2 – 4 .  جمع کردن اسکن‌ها برای بهبود ..................................73

2 – 2 – 4 .  انحنای ظاهری دیوار به واسطه پهنای اشعه بالا........73

 3 – 2 – 4 .  تغییر در پهنای باند بالای حذف

                      خطاهای موجود در شیفت بزرگ .........................76

3 – 4.  نتایج قرائت‌های تجربی ...................................................................76

1 – 3 – 4 .  خطاهای شیفت کوچک.................................................77

2 – 3 – 4 .  خطاهای شیفت بزرگ...................................................77

 4 – 4 . نتیجه گیری ...................................................................................78

فصل پنجم

5 . شبیه سازی کل اسکن...................................................................................79

1- 5 . مفهوم شبیه سازی مطلب..................................................................79

1 – 1 – 5 . تولید نقاط برای شبیه سازی سطح دیواره.................79

2 – 1 – 5 .  مدل سازی شیفت در دامنه ........................................79

2 – 5 .  نتایج شبیه سازی  انتقال جرم ....................................................81

1 – 2 – 5 . خطاهای شیفت کوچک..................................................82

2 – 2 – 5 . خطاهای شیفت بزرگ....................................................82

3 – 5 . نتیجه‌گیری ......................................................................................84

فصل ششم

6 . عدم ارتباط موقتی.........................................................................................85

1 – 6 .  تعریف عدم ارتباط موقتی ............................................................85

2 – 6 . مقدار اطمینان – پیک منحنی ارتباط فاز .................................86

3 – 6 . عدم ارتباط موقتی به واسطه تغییر در زاویه .............................87

1 – 3 – 6 . مدلسازی تغییر در زاویه ...............................................87

2 – 3 – 6 . کاهش در ارتباط به واسطه تغییر در زاویه................87

 3 – 3 – 6 . نتایج تشبیه سازی برای تغییر در زاویه ..................87

4 – 6  . عدم ارتباط موقت به واسطه شیفت موضعی............................91

1 – 4 – 6 .  مدلسازی شیفت موضعی ...........................................91

2 – 4 – 6 .  شیفت میانگین کل سلول .........................................91

3 – 4 – 6 . کاهش در ارتباط به واسطه شیفت موضعی.............92

 4 – 4 – 6 . نتایج برای شبیه سازی برای شیفت موضعی.........93

 5 – 6 . نتایج شبیه سازی برای شکست گوه‌ای .................................94

1 – 5 – 6 . مدلسازی شکست گوه‌ای ..........................................95

2 – 5 – 6 – نتایج شبیه سازی برای شکست گوه‌ای ...............95

6 – 6 . نتیجه‌گیری ...................................................................................96

1 – 6 – 6  . خلاصه نتایج شبیه سازی......................................97

2 – 6 – 6 .  مقدار اطمینان بر عنوان اندازه پایداری ...............98

3 – 6 – 6 .  تغییر در روش برای کاهش

                        عدم ارتباط موقتی ........................................98

فصل هفتم

7 . تغییرات اتمسفری..................................................................................100

1 – 7 .  اثر تغییرات اتمسفری.............................................................100

2 – 7 .  شبیه سازی رفلکتور گوشه‌ای .............................................101

3 – 7 .  شبیه سازی تغییر در شرایط اتمسفری ............................101

1 – 3 – 7 .  تغییر در دما ..........................................................102

2 – 3 – 7 – تغییر در فشار........................................................102

 3 – 3 – 7 .  تغییر در فشار جزئی بخار آب .........................104

4 – 7 .  تغییر اثرات اتمسفری با دامنه ...........................................106

5 – 7 .  الگوریتم ارتقاء یافته..............................................................107

6 – 7 .  نتایج برای شبیه سازی .......................................................107

7 – 7 . نتیجه گیری ...........................................................................108

فصل هشتم

8 . نتایج................................................................................................................110

1 – 8 . مرور فرضیه......................................................................................110

2 – 8 . خلاصه نتایج................................................................................112

 3 – 8 . ارزیابی نهایی تکنیک ..................................................................112

4 – 8 .  روش اسکن توصیه شده .............................................................113

منابع و معاخذ...........................................................................................................115


دانلود با لینک مستقیم

آموزش طراحی معادن روباز توسط نرم افزارsurpac vision

اختصاصی از کوشا فایل آموزش طراحی معادن روباز توسط نرم افزارsurpac vision دانلود با لینک مستقیم و پرسرعت .

آموزش طراحی معادن روباز توسط نرم افزارsurpac vision


آموزش طراحی معادن روباز توسط نرم افزارsurpac vision

 

این فایل در قالب ورد و قابل ویرایش در 270 صفحه می باشد.

 

 



فهرست

فصل اول :معرفی نرم افزار
surpac vision

- معرفی surpac

- نصب کردن نرم افزار surpac

- صفحه نمایش  surpac

- قوانین strings و string file در surpac

- گرافیک

- ابزار های پیشرفته ویرایش

 

فصل دوم :طراحی معادن روباز توسط نرم افزار surpac vision

- مقدمه

- ابزار مورد نیاز

- اهداف

- جریان کار

- ارائه داده های مرتبط با طراحی پیت

-ابزار پایه طراحی پیت

- ابزارهای اضافی طراحی پیت

- طراحی سطحی پیت

- مدل سطحی طراحی پیت

- visualization

 - طراحی دپو باطله

 

 

فصل اول

 

 

معرفی نرم افزار surpac vision

 

خلاصه:

surpac vision یک ابزار تحلیل و طراحی می باشد, که انعطاف پذیری و گزینه های بیشماری را با مجتمع سازی در یک محیط گرافیکی سه بعدی شامل کنترل چند لایه (multi layer control ) و (split screen view ports ) تهیه می کند .

نرم افزار Surpac vision 5.0 مجهز به ابزارهای طراحی و آنالیزی بوده که جهت استفاده بهتر و رفاه کاربران با تغییراتی که در منو ها و کلیدهایش صورت گرفته ، همچنین از یک محیط گرافیکی سه بعدی نیز برخوردار است که از طریق  آن کاربر  امکان استفاده از داده های فراوان ، همچنین طراحی و تعریف پروژه را خواهد داشت.

انسجام داده ها در نسخه جدید surpac 5.0 به کاربران امکان دستیابی به داده ها را بدون استفاده از وسایل جانبی plug-in داده است. در این شیوه، جهت دستیابی به داده ها نیاز به کپی کردن و وارد و خارج کردن اطلاعات ندارید. این بدان معناست که جهت انتقال داده ها افراد کاردان و متخصص دیگر نیازی به جابه جایی و حمل داده ها با خود ندارند بلکه به راحتی می توانند با استفاده از این برنامه داده ها و اطلاعات خود را با یکدیگر تسهیم  (share) کنند.

Data plug-in های  موجود در این نسخه عبارتند از :

  • DWG and DXF
  • ArcInfo shape files
  • Datamine .ASC and .DM
  • Gemcom
  • Medsystem
  • Microstation
  • Vulcan

 

پیشرفت های کاربردی که از زمان نسخه 4.1 تا به حال صورت گرفته عبارتست از:

Block Modeling (مدل سازی توده یا قطعه زمین )

  • تجزیه و تحلیل نا محدود
  • Subcelling های متفاوت در جهت های گوناگون
  • بلاکینگ مجدد
  • ویژگی درصدی درون فضای سه بعدی
  • نمایش نقطه توده ( point cloud display )
  • حسابرسی و بررسی دقیق Metadataهای درونی Blockmodel

 

بهینه سازی پیت (pit optimiser)

 

 برای بهینه سازی دریک معدن سطحی  انجام حسابرسی دقیق داده ها با انجام الگوریتم Lerch Grossman مستقیما روی Block model  صورت می پذیرد.

 

ابزارهای برنامه نویسی و بهسازی در پروژه های کوچک و بزرگ

  • نقشه برداری مقطع یا برش
  • ابزار های اینتر فیس جدید نقشه برداری
  • مدل های پیشرفته که شامل بخش های منسجم در ابعاد خود است
  • گسترش اسکریپت های SCL در اطلاعات پایه
  • پیشرفت در اطلاعات گرافیکی زمین شناسی
  • پشتیبانی بهتر جهت کارت های گرافیکی open GL
  • برش جامع بخش های هموار از طریق Data Base Block Model , و DTM ها
  • پیشرفت و بهسازی در طرح های حلقه ای

بهبود در اینترفیس کاربران گرافیکی و کاربرد navigator کلیک راست


دانلود با لینک مستقیم

پایان نامه بهینه سازی انفجار در معادن سنگ آهن (چغارت و گل گهر)

اختصاصی از کوشا فایل پایان نامه بهینه سازی انفجار در معادن سنگ آهن (چغارت و گل گهر) دانلود با لینک مستقیم و پرسرعت .

پایان نامه بهینه سازی انفجار در معادن سنگ آهن (چغارت و گل گهر)


پایان نامه بهینه سازی انفجار در معادن سنگ آهن (چغارت و گل گهر)

این فایل در قالب ورد وقابل ویرایش در 77 صفحه می باشد.

پایان نامه دوره کارشناسی معدن

فهرست مطالب

فصل اول: تعریف پارامترهای طراحی انفجار

مقدمه     7
1-1- تعریف پارامترهای طراحی انفجار     8
1-2- روش های طراحی پارامترهای انفجار     14
1-2-1- ضخامت بار سنگ     14
1-2-2- روشهای محاسبه بردن     15
1-2-3- فاصله ردیفی چالها     16
1-2-4- ارتفاع پله     17
1-2-5- اضافه چال     18
1-2-6- گل گذاری     19
1-2-7- شیب چال     20
1-2-8- محاسبه وزن ستون ماده منفجره     21
1-2-9- خرج گذاری منقطع یا چند مرحله ای     22
1-2-10- انرژی ویژه     23
1-2-11- خرج ویژه     25
1-2-12- خرج ته چال     27
1-2-13- خرج میان چال     28
فصل دوم :  بهینه سازی چالهای انفجاری 29
1-2- انواع مواد منفجر 30 
2-2- مواد منفجره معمول در معادن    31
2-3- مواد منفجره ژله ای      32
2-4- تئوریهای انفجار      35
2-4-1- تئوری long forse     35
2-4-2- تئوری   ASH  36 
2-4-3- تئوری  nitronobel   39 
2-4-4- تئوری اندرسون 40
2-4-5- تئوری پیرس 41
2-4-6- تئوری کوینا 42
2-4-7- تئوری اولافسون  43   
فصل سوم :  بهینه سازی آتشبازی در معدن سنگ آهن چغارت 48
3-1- بررسی وضعیت خاص معدن سنگ آهن چغارت 49
3-2- آبشناسی معدن چغارت 50
3-3- بررسی پارامترهای انفجار معدن چغارت 51
3-4- بهینه سازی سیستم حفاری آتشبازی 57
فصل چهارم : بهینه سازی آتشباری در معدن سنگ آهن گل گهر    64
4-1- بررسی وضعیت معدن سنگ آهن گل گهر     65
4-1-1- مشخصات معدن گل گهر     65
4-1-2- مراحل کار معدن گل گهر     66
4-2- بررسی سیستم انفجار و بهینه سازی آن در معدن     67
4-3- طراحی نقشه انفجار گل گهر با روشهای تئوریک     71
4-4- بررسی هزینه های انفجار در معدن گل گهر     72
4-5- نتایج حاصل از تحقیقات     72
ضمائم  75

 

چکیده
این پروژه در ارتباط با بهینه سازی انفجار در معادن سنگ آهن می باشد در ابتدا به بررسی اجزای انفجار و پارامترهای آن پرداخته شده است سپس انواع تئوریهای انفجار به همراه معرفی انواع مواد منفجره آورده شده است.
در قسمت آخر پروژه بهینه سازی انفجار در دو معدن سنگ آهن چغارت و گل گهر مورد ارزیابی قرار گرفته

 

بنام خدا

مقدمه
 با توجه به اینکه انتخاب روش مناسب جهت انفجار باعث کاهش هزینه های معدن، خردایش مناسب سنگها، ایمنی بیشتر و بسیاری مزایای دیگر می شود، در این تحقیق با شناخت درست اجزای انفجار و تئوریهای مختلف با بهینه سازی انفجار آشنا می شویم. در این تحقیق انواع مواد منفجره و خواص آنها مورد ارزیابی قرار گرفته است بعلاوه بهینه سازی آتشباری در دو معدن بزرگ آهن ایران، چغارت و گل گهر بررسی شده است.


فصل اول:
 تعریف پارامترهای طراحی انفجار
1-1- تعریف پارامترهای طرحی انفجار
طراحی انفجار، با طراحی اجزای خاص انجام می شود که این اجزا به طور کلی عبارتند از:
1- قطر چال (hole diameter) :
که با علامتهای Q , d, D نمایش داده می شود و واحد آن میلیمتر یا اینچ می باشد.
2- بردن (burden) :
فاصله بین دو ردیف چال موازی با هم است . واحد آن متر یا فوت می باشد و با B یا V نشان داده می شود .
فاصله اولین ردیف چال تا سطح آزاد بردن ماکزیمم نامیده می شود و مقدار آن از دیگر بردنها بیشتر است. (Vmax   QV) که V مربوط به ردیفهای عقب تر است.
3- فاصله ردیفی چالها (spacing) :
فاصله دو چال را در یک ردیف گویند و با E نشان داده می شود و با واحدهای متر یا فوت معین می شود.(ft-m).
4- طول چال (height) :
ارتفاع چالی است که برای خرج گذاری حفر می کنیم و واحد آن متر یا فوت است.
(ft-m). در واقع ارتفاع کلی چال زده شده است.
5- اضافه چالی (sub drilling):
ارتفاعی از چال است که در زیر پله حفر می شود تا کف پله بعدی که از آتشبازی ایجاد می شود، مسطح شود و واحد آن متر یا فوت است (ft-m). و با علامت U نشان می دهند. این مقدار تفاوت طول کلی چال و ارتفاع پله می باشد.
6- ارتفاع پله (height of stop) :
ارتفاع پله مورد استخراج است و عموماً با K نمایش می دهند. واحد آن متر یا فوت است(ft-m)
7- ارتفاع گل گذاری (stemming) :
ارتفاعی از چال است که با گل پر می کنند و با T نشان می دهند و واحد آن متر یا فوت است (ft-m) و تاثیر زیادی در راندمان آتشباری دارد ولی در معدن چادرملو اصلاً به آن توجهی نمی شد.
8- ارتفاع خرج گذاری (height of explosive) :
میزان ماده منفجره به ازای واحد طول چال است که آنرا با (Qc , n) و تراکم خرج ته چال (Qc , n) می باشد و واحد آن کیلوگرم بر متر یا پوند بر فوت می باشد (1b/ft-kg/m).
9- تراکم خرج گذاری (accumulation of explosive):
 میزان ماده منفجره به ازای واحد طول چال است که آنرا با Q , n نمایش می دهند و خود شامل تراکم خرج وسط چال(Qc  , nc  ) و تراکم خرج ته چال (Qb  ,nb ) می باشد و واحد آن کیلوگرم بر متر ویا پوند بر فوت می باشد. (1b/ft-kg/m).
 10- مصرف ویژه (specific charge) :
که با q نشان داده میشود و عبارتست از میزان ماده ناریه لازم که به ازای آن یک تن یا یک مترمکعب ماده معدنی بدست می آید.
11- حفاری ویژه (specific drilling) :
که با d نشان داده می شود و عبارتست از مقدار طول چال حفر شده به ازای هر تن یا هر مترمکعب استخراج ماده معدنی.
12- YR وزن مخصوص ماده معدنی :
در فرمولهای برحسب    بیان می شود.
13- ye وزن مخصوص ماده منفجره :
در فرمولهای بر حسب   بیان می شود.
لازم به توضیح است که بین اجزاء فوق روابطی منطقی جهت طراحی آنها وجود دارد که این روابط تحت عنوان تئوریهای طراحی توسط دانشمندان مختلف ارائه شدند و در ادامه به توضیح آنها می پردازیم.

این روابط تابع شرایط زیر هستند:
الف- هدف از انفجار
ب- نوع و ساختمان سنگ
ج- نوع و کیفیت ماده منفجره
د- شرایط محیط کار معدن
ه- شیب چال
و- شیب پله
ز- تناژ استخراجی
ح- ابعاد لازم برای سنگی که استخراج می شود
ط- پایداری پله
ی- ایمنی
ک- آرایش چالها
ل- عرض پله
م- سطح آزاد
ن- زاویه شکست سنگ
س- لرزش زمین
ع- لرزش هوا
ف- پرتاب سنگ (fly rock)
ظ- فاصله زمانی تأخیر
لازم به ذکر است  که شرایط فوق نیز متقابلاً بر هم و بر روش آتشباری چالها تأثیر گذارند . از عوامل و شرایطی که در بالا به آنها اشاره شد برخی را باید مربوط به قبل از انفجار و برخی دیگر را باید مربوط به بعد از انفجار دانست . البته برخی را نیز باید قبل و بعد از انفجار مورد بررسی قرار داد .
1-2- روش های طراحی پارامترهای انفجار
1-2-1- ضخامت بارسنگ: (burden)
نزدیک ترین فاصله سطح آزاد هنگام انفجار تا محل چاه ضخامت بار سنگ نامیده می شود که مهمترین پارامتر هندسی در طراحی الگوی انفجار معادن روباز می باشد. این پارامتر در ارتباط مستقیم با سایر عوامل طراحی بوده و تغییرات آن روی پیامدهای انفجار بسیار موثر است و چنانچه در محاسبه آن خطا وجود داشته باشد ، باعث بوجود آمدن نتایج نامناسب (خردایش ناجور سنگ) و پیامدهای نامطلوب (پرتاب سنگ، لرزش زمین و لرزش هوا) در عملیات انفجار خواهد شد. اگر ضخامت بارسنگ یا به عبارت دیگر فواصل بین چالها در عرض ، کمتر از مقدار واقعی و بهینه خود در نظر گرفته شود ، پرتاب سنگ و لرزش هوا زیاد شده و سنگ بیش از اندازه خرد می شود و عملیات انفجار توام با سر و صدای زیاد خواهد بود و در نتیجه عملاً بخش مهمی از انرژی ماده منفجره به هدر می رود . در این صورت به دلیل افزایش میزان حفاری و مصرف ماده منفجره هر دو پارامتر حفاری ویژه و خرج ویژه اضافه خواهند شد .
ازطرف دیگر چنانچه اندازه ضخامت بار سنگ بیش از مقدار مورد نیاز باشد پدیده ها و پیامدهای نامطلوبی نظیر شکست بیش از حد( back break) یا عقب زدگی، ایجاد قطعات درشت سنگ  (over size) ، شکل گیری سکو در پای پله و لرزش زمین بروز خواهد کرد.
همچنین اگر این پارامتر خیلی بیش تر از مقدار بهینه باشد ، توده سنگ در بخشهای جلوی چالها جابجا نمی شود و لذا انفجار منجر به تشکیل حفره می گردد که به همراه آن لرزش زمین و پرتاب سنگ وجود دارد.
بنابراین بهینه سازی ضخامت بارسنگ در عملیات حفاری و انفجار معادن روباز، بسیار اهمیت دارد که در این راستا خواص فیزیکی و ژئو مکانیکی توده سنگ ، کمک موثری برای ما خواهد بود.

1-2-2- روشهای محاسبه burden :
برای محاسبه ضخامت بار سنگ یا فواصل بین چالها در عرض پله در دهه گذشته تحقیقات زیادی انجام و روشها و روابط متفاوتی توسط محققین ارائه شده است .  بعضی از این روشها اطلاعات زیادی برای محاسبه این پارامتر نیاز دارند که با توجه به شرایط متغیر زمین و محیط کار، چه بسا جمع آوری این اطلاعات آسان و مقرون به صرفه نباشد.
از طرف دیگر ممکن است استفاده از هر یک از این روابط به تنهایی برای تعیین ضخامت بار سنگ ، نتایج خوبی را به دنبال نداشته باشد.
روش مهندسی این است که از چندین روش که شرایط کاربرد آنها اهم تر است استفاده شده و سپس از مقادیر بدست آمده میانگین گیری پیراسته (trimmed mean) بعمل آید.
اندازه ای که از این  طریق بدست می آید ، بار سنگ پیراسته (B) نامیده می شود. یادآوری می شود در میانگین پیراسته a درصد از کمترین مقادیر کنار گذاشته شده و از بقیه مقادیر میانگین گرفته می شود.

1-2-3- فاصله ردیفی چالها (spacing ) :
فاصله بین چالها در جهتی عمود بر ضخامت بار سنگ را فاصله ردیفی چالها می گویند. اگر با انتخاب چاشنی کم تاخیری مناسب مقدار بار سنگ عوض شود ، فاصله ردیفی چالها نیز خود به خود تغییر می کند.
اگر فاصله ردیفی چال بیش از مقدار مورد نیاز انتخاب شود یعنی فاصله بین چالها زیاد باشد محل شکستن سنگ ناهموار خواهد شد و خرد شدگی نامناسب خواهیم داشت.
سنگها در اطراف چال خرد می شوند اما سنگهای واقع مابین دو چال درشت خواهند شد که در آتشکاری های کنترل شده مانند smoth blasting و پیش شکافی presplitling فاصله ردیفی چالها خیلی کم انتخاب می شود و در این حالت مواد منفجره مخصوص به کار می رود تا این مشکل برطرف شود . فاصله ردیفی چالها معمولاً در آتشباری ها 1 تا 2 برابر ضخامت بار سنگ (Burden) می باشد. هر چه ضریب سفتی  [ارتفاع پله / ضخامت بار سنگ] بیشتر باشد ، ضریب ما به 2 نزدیکتر می شود و حتی بزرگتر هم می توان در نظر گرفت.
در چالهای قطور در حالی که با چاشنی کم تاخیری آتش شوند نسبت    تا 1/5 و در چالهای کم با چاشنی کم تاخیر آتش شوند نسبت  تا 1/8                 و در غیر آتشکاری کنترل شده و در بقیه حالات این نسبت به بیشتر از یک می رسد. برای
 
تخمین های اولیه مقدار نسبت فوق را 5/1 در نظر می گیرند.
بعلت تغییرات زمین شناسی ، نوع ماده منفجره ، کیفیت سنگ و اثر چالها بر هم ، برای تعیین مقدار مطلوب   دریک عملیات آتشکاری میزان را از عدد کم شروع کرده و ادامه می دهند تا به نتیجه نهایی برسند . اگر نسبت پله به بار سنگ کمتر از 4 باشد از فرمول    استفاده می شود . لازم به ذکر است که اکثر فرمولهای آتشکاری دارای ریشه تجربی هستند و برای آنها خطایی معادل 15% در نظر گرفته می شود .

1-2-4- ارتفاع پله :
هر چه ارتفاع پله بیشتر طول چال حفر شده بایستی بیشتر شود و حفر چالهای طویل معمولا در اشکال اساسی به همراه دارد :
1-    انحراف چال
2- کندی سرعت حفاری
مسائل و مشکلات ریزش سنگ در پله های بزرگ بسیار بیشتر از بروز اینگونه مشکلات در پله های کوچک است . هر چه پله بزرگ تر باشد یعنی ارتفاع آن بیشتر باشد ، عملاً ستون سنگی مقابل چال درازتر است و با توجه به این که مقاومت ستون با اضافه شدن طول ستون کم می شود ، ستون سنگی در این حالت بهتر شکسته می شود . هر چه ضریب سفتی (stiffness ratio) بزرگتر باشد ، پله بزرگتر است و ستون سنگی ضعیف تر می باشد و بالعکس در پله های کوتاه ستون سنگی قوی تر است .
هرگونه تغییراتی که در ضخامت بار سنگ (B) یا ارتفاع پله (K) داده می شود بایستی با توجه به دیگری از آن نتیجه گیری نمود.
در صورتی که در یک معدن ضخامت بار سنگ کم شود ، نسبت    افزایش می یابد و در نتیجه سنگ خوب خرد می شود. وقتی نسبت فوق کمتر از 5/1 شود باید چاشنی حتما در پای پله یعنی هم تراز کف پله کار گذاشته شود چرا که قرار دادن چاشنی در کف چال سبب لرزش بسیار شدید در این حالت خواهد شد .

1-2-5- اضافه چال (subdrilling) :
در انفجار هر چال محدوده ای بوجود می آید که ماکزیمم تنش های ناشی از انفجار در آن واقع اند . این ناحیه از کف پله بالاتر است . در صورتیکه حفر چال ادامه داده شود ناحیه ماکزیمم تنش نیز گستره شده و به کف پله نزدیکتر می شود و در حالت اول کف پله پس از انفجار ناصاف می شود و نیاز به آتشکاری ثانویه بعضاً می باشد .
در حالی که در حالت دوم بعلت وجود ماکزیمم تنش در کف پله این وضعیت بوجود نخواهد آمد . لازم به ذکر است که اضافه حفاری (اضافه چالی) چال اگر بیش از اندازه باشد موجب لرزش زمین می شود . بطوریکه کف پله پایین را شکسته و حفر چال پله پایین را با مشکل مواجه می سازد . در چالهای قائم میزان اضافه حفاری چال 2% تا 5% مقدار           (burden) می باشد و برای چالهای مایل فرمول زیر پیشنهاد می شود :
                                                                                   U = B cotg a 
که در این فرمول a شیب چال می باشد .

1-2-6- گل گذاری :
طول گل گذاری تابعی از ضخامت بار سنگ است و به طور غیرمستقیم تابع شرایط دیگر مانند قطر چال و وزن مخصوص ماده منفجره می باشد . اگر طول گل گذاری زیاد باشد قسمت بالای چال شکسته نمی شود ، خرد شدن سنگ خوب نیست ، لرزش زمین زیاد است و عقب زدگی (back break) بوجود می آید. اگر طول گل گذاری کم باشد پرتاب زیاد و لرزش هوا خواهیم داشت . پرتاب سنگ ممکن است در حالات زیر تشدید شود :
1- سنگ هوا زده باشد
2-    سنگ دارای ترکهای ریز و درشت ناشی از انفجار چال قبلی واقع روی این چال باشد . اگر ضخامت  گل گذاری به اندازه مطلوب باشد پس از انفجار قسمت بالائی چال به آرامی بلند شده و روی قسمت خرد شده زیرین می افتد که در این صورت قطعات درشت سنگ حاصل می شود .
1-2-7- شیب چال :
با این مقدمه که در حفر چال قائم حفظ امتداد راحت تر از چال مایل صورت می گیرد ذکر این نکته حائز اهمیت است که امکان خرد نشدن سنگ ته چال در چال قائم ، بیش از چال مایل است و این امر مخصوصاً وقتی که چند سری چال آتش می شوند پیش می آید . در این صورت سکوی ایجاد شده تدریجاً بزرگتر شده و ایجاد مشکل می کند .
         با حفر چالهای مایل این مشکل تا حدودی برطرف می شود و این بدان معناست که مقدار بیشتری سنگ می توان استخراج کرد و بدین ترتیب عقب زدگی نیز در چال مایل کمتر از چال قائم است.
حفر چال مایل موجب می شود که پله بشکل مایل درآید و این امر از نظر ایمنی واجد اهمیت است زیرا کمتر امکان ریزش سنگ پیش می آید . طول چال شیب دار بیش از چال قائم خواهد بود و فرمولهای ارائه شده مربوط به محاسبه طول چال در وضعیتهای قائم و مایل  باشد .
                  H = K+U : طول چاه در وضعیت قائم
                   : طول چاه در وضعیت مایل با شیب a
برای انجام محاسبات مربوطه به طول چال در وضعیت مایل می توان از جدولی که ارائه شده است استفاده کرد .
1-2-8- محاسبه وزن ستون ماده منفجره :
با توجه به این نکته که ماده منفجره بصورت یک ستون در چال قرار دارد و بعلت اینکه دیواره چال ناصاف است حجم چال حدود 6% بیش از حجم تئوریک آن می گردد لذا موقع خرج گذاری بایستی دقت بعمل آید که حفره های خالی و ناهمواری های موجود در جدار چال نیز خرج گذاری شوند . این امر معمولا با مواد منفجره فلزی بهتر امکان پذیر است زیرا مواد منفجره بسته بندی شده را هر قدر هم بفشاریم احتمال پر نشدن تمام گوشه ها و زوایای چال می باشد . به هر حال برای بیان کمیت خرج در چال یکی از راههای متداول ، خرج بازاء واحد طول چال خواهد بود که بر اساس قطر تئوری چال محاسبه می شود.
                                                                                
Q : مقدار خرج موجود در چال
 : طول خرج در چال
 : قطر چال
 : چگالی خرج
و مقدار خرج در یک متر چال برابر است با:                           
به ازای هر مقدار خرج ریخته شده در چال ، طول خالی و طولی از چال که پر شده است مشخص است . بدین ترتیب با داشتن مقدار خرج در یک متر چال و کنترل نهایی طول خالی چال در هر زمان ، می توان به صحت خرج گذاری پی برد . دستورالعملهای ارائه شده در زیر ، روشی برای اطمینان از صحت خرج گذاری می باشد .
          1- اگر طول خالی چال بیش از مقدار محاسبه شده باشد دلیل بر این است که خرج به طریقی از چال خارج شود که آنهم معمولاً بدلیل وجود حفره یا شکاف در چال است . وجود حفره در شکاف می بایست در حین حفره چال مشخص می گردید و حال برای جبران این نقیصه بایستی آن قسمت از چال را که مظنون به وجود حفره و شکاف است با خاکریزی پر کرد و مجدداً خرج گذاری را ادامه داد .
2- اگر طول خالی چال کمتر از مقدار محاسبه شده باشد ، دلیل برگیر کردن ماده منفجره حین خرج گذاری در بین راه است . اینگونه گیر کردن را می توان با فشار سمبه چوبی برطرف کرد و اگر به این طریق نتوان رفع گیر کرد بهتر است عملیات خرج گذاری بقیه چال را با دقت بیشتر ادامه داده و اقدام به انفجار نمود .

1-2-9- خرج گذاری منقطع یا چند مرحله ای :
لزوم تقسیم خرج در طول چال سبب می شود که هر قسمت به طور جداگانه عمل کند به این منظور بین قسمتهای مختلف خرج ، مواد باطله قرار می دهد. یعنی به تناوب خرج و مواد باطله در چال قرار می دهند . این گونه موارد به دو منظور صورت می گیرد.
1- خرج در جای مناسب چال قرار می گیرد مثلاً اگر لایه ای نرم در چال وجود و امکان گریز گازهای حاصل از انفجار می باشد این قسمت از چال را خاک می ریزند و خرج گذاری در محل مقاوم چال انجام می گیرد بدین ترتیب بهره برداری از انرژی ماده منفجره بهتر صورت می گیرد .
2-  لرزش زمین و مصرف ماده منفجره کاهش می یابد و ماده منفجره در طول چاه تقسیم می شود  .  ضخامت باطله در خرج گذاری چند مرحله ای از فرمول زیر حساب می شود :
                                                                                             
  : قطر چال
  : ضخامت باطله
در چالهای مرطوب بعلت اینکه انتقال انفجار بهتر از خاک خشک صورت می گیرد ، لازم است که مقدار   دو برابر شود و اگر مواد منفجره حساس مثل برخی دینامیت ها استفاده شود ضخامت باطله را باید بیش از 6 برابر قطر چال در نظر گرفت .
 چاشنی ها معمولاً همزمان نیستند و برای پایین آوردن لرزش زمین چاشنی ها با تأخیرهای متفاوت می سازند .

1-2-10- انرژی ویژه :
پیش از اختراع مواد منفجره ژله ای و امولسیون ، خرج ویژه معیار خوبی برای تعیین مقدار انرژی بکار رفته در خرد کردن سنگ به حساب می آمد. زیرا معمولاً انرژی انفجاری با بالا رفتن وزن مخصوص ماده منفجره افزایش می یابد . اما با داشتن مواد منفجره جدید انرژی بطور قابل ملاحظه ای تغییر می کند . هر چند که وزن مخصوص هر یک مساوی دیگری باشد . بدین ترتیب مقدار ماده منفجره نمی تواند مبنا قرار گیرد زیرا انرژی انواع مواد منفجره با هم متفاوتند . و انرژی حاصل انفجار است که برای خرد کردن سنگ مقیاس مصرف قرار می گیرد .
      انفجار ، یک فعل و انفعال شیمیایی است که مقدار قابل ملاحظه ای انرژی حرارتی بصورت انبساط سریع گاز بسیار داغ آزاد می کند . در مواد منفجره ، انرژی می تواند  محاسبه  یا اندازه گیری  شود و بازدهی ترمو دینامیکی را در زمان انفجار  بدست آورد .
ملاک عمل برای مصرف ماده منفجره ، انرژی حرارتی آزاد شده در نظر گرفته می شود. برای محاسبه انرژی آزاد شده از انفجار ماده منفجره ، از فرمول زیر استفاده می شود :
                                                                                   
  : انرژی حرارتی حاصل از انفجار
  : حرارت متشکل از محصولات انفجار
  : حرارت متشکل از مواد منفجره
بدیهی است که برای خرد کردن مقدار معین سنگ ، مقدار معینی انرژی مورد نیاز است . که اگر برای تامین این انرژی بتوانیم از چند نوع ماده منفجره استفاده کنیم مواد منفجره قوی تر باید با وزن کمتر برای خرج گذاری مصرف شوند . انرژی ویژه ضریبی مطمئن تر از خرج ویژه برای خرد کردن سنگهاست .
انرژی ویژه = (حرارت حاصل از انفجار) / ( وزن سنگ )
واحد انرژی ویژه ، کالری بر تن و کالری بر متر مکعب است . تغییر نوع ماده منفجره در آتشباری منتج به تغییر مقدار انرژی حاصل از انفجار می گردد و لازم می شود که آرایش چالها نیز تعویض گردند.

1-2-11- خرج ویژه :
خرج ویژه مصرف ماده منفجره برای واحد حجم یا وزن سنگ را در یک عملیات آتشباری نشان می دهد و مقدار آن ممکن است با ضریب ثابت سنگها نامساوی باشد . خرج ویژه برای محاسبات اقتصادی بکار گرفته می شود. واحدهای آن عبارتند از :
گرم خرج  بر متر مکعب سنگ       
 پوند بر یارد مکعب
متر مکعب سنگ بر گرم خرج        
یارد مکعب سنگ بر پوند
پوند بر تن
تن بر پوند 
گرم خرج بر تن سنگ
تن سنگ بر گرم خرج
مقدار خرج ویژه تابع نوع ماده منفجره ، وزن مخصوص سنگ و زمین شناسی منطقه است و معمولا هرچه مقدار و قدرت ماده منفجره قوی تر باشد خرج ویژه کمتر می شود .
هرچه وزن مخصوص سنگ بیشتر است خرج ویژه بیشتر است .
تا حدودی خرج ویژه در چالهای قطور کمتر از چالهای کم قطر است . هر چه تعداد سطح آزاد بیشتر باشد خرج ویژه کمتر است. اگر تعداد درزه و شکاف در سنگ زیاد باشد باعث می شود که سنگ در برابر ضربات حاصل از انفجار سست شده و قدرت حاصل از انفجار خرج ویژه نیز کم بشود.
چنانچه وضعیت درزه و شکاف به صورتی باشند که موجب اتلاف گازهای حاصل از انفجار و افت فشار آنها بشود خرج ویژه زیاد می شود .
برای محاسبه خرج ویژه کافیست که حجم سنگ مربوط به هر چال را حساب کرده و وزن ماده منفجره مصرف شده در چال را بر آن تقسیم کنیم .
1-2-12- خرج ته چاه :
خرج ته چاه انرژی زیادی را در ته چاه توزیع کرده که باعث شکسته شدن و از جا درآمدن بار سنگ می گردد . طول خرج ته چال از رابطه زیر حساب می شود :
                                                                                           
که در آن hb طول خرج ته چال است .
 تراکم خرج ته چال از رابطه تجربی زیر حاصل می شود:                                                                       
که در آن
  : تراکم خرج ته چال بر حسب کیلوگرم بر متر است .
  : قطر چال به میلیمتر
  : وزن مخصوص خرج گذاری بر حسب کیلوگرم بر متر مربع است .
در چال خشک انرژی ماده منفجره برای خرج گذاری ته چال بایستی 30 تا 50 درصد بیش از خرج بقیه چال باشد . مثلا اگر خرج مصرفی آنفو است انرژی خرج ته چال نسبت به آنفو باید 130 تا 150 درصد باشد . در چال مرطوب خرج ته چال باید 50 تا 70 درصد بیش از بقیه چال باشد که در این حالت انرژی خرج ته چال نسبت به آنفو 150 تا 170 درصد می گردد . اعداد ذکر شده دارای خطایی معادل 15 تا 10 درصد می باشند .
1-2-13- خرج میان چال :
طول خرج میان چال از رابطه زیر حساب می شود:                                                                          
hc : طول خرج میان چال
H : طول چال
hb : طول خرج ته چال
S1 : طول گل گذاری
خرجی که بعد از خرج ته چال مصرف می شود نیز سنگ را خواهد شکست اما لازم نیست که همان قدرت لازم را داشته باشد .
اگر تراکم خرج میان چال Vc بنامیم مقدار آن از رابطه زیر قابل محاسبه است :
                                                                                         Qc = Vc .hc
و کل خرج مصرفی از رابطه زیر محاسبه می شود :
                                                                                      Q = Qb+Qc ...

 

منابع
1-    Nitro Nobel, Rock Blasting Technigue, General Principel Of
Rock Blasting .
2- Jimeno, C.L & Jimeno, e.L. & caredo, f. J. a, Drilling and blasting of rock, Balkema. 1995
3- طراحی برنامه ریزی و روشهای استخراج معادن سطحی- دکتر مرتضی اصانلو 1374
4- م. نوری ، بررسی مقدماتی آبهای زیر زمینی معدن چغارت
5- گزارشات تهیه شده توسط شرکت سنگ آهن گل گهر
6- ع. دهقانی فیروز آبادی ، شناخت منشاء آبهای مزاحم در معدن چغارت
7- آتش کاری در معادن- مهندس رحمت ا... استوار- 1383
8- جزوه درس چالزنی و آتشباری - دکتر اردشیر سعد محمدی- 1384


دانلود با لینک مستقیم