کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از کوشا فایل پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پر سرعت .

پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


پایان نامه  مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

 

 

 

 

 

 

 

تعداد  صفحات : 223
فرمت فایل: word(قابل ویرایش)  
 فهرست مطالب:
 عنوان                                                                                                             صفحه

فهرست علائم    ر
فهرست جداول    ز
فهرست اشکال    س

چکیده    1

فصل اول    
مقدمه نانو    3
1-1 مقدمه    4
   1-1-1 فناوری نانو    4
1-2 معرفی نانولوله‌های کربنی    5
   1-2-1 ساختار نانو لوله‌های کربنی    5
   1-2-2 کشف نانولوله    7
1-3 تاریخچه    10

فصل دوم    
خواص و کاربردهای نانو لوله های کربنی    14
2-1 مقدمه    15
2-2 انواع نانولوله‌های کربنی    16
   2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT)    16
   2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT)    19
2-3 مشخصات ساختاری نانو لوله های کربنی    21
   2-3-1 ساختار یک نانو لوله تک دیواره    21
   2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره    24
2-4 خواص نانو لوله های کربنی    25
   2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن    29
       2-4-1-1 مدول الاستیسیته    29
       2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک    33
       2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها    36
2-5 کاربردهای نانو فناوری    39
   2-5-1 کاربردهای نانولوله‌های کربنی    40
       2-5-1-1 کاربرد در ساختار مواد    41
       2-5-1-2 کاربردهای الکتریکی و مغناطیسی    43
       2-5-1-3 کاربردهای شیمیایی    46
       2-5-1-4 کاربردهای مکانیکی    47

فصل سوم    
روش های سنتز نانو لوله های کربنی     55
3-1 فرایندهای تولید نانولوله های کربنی    56
   3-1-1 تخلیه از قوس الکتریکی    56
   3-1-2 تبخیر/ سایش لیزری    58
   3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD)    59
   3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD )    61
   3-1-5 رشد فاز  بخار    62
   3-1-6 الکترولیز    62
   3-1-7 سنتز شعله    63
   3-1-8 خالص سازی نانولوله های کربنی    63
3-2 تجهیزات    64
   3-2-1 میکروسکوپ های الکترونی    66
   3-2-2 میکروسکوپ الکترونی عبوری (TEM)    67
   3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM)    68
   3-2-4 میکروسکوپ های پروب پیمایشگر (SPM)    70
       3-2-4-1 میکروسکوپ های نیروی اتمی (AFM)    70
       3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM)    71

فصل چهارم    
شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته    73
4-1 مقدمه    74
4-2 مواد در مقیاس نانو    75
   4-2-1 مواد محاسباتی    75
   4-2-2 مواد نانوساختار    76
4-3 مبانی تئوری تحلیل مواد در مقیاس نانو    77
   4-3-1 چارچوب های تئوری در تحلیل مواد    77
       4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد    77
4-4 روش های شبیه سازی    79
   4-4-1 روش دینامیک مولکولی    79
   4-4-2 روش مونت کارلو    80
   4-4-3 روش محیط پیوسته    80
   4-4-4 مکانیک میکرو    81
   4-4-5 روش المان محدود (FEM)    81
   4-4-6 محیط پیوسته مؤثر    81
4-5 روش های مدلسازی نانو لوله های کربنی    83
   4-5-1 مدلهای مولکولی    83
       4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی)    83
       4-5-1-2 روش اب انیشو    86
       4-5-1-3 روش تایت باندینگ    86
       4-5-1-4 محدودیت های مدل های مولکولی    87
   4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها    87
       4-5-2-1 مدل یاکوبسون    88
       4-5-2-2 مدل کوشی بورن    89
       4-5-2-3 مدل خرپایی    89
       4-5-2-4 مدل  قاب فضایی    92
4-6 محدوده کاربرد مدل محیط پیوسته    95
   4-6-1 کاربرد مدل پوسته پیوسته    97
   4-6-2 اثرات سازه نانولوله بر روی تغییر شکل    97
   4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله    98
   4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله    99
   4-6-5 محدودیتهای مدل پوسته پیوسته    99
       4-6-5-1 محدودیت تعاریف در پوسته پیوسته    99
       4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته    99
   4-6-6 کاربرد مدل تیر پیوسته      100

فصل پنجم    
مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی     102
5-1 مقدمه    103
5-2 نیرو در دینامیک مولکولی    104
   5-2-1 نیروهای بین اتمی    104
       5-2-1-1 پتانسیلهای جفتی    105
       5-2-1-2 پتانسیلهای چندتایی    109
   5-2-2 میدانهای خارجی نیرو    111
5-3 بررسی مدل های محیط پیوسته گذشته    111
5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی    113
   5-4-1 مدل انرژی- معادل    114
       5-4-1-1 خصوصیات  محوری نانولوله های کربنی تک دیواره    115
       5-4-1-2 خصوصیات  محیطی نانولوله های کربنی تک دیواره    124
   5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS    131
       5-4-2-1 تکنیک عددی بر اساس المان محدود    131
       5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS    141
   5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB    155
       5-4-3-1 مقدمه    155
       5-4-3-2 ماتریس الاستیسیته    157
       5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی    158
       5-4-3-4 تعیین و نگاشت المان    158
       5-4-3-5 ماتریس کرنش-جابجائی    161
       5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای    162
       5-4-3-7 ماتریس سختی برای یک حلقه کربن    163
       5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه    167
       5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه    168

فصل ششم    
نتایج    171
6-1 نتایج حاصل از مدل انرژی-معادل    172
   6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره    173
   6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره    176
6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS    181
   6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [    182
   6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره    192
6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB    196

فصل هفتم    
نتیجه گیری و پیشنهادات     203
7-1 نتیجه گیری    204
7-2 پیشنهادات    206

فهرست مراجع     207
چکیده
از آنجائیکه شرکت های بزرگ در رشته نانو فناوری  مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و  محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند  بیشتر توسعه یافته اند.
پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.
در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه  مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:
1.    مدل انرژی- معادل
2.    مدل اجزاء محدود بوسیله نرم افزار ANSYS
3.    مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB
مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ  در جهت های محوری و محیطی بدست آمده است.
در  مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی،  نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.
در  مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.
اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه  مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی  تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله  افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.
نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.
واژه های کلیدی: نانولوله های کربنی ، خواص مکانیکی، محیط پیوسته ، تعادل- انرژی ، اجزاء محدود ، ورق گرافیتی تک لایه،  ماتریس سختی.
 


دانلود با لینک مستقیم


پایان نامه ساخت و بررسی خواص مکانیکی سازه‌های مشبک کامپوزیتی حاوی مواد خودترمیم‌شونده

اختصاصی از کوشا فایل پایان نامه ساخت و بررسی خواص مکانیکی سازه‌های مشبک کامپوزیتی حاوی مواد خودترمیم‌شونده دانلود با لینک مستقیم و پر سرعت .

پایان نامه ساخت و بررسی خواص مکانیکی سازه‌های مشبک کامپوزیتی حاوی مواد خودترمیم‌شونده


پایان نامه ساخت و بررسی خواص مکانیکی سازه‌های مشبک کامپوزیتی حاوی مواد خودترمیم‌شونده

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:161

پایان نامه کارشناسی ارشد رشته مهندسی مواد
گرایش شناسایی، انتخاب و روش‌ ساخت مواد مهندسی

فهرست مطالب:
عنوان    صفحه
مقدمه    1

فصل اول: مروری بر تحقیقات پیشین    6
1-1- سازه‌های مشبک کامپوزیتی    7
   1-1-1- معرفی سازه‌های کامپوزیتی و سازه‌های مشبک کامپوزیتی    7
   1-1-2- تاریخچه‌ سازه‌های مشبک کامپوزیتی    14
   1-1-3- روش‌های ساخت سازه‌های مشبک کامپوزیتی    18
   1-1-4- کاربرد سازه‌های مشبک کامپوزیتی    21
   1-1-5- بررسی قابلیت جذب انرژی و مقاومت خمشی صفحات مشبک کامپوزیتی    23
1-2- پلیمرها و کامپوزیت‌های خودترمیم‌شونده    28
   1-2-1- معرفی و تاریخچه مواد خودترمیم‌شونده    28
   1-2-2- روند خودترمیمی در پلیمرها    31
      1-2-2-1- طراحی مواد خود ترمیم شونده    31
      1-2-2-2- انواع مکانیزم‌های خودترمیمی در پلیمرها    31
         1-2-2-2-1- خودترمیمی ذاتی در پلیمرها    31
         1-2-2-2-2- خودترمیمی غیرذاتی در پلیمرها    38
         1-2-2-2-3- ارزیابی بازده خودترمیمی    43
   1-2-3- مروری بر کامپوزیت‌های پلیمری خودترمیم‌شونده حاوی الیاف توخالی    44
   1-2-4- کاربرد پلیمرها و کامپوزیت‌های خودترمیم‌شونده    54
      1-2-4-1- پوشش‌های ضدخراش    54
      1-2-4-2- صنایع پزشکی    55
      1-2-4-3- صنایع هوافضا    55
      1-2-4-4- صنایع نفت، گاز و پتروشیمی    56
      1-2-4-5- سایر کاربردها    56
1-3- اهداف اصلی از انجام پژوهش    57

فصل دوم: مواد، تجهیزات و روش‌های آزمایش    58
2-1- معرفی مواد    59
   2-1-1- رزین اپوکسی    59
   2-1-2- الیاف و پارچه شیشه    61
   2-1-3- لوله‌های موئین شیشه‌ای    63
   2-1-4- سیلیکون قالب‌گیری    65
2-2- تجهیزات آزمایش    66
   2-2-1- تجهیزات مورد نیاز برای قالب‌گیری    66
   2-2-2- تجهیزات مورد نیاز برای ساخت نمونه کامپوزیت مشبک    68
   2-2-3- نگهدارنده آزمون خمش سه‌نقطه‌ای    70
   2-2-4- دستگاه آزمون خمش سه‌نقطه‌ای    73
   2-2-5- سیستم اعمال فشار بر روی نمونه‌های کامپوزیتی مشبک    74
2-3- روش انجام آزمایش    74
   2-3-1- ساخت قالب سیلیکونی    76
   2-3-2- روش ساخت نمونه‌های کامپوزیتی مشبک خودترمیم‌شونده    79
      2-3-2-1- محاسبات مربوط به وزن و درصد حجمی مواد مورد نیاز برای ساخت نمونه    79
      2-3-2-2- برش الیاف و پارچه شیشه    83
      2-3-2-3- ساخت شبکه خودترمیم‌شونده    83
      2-3-2-4- ساخت نمونه کامپوزیت‌مشبک (خودترمیم‌شونده و شاهد)    85
      2-3-2-5- کدگذاری نمونه‌ها    89
   2-3-3- تخریب نمونه‌های خودترمیم‌شونده    92
   2-3-4- آزمون خمش سه‌نقطه‌ای    93

فصل سوم: نتایج و بحث    94
3-1- نتایج آزمون خمش نمونه‌های کامپوزیت مشبک    95
   3-1-1- نمونه‌های شاهد    95
   3-1-2- نمونه‌های خودترمیم‌شونده    108
      3-1-2-1- تخریب نمونه‌های خودترمیم‌شونده    108
      3-1-2-2- محاسبه بازده ترمیم و تعیین درصد حجمی بهینه مواد خودترمیم‌شونده    111
      3-1-2-3- تعیین مدت‌زمان بهینه مورد نیاز برای ترمیم    120
3-2- نتایج آزمون خمش نمونه‌های اپوکسی مشبک    121
   3-2-1- نمونه‌های شاهد    121
   3-2-2- نمونه‌های خودترمیم‌شونده    125
      3-2-2-1- تخریب نمونه‌های خودترمیم‌شونده    125
      3-2-2-2- محاسبه بازده ترمیم و تعیین درصد حجمی بهینه مواد خودترمیم‌شونده    127
      3-2-2-3- تعیین مدت‌زمان بهینه مورد نیاز برای ترمیم    137

فصل چهارم: نتیجه‌گیری و پیشنهادها    138
4-1- نتیجه‌گیری    139
4-2- پیشنهادها    141

مراجع    142

فهرست شکل‌ها
عنوان    صفحه
شکل 1-1- اجزای اصلی تشکیل‌دهنده یک سازه مشبک    10
شکل 1-2- پارامترهای هندسی موثر در طراحی یک سازه مشبک کامپوزیتی    11
شکل 1-3- سازه مشبک نوع مثلثی (ایزوگرید)    12
شکل 1-4- سازه مشبک نوع شش‌ضلعی (انیزوگرید)    12
شکل 1-5- الگوهای هندسی سازه‌های مشبک    13
شکل 1-6-  انواع سازه‏های مشبک کامپوزیتی    14
شکل 1-7- برج رادیویی شخوف (1921)    16
شکل 1-8- نمایی از سازه‏های مشبک فلزی در بمب‌افکن ولینگتون انگلیسی (1930)    17
شکل 1-9- هسته فومی مورد استفاده در فرآیند رشته‌پیچی سازه مشبک کامپوزیتی    19
شکل 1-10- قالب‌های لاستیکی شیاردار مخصوص رشته‌پیچی سازه مشبک کامپوزیتی    19
شکل 1-11- قالب پلاستیکی ساخت کامپوزیت مشبک صفحه‌ای ایزوگرید، و روش رشته‌پیچی صفحه‌ای    20
شکل 1-12- تجهیزات آزمایشگاهی برای انجام آزمون خمش سه¬نقطه-ای    25
شکل 1-13-  منحنی نیرو-جابجایی پنل مشبک کامپوزیتی ایزوگرید تحت آزمون خمش سه‌نقطه‌ای    25
شکل 1-14- نمودار نیرو-جابجایی آزمون خمش سه‌نقطه‌ای پنل ایزوگرید پلی¬پروپیلن- الیاف شیشه E    26
شکل 1-15- تجهیزات آزمایشگاهی برای انجام آزمون ضربه دینامیکی    27
شکل 1-16- رویکردهای فرآیند خودترمیمی الف) ذاتی، ب) آوندی و پ) کپسولی    29
شکل 1-17- طراحی چرخه‌ ترمیم در پلیمرهای خودترمیم‌شونده ذاتی    33
شکل 1-18- نسل جدید پلیمرهای خودترمیم‌شونده نوری    35
شکل 1-19- چگونگی ترمیم یک پلیمر گرماسخت با استفاده از عامل ترمیم گرمانرم    36
شکل 1-20- مراحل ترمیم هیدروژل یوریوپیریمدینون    37
شکل 1-21- نمایی از فرآیند ترمیم در حضور کپسول‌ها (میکروکپسول‌ها) و کاتالیزورها    39
شکل 1-22- شماتیکی از خودترمیمی با استفاده از الیاف توخالی    40
شکل 1-23- طرح شماتیک شبکه‌های آوندی    42
شکل 1-24- (الف) الیاف کربن توخالی و (ب) الیاف شیشه توخالی    44
شکل1-25- مکانیزم خودترمیمی در کامپوزیت‌های پلیمری خودترمیم‌شونده برمبنای الیاف توخالی    45
شکل 1-26- روش پرکردن الیاف شیشه توخالی با رزین رقیق‌شده و به‌کمک خلاً    46
شکل 1-27- (الف) کامپوزیت لایه‌ای شیشه/اپوکسی حاوی الیاف توخالی و (ب) ردیابی مناطق درحال ترمیم با روش ردیابی ماورای بنفش    47
شکل 1-28- (الف) توزیع آسیب در کامپوزیت لایه‌ای (تورقی شدن)، (ب) ورود رزین حاوی رنگ فلورسنت به ترک‌ها، (پ) آغاز تورقی‌شدن از فصل مشترک الیاف توخالی و کامپوزیت و (ت) رشد ترک در امتداد فصل مشترک    48
شکل 1-29- ابعاد نمونه کامپوزیت خودترمیم‌شونده حاوی لوله‌های موئین شیشه‌ای    49
شکل 1-30- ناحیه تورقی‌شده و الیاف توخالی شکسته‌شده در نمونه‌ تحت ضربه با انرژی 4ژول    50
شکل 1-31- لایه میانی خودترمیم‌شونده، رزین (آبی رنگ) و هاردنر (قرمز رنگ) و محل قرارگیری لایه در ساندویچ پنل کامپوزیتی    51
شکل 1-32-نمونه‌های ترمیم‌شده پس از تخریب ضربه‌ای    51
شکل 1-33- الگوی موازی و زیگزاگی شبکه‌های سه‌بعدی الیاف توخالی در کامپوزیت    52
شکل 1-34- (الف) مکانیزم خودترمیمی در واکنش شیمیایی کلیکی فعال‌شونده با اشعه ماورای بنفش در لوله‌های موئین، (ب) نمونه‌ای از کامپوزیت خودترمیم‌شونده و (پ) طرحی از واکنش پلیمری ترمیم کلیکی و ایجاد اتصالات عرضی پس از تابش اشعه ماورای بنفش    53
شکل 1-35- فرآیند پرکردن لوله‌های موئین و ساخت کامپوزیت خودترمیم‌شونده    54
شکل 1-36- اصول کار پوشش ضدخراش طراحی‌شده توسط نیسان موتور در مقایسه با پوشش‌های معمولی    55
شکل 1-37- شماتیکی از خودترمیمی برمبنای استفاده از پلیمر جاذب آب در تایر    56

شکل 2-1- الیاف رووینگ تک‌جهته شیشه سری E    62
شکل 2-2- پارچه شیشه سری E دارای بافت تاروپود ساده    63
شکل 2-3- تصویر میکروسکوپ نوری از مقطع لوله‌های موئین شیشه‌ای    64
شکل 2-4- نمای طولی از لوله‌های موئین شیشه‌ای    64
شکل 2-5- الگوی طراحی‌شده شبکه انیزوگرید برای ساخت شابلون قالب‌گیری    67
شکل 2-6- شابلون قالب‌گیری از جنس PVC    68
شکل 2-7- (الف) بشر مخصوص اختلاط رزین و هاردنر و (ب) غلتک مخصوص لایه‌گذاری دستی    69
شکل 2-8- شمای کلی و ابعاد نگهدارنده آزمون خمش سه‌نقطه‌ای با استاندارد ASTM D7264    71
شکل 2-9- تغییرحالت نگهدارنده آزمون خمش برای رعایت ملزومات استانداردهای مختلف خمش    73
شکل 2-10- دستگاه آزمون خمش و قرارگیری نگهدارنده خمش بر روی آن    74
شکل 2-11- نمودار درختی پروژه کامپوزیت مشبک خودترمیم‌شونده    75
شکل 2-12- مراحل ساخت قالب سیلیکونی    78
شکل 2-13- (الف) الیاف رووینگ شیشه مخصوص ریب‌های هلیکال و (ب) الیاف رووینگ شیشه مخصوص ریب‌های طولی    80
شکل 2-14- الیاف رووینگ شیشه بریده‌شده برای ساخت نمونه کامپوزیت مشبک    83
شکل 2-15- شبکه‌های خودترمیم‌شونده مورد استفاده در ساخت نمونه    84
شکل 2-16- روند ساخت نمونه کامپوزیت مشبک خودترمیم‌شونده    88
شکل 2-17- روش کدگذاری نمونه‌ها    89
شکل 2-18- تصویر برخی از نمونه‌های اپوکسی مشبک خودترمیم‌شونده آماده برای آزمون خمش    91
شکل 2-19- فرآیند تخریب کنترل‌شده و تخلیه لوله‌های موئین درون ترک‌های ایجاد شده در ریب‌ها    92
شکل 2-20- نمونه کامپوزیتی مشبک تحت آزمون خمش سه‌نقطه‌ای طبق استاندارد ASTM D7264    93

شکل 3-1- نمودار نیرو-جابجایی نمونه شاهد تحت خمش سه‌نقطه‌ای    96
شکل 3-2- توزیع شماتیک تنش در نمونه‌های کامپوزیتی مشبک تحت بار خمشی    97
شکل 3-3- تنش‌های کششی و فشاری غیرهم‌جهت و جدایش فصل مشترک بین لایه‌ها تحت آزمون خمش    98
شکل 3-4- طرح شماتیک حالات ممکن شکست کامپوزیت تحت بارگذاری خمش سه‌نقطه‌ای    99
شکل 3-5- مکانیزم شکست الیاف پیوسته تقویت‌کننده ریب‌های طولی تحت نیروی کششی    100
شکل 3-6- حالت I شکست (تحت بارکششی) در کامپوزیت‌های زمینه پلیمری تقویت‌شده با الیاف پیوسته    101
شکل 3-7- نمونه کامپوزیت مشبک شاهد در لحظه شکست ریب‌های طولی و حداکثر بار خمشی    102
شکل 3-8- تصویر میکروسکوپ نوری از سطح شکست الیاف شیشه در اثر شکست کششی در ریب طولی    103
شکل 3-9- لایه‌لایه شدن ریب‌ها در اثر تنش‌های برشی بین لایه‌ای در ناحیه 2    104
شکل 3-10- نمونه کامپوزیت مشبک در ناحیه 3 آزمون خمش سه‌نقطه‌ای    105
شکل 3-11- لایه‌لایه شدن و کمانش موضعی پوسته تحت تنش‌های فشاری ناشی از خمش    106
شکل 3-12- طرح شماتیک مکانیزم کمانش موضعی پوسته تحت تنش‌های فشاری ناشی از خمش    106
شکل 3-13- (الف) وقوع شکست نهایی در نمونه کامپوزیتی مشبک و (ب) شکست نهایی پوسته در مرحله 4    107
شکل 3-14- نمودار نیرو-جابجایی فرآیند تخریب نمونه AGSC-R30-HA8-D7    109
شکل 3-15- فرآیند تخریب نمونه کامپوزیتی خودترمیم‌شونده و تخلیه لوله‌های موئین درون ترک سطحی    110
شکل 3-16- نفوذ مواد خودترمیم به سطح ریب‌های طولی در نمونه‌های خودترمیم‌شونده    111
شکل 3-17- نمودار نیرو-جابجایی آزمون خمش نمونه‌های AGSC-R30-HA5-D0/3/7    112
شکل 3-18- نمودار نیرو-جابجایی آزمون خمش نمونه‌های AGSC-R30-HA8-D0/3/7    113
شکل 3-19- نمودار نیرو-جابجایی آزمون خمش نمونه‌های AGSC-R30-HA11-D0/3/7    114
شکل 3-20- حداکثر بارخمشی نمونه‌های خودترمیم‌شونده براساس تغییردرصد حجمی مواد خودترمیم‌    116
شکل 3-21- بازده ترمیم حداکثر بار خمشی در نمونه‌های کامپوزیت مشبک خودترمیم‌شونده    117
شکل 3-22- بازده ترمیم متوسط نمونه‌های خودترمیم‌شونده پس از ترمیم‌های 3 و 7روزه    120
شکل 3-23- حداکثر بارخمشی قابل تحمل نمونه‌های خودترمیم‌شونده براساس تغییر مدت‌زمان ترمیم    121
شکل 3-24- نمودار نیرو-جابجایی نمونه شاهد تحت خمش سه‌نقطه‌ای    122
شکل 3-25- جدایش ریب‌ها از پوسته در ناحیه تمرکز بار خمشی در نمونه شاهد    124
شکل 3-26- خمش Uشکل پوسته در لحظه اتمام آزمون خمش نمونه شاهد و عدم شکست آن    125
شکل 3-27- ترک ایجاد شده دراثر تخریب در نمونه اپوکسی مشبک و نفوذ ماده خودترمیم به درون آن    126
شکل 3-28- نمودار نیرو-جابجایی فرآیند تخریب نمونه AGSC-R0-HA11-D3    127
شکل 3-29- نمودار نیرو-جابجایی آزمون خمش نمونه‌های AGSC-R0-HA5-D0/3/7    128
شکل 3-30- تصویر ماکروسکوپی از ترک ترمیم‌شده در نمونه AGSC-R0-HA5-D7    129
شکل 3-31- تصویر میکروسکوپ نوری از ترک ترمیم‌شده در نمونه AGSC-R0-HA5-D7    130
شکل 3-32- نمودار نیرو-جابجایی آزمون خمش نمونه‌های AGSC-R0-HA8-D0/3/7    131
شکل 3-33- نمودار نیرو-جابجایی آزمون خمش نمونه‌های AGSC-R0-HA11-D0/3/7    132
شکل 3-34- حداکثر بارخمشی نمونه‌های خودترمیم‌شونده براساس تغییردرصد حجمی مواد خودترمیم‌    133
شکل 3-35- بازده ترمیم حداکثر بار خمشی در نمونه‌های اپوکسی مشبک خودترمیم‌شونده    134
شکل 3-36- بازده ترمیم متوسط نمونه‌های خودترمیم‌شونده پس از ترمیم‌های 3 و 7روزه    135
شکل 3-37- حداکثر بارخمشی قابل تحمل نمونه‌های خودترمیم‌شونده براساس تغییر مدت‌زمان ترمیم    137

فهرست جدول‌ها
عنوان    صفحه
جدول 1-1- برخی از کاربردهای سازه‌های مشبک کامپوزیتی    21
جدول 1-2- میزان جذب انرژی ویژه پنل ایزوگرید کامپوزیتی پلی¬پروپیلن- الیاف شیشه E    26
جدول 2-1- خواص فیزیکی و ظاهری رزین اپوکسی ML-526    59
جدول 2-2- مشخصات پخت رزین اپوکسی ML-526    60
جدول 2-3- خواص مکانیکی رزین اپوکسیML-526‌    60
جدول 2-4- مشخصات فیزیکی و مکانیکی رووینگ تک‌جهته شیشه سری E    61
جدول 2-5- مشخصات فیزیکی و مکانیکی پارچه شیشه سری E    62
جدول 2-6- مشخصات فیزیکی و مکانیکی لوله‌های موئین شیشه‌ای    65
جدول 2-7- مشخصات سیلیکون قالب‌گیری    66
جدول 2-8- ابعاد قالب سیلیکونی و مشخصات نمونه‌های کامپوزیتی    79
جدول 2-9- وزن و طول تک‌الیاف تقویت‌کننده ریب‌های هلیکال و طول    81
جدول 2-10- وزن رزین و هاردنر مورد نیاز برای ساخت یک نمونه کامپوزیت مشبک    81
جدول 2-11- تعداد واحدهای خودترمیمی مورد استفاده در ساخت شبکه‌های خودترمیمی    84
جدول 2-12- مشخصات کامل نمونه‌های کامپوزیتی مشبک    90
جدول 2-13- ملزومات آزمون خمش سه‌نقطه‌ای نمونه‌های کامپوزیت مشبک با استاندارد ASTM D7264    93
جدول 3-1- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های شاهد AGSC-R30-HA0-D0    96
جدول 3-2- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های خودترمیم‌شونده حاوی 5%حجمی مواد خودترمیم    112
جدول 3-3- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های خودترمیم‌شونده حاوی 8%حجمی مواد خودترمیم    113
جدول 3-4- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های خودترمیم‌شونده حاوی 11%حجمی مواد خودترمیم    114
جدول 3-5- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های شاهد AGSC-R0-HA0-D0    122
جدول 3-6- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های خودترمیم‌شونده حاوی 5%حجمی مواد خودترمیم    128
جدول 3-7- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های خودترمیم‌شونده حاوی 8%حجمی مواد خودترمیم    131
جدول 3-8- نتایج آزمون خمش سه‌نقطه‌ای نمونه‌های خودترمیم‌شونده حاوی 11%حجمی مواد خودترمیم    132

 

چکیده
سازه‌های مشبک کامپوزیتی نسل جدیدی از مواد کامپوزیتی پیشرفته هستند که با توجه به طراحی منحصربفردی که دارند، از استحکام و سفتی ویژه بالا، و جذب انرژی فوق‌العاده خوبی برخوردار هستند. خواص مکانیکی قابل ‌توجه و کاربردهای چندمنظوره، موجب جلب توجه صنایع هوافضا، نظامی، نفت و گاز، ساختمانی و... به این سازه‌های پیشرفته شده است. قرارگیری سازه‌های مشبک کامپوزیتی در معرض بارگذاری‌های شدید در شرایط کاری، تشکیل ریزترک‌های ساختاری را در این مواد ناگزیر می‌کند. با توجه به این که ردیابی و تعمیر ترک‌های ایجاد شده در این سازه‌ها در شرایط کاری امری دشوار است، باید از موادی استفاده شود که قابلیت ترمیم خودکار عیوب را داشته باشند. تحت این شرایط استفاده از مواد خودترمیم‌شونده در سازه‌های مشبک کامپوزیتی منجر به کاهش چشمگیر هزینه‌های سنگین تعمیرات و نگهداری در صنایع مختلف و افزایش بهره‌وری سازه‌های مشبک خواهد شد.
در این پژوهش، پنل‌های مشبک کامپوزیتی اپوکسی/الیاف شیشه حاوی مواد خودترمیم‌شونده و با الگوی انیزوگرید ساخته شده و تحت آزمون خمش سه‌نقطه‌ای قرار گرفتند. سیستم خودترمیم‌شونده شامل مجموعه‌ای از لوله‌های موئین شیشه‌ای بوده که با رزین اپوکسی (ML-526) و هاردنر آمینی (HA-11) به عنوان عامل ترمیم پر شدند. در ادامه تاثیر تغییر درصد حجمی مواد خودترمیم‌شونده (5، 8 و 11 درصد حجمی) و تغییر مدت ‌زمان ترمیم (3 و 7 روز) بر بازیابی حداکثر بار خمشی نمونه‌های ترمیم‌شده پس از تخریب شبه ‌استاتیک، بررسی شده است. نتایج آزمون خمش نشانگر آن است که بیشترین بازده ترمیم (84%) در نمونه‌های کامپوزیت مشبک حاوی 8 درصد حجمی مواد خودترمیم‌شونده و پس از ترمیم 7 روزه مشاهده شده ‌است.
کلمات کلیدی: سازه مشبک کامپوزیتی، خودترمیم‌شونده، آزمون خمش سه‌نقطه‌ای، لوله‌های موئین شیشه‌ای


دانلود با لینک مستقیم


پایان نامه کارشناسی ارشد مهندسی عمران تحلیل خواص مکانیکی آسفالت سر باره ای مسلح شده توسط مواد پلیمری

اختصاصی از کوشا فایل پایان نامه کارشناسی ارشد مهندسی عمران تحلیل خواص مکانیکی آسفالت سر باره ای مسلح شده توسط مواد پلیمری دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی ارشد مهندسی عمران تحلیل خواص مکانیکی آسفالت سر باره ای مسلح شده توسط مواد پلیمری


پایان نامه کارشناسی ارشد مهندسی عمران تحلیل خواص مکانیکی آسفالت سر باره ای مسلح شده توسط مواد پلیمری

دانلود پایان نامه کارشناسی ارشد مهندسی عمران تحلیل خواص مکانیکی آسفالت سر باره ای مسلح شده توسط مواد پلیمری  با فرمت pdfدر 120صفحه.

این پایان نامه جهت ارائه در مقطع کارشناسی ارشد رشته مهندسی عمران طراحی و تدوین گردیده است . و شامل کلیه مباحث مورد نیاز پایان نامه ارشد این رشته می باشد.نمونه های مشابه این عنوان با قیمت های بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این پایان نامه را با قیمت ناچیزی جهت استفاده دانشجویان عزیز در رابطه با منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالابردن سطح علمی شما در این سایت ارائه گردیده است.                                                 


دانلود با لینک مستقیم


آزمایشگاه خواص مکانیکی

اختصاصی از کوشا فایل آزمایشگاه خواص مکانیکی دانلود با لینک مستقیم و پر سرعت .

آزمایشگاه خواص مکانیکی


آزمایشگاه خواص مکانیکی

آزمایشگاه خواص مکانیکی

مقدمه:

هدف آزمایشگاه خواص مکانیکی آشنائی دانشجویان با انواع مهم و پرکاربرد تستهای مکانیکی مورد استفاده در صنعت و کارهای پژوهشی می‌باشد. شاید مهمترین آزمایش در این میان برای دانشجویان گروه مهندسی مواد, آزمایش کشش ساده باشد که تغییر شکل الاستیک و پلاستیک را در شرایط ساده تک محوری بررسی می‌نماید و اطلاعات بسیار مهمی را در اختیار پژوهشگر قرار می‌دهد.

به کمک آزمایش ساده کشش علاوه بر به دست آوردن مشخصات الاستیک و پلاستیک ماده همچون تنش تسلیم, استحکام کششی, ازدیاد طول و ... , پدیده نقطه تسلیم, کارسختی, پدیده گلوئی شدن, پیرسختی, نحوه شکست و اثر ترخ کرنش بر خواص کششی فولادها مورد بررسی قرار می‌گیرد.

آزمایش مهم دیگر که از نظر کاربرد در صنعت شاید رتبه اول را دارا باشد سختی‌سنجی است که ساده‌ترین و سریعترین تست جهت رسیدن به اطلاعات اولیه در خصوص خواص مکانیگی یک ماده است. آزمایش ضربه مقاومت ماده در مقابل تغییر شکل با سرعت کرنش بالا را بررسی می‌کند و به عبارتی مقاومت به ضربه که معیاری مقایسه‌ای برای چقرمگی شکست ماده می‌باشد را اندازه‌گیری می‌نماید.

در آزمایش خستگی با یکی از روشهای ساده تست خستگی آشنا شده و منحنی S-N برای یک نمونه فولادی به روش تست دورانی خمشی به دست می‌آید. آزمایش خزش تغییر شکل در اثر گذشت زمان را بررسی کرده و منحنی e-t با توجه به دمای نسبتاً پایین فعال شدن مکانیزمهای خزش برای سرب رسم می‌شود.

گزارش تمام آزمایشات باید شامل موارد زیر بوده و حد اکثر دو هفته بعد از آزمایش تحویل گردد.

تئوری آزمایش به صورت مختصر شامل نکات مهم

شرح وسائل و تجهیزات مورد استفاده در آزمایش

شرح روش انجام آزمایش

اطلاعات و نتایج به دست آمده از هر آزمایش مطابق خواسته‌های آن آزمایش

خطاهای آزمایش

آزمایش اول - کشش ساده (جلسات اول و دوم)

هدف: بررسی خواص کششی فلزات و آلیاژهای مختلف در آزمایش کشش ساده تک محوری و به دست آوردن منحنی تنش-کرنش.

وسایل کار : دستگاه کشش یونیورسال ، نمونه‌های استاندارد آزمایش کشش ( مطابق استانداردASTM-E8M از جنس فولاد ساختمانی37 ST، مس ،آلومینیم, برنج زرد، کولیس و فیکسچرچوبی.

روش کار :

1. در بخش کاهش سطح مقطع یافته نمونه های آزمایش ، دو اثر به فاصله مشخص به عنوان طول سنج (gage length) علامت بزنید. قطر میانگین این بخش از نمونه‌ها را با کولیس به دقت اندازه‌گیری کنید

2. به کمک مسئول دستگاه، نمونه آزمایش را در فکها قرار داده و آن را محکم کنید.

3. آزمایش کشش را شروع کنید.

4.آزمایش را تا شکست نهایی ادامه داده و منحنی نیرو ـ ازدیاد طول را به طور کامل به دست آورید.

5. پس از شکست نمونه، دو قسمت شکسته شده را درون فیکسچر چوبی قرار داده و آنها را به یکدیگر بچسانید.

6. طول نهایی سنجه، قطر میانگین بخش تغییر شکل یافته و قطر دهانه گلویی را به دقت اندازه گیری کنید.

 

 

تعداد صفحات: 14


دانلود با لینک مستقیم


دانلود مقاله ISI تجزیه و تحلیل مکانیکی کامپیوتر شبیه سازی برای آسفالت روکش تحت واکنش جفت دما و بارهای

اختصاصی از کوشا فایل دانلود مقاله ISI تجزیه و تحلیل مکانیکی کامپیوتر شبیه سازی برای آسفالت روکش تحت واکنش جفت دما و بارهای دانلود با لینک مستقیم و پر سرعت .

موضوع فارسی :تجزیه و تحلیل مکانیکی کامپیوتر شبیه سازی برای آسفالت
روکش تحت واکنش جفت دما و بارهای

موضوع انگلیسی :Computer Modeling Mechanical Analysis for Asphalt
Overlay under Coupling Action of Temperature and Loads

تعداد صفحه :5

فرمت فایل :PDF

سال انتشار :2011

زبان مقاله : انگلیسی

 

با هدف عدم تجزیه و تحلیل مکانیک کاربردی روکش آسفالت در فرش کردن سیمان قدیمی، بر اساس فضای نیمه الاستیک
تئوری، مدل المان محدود سه بعدی ساخته شده است. تنش جفت روکش آسفالت در قدیمی
فرش کردن سیمان تحت بار وسیله نقلیه و بار درجه حرارت به طور سیستماتیک مورد مطالعه، و بر اساس این آسفالت
پوشش سازه معمولی مناسب برای نمرات بزرگراه مختلف توصیه می شود. نتایج نشان می دهد که
ضخامت مناسب از پوشش آسفالت مرکزی 6cm ~ 11cm، ضخامت مناسب از لایه جذب استرس است 2 سانتی متر است،
و پوشش آسفالت باید اتخاذ آسفالت به منظور بهبود عملکرد آن تغییر یافتهاست. نتایج فراهم اساس مکانیک
برای طراحی و ساخت پوشش آسفالت.


دانلود با لینک مستقیم