کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

1- مقدمه ای بر پایداری ولتاژ پایداری ولتاژ چیست - آستانه توان راکتیو42 صفحه ورد

اختصاصی از کوشا فایل 1- مقدمه ای بر پایداری ولتاژ پایداری ولتاژ چیست - آستانه توان راکتیو42 صفحه ورد دانلود با لینک مستقیم و پرسرعت .

1- مقدمه ای بر پایداری ولتاژ پایداری ولتاژ چیست - آستانه توان راکتیو42 صفحه ورد


1-	مقدمه ای بر پایداری ولتاژ پایداری ولتاژ چیست - آستانه توان راکتیو42 صفحه ورد

با تغییر ساختار جدیدی که در سالهای اخیر در سیستمهای قدرت پدید آمده که باعث میشود ئاحدهای تولیدی توان الکتریکی هرچه بیشتری را از خطوط انتقال عبور دهند، انتظار می رود شاهد فروپاشی ولتاژ گسترده تر و بیشتر سیستم های قدرت باشیم. برای مثال عبور توان بیش از حد یک خط انتقال باعث افت ولتاژ بیش از حد و کاهش ظرفیت انتقال توان الکتریکی به بخش مشخصی از سیستم قدرت گردد. (برای کمک کرده به واحدهای تولیدی در مواجهه و مقابله با این مسئله شرکت EPRI دست به تهیه این متن زده است که توضیح کامل و مناسبی است در مورد پایداری ولتاژ، تجزیه و تحلیل، سنجش، جلوگیری و کاهش اثرات آن.


دانلود با لینک مستقیم

دانلود پروژه بررسی و امکان سنجی در طراحی ترانسفورماتورهای ولتاژ نوری و مقایسه آن با ترانسهای معمولی

اختصاصی از کوشا فایل دانلود پروژه بررسی و امکان سنجی در طراحی ترانسفورماتورهای ولتاژ نوری و مقایسه آن با ترانسهای معمولی دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه بررسی و امکان سنجی در طراحی ترانسفورماتورهای ولتاژ نوری و مقایسه آن با ترانسهای معمولی


دانلود پروژه بررسی و امکان سنجی در طراحی ترانسفورماتورهای ولتاژ نوری و مقایسه آن با ترانسهای معمولی

مقدمه

       انرژی الکتریکی به وسیله نیروگاههای حرارتی که معمولاً در کنار ذخایر بزرگ ایجاد می شوند و نیروگاههای آبی که در نواحی دارای منابع آبی قابل ملاحظه احداث می شوند ، تولید می شود . از این رو به منظور انتقال آن به نواحی صنعتی که ممکن است صدها و هزاران کیلومتر دورتر از نیروگاه باشد ، خطوط انتقال زیادی بین نیروگاهها و مصرف کننده ها لازم است .

       در هنگام جاری شدن جریان در طول یک خط انتقال مقداری از قدرت انتقالی به صورت حرارت در هادیهای خط انتقال تلف می شود . این تلفات با افزایش جریان و مقاومت خط افزایش می یابد .تلاش برای کاهش تلفات تنها از طریق کاهش مقاومت ، به صرفه اقتصادی نیست زیرا لازم است افزایش اساسی در سطح مقطع هادیها داده شود و این مستلزم مصرف مقدار زیادی فلزات غیر آهنی است .

       ترانسفورماتور برای کاهش توان تلف شده و مصرف فلزات غیر آهنی بکار می رود . ترانسفورماتور در حالیکه توان انتقالی را تغییر نمی دهد با افزایش ولتاژ ، جریان و تلفاتی که متناسب با توان دوم جریان است را با شیب زیاد کاهش می دهد .

       در ابتدای خط انتقال قدرت ، ولتاژ توسط ترانسفورماتور افزاینده افزایش می یابد و در انتهای خط انتقال توسط ترانسفورماتور کاهنده به مقادیر مناسب برای مصرف کننده ها پایین آورده می شود و به وسیله ترانسفورماتور های توزیع پخش می شود .

       امروزه ترانسفورماتور های قدرت ، در مهندسی قدرت نقش اول را بازی می کنند . به عبارت دیگر ترانسفورماتور ها در تغذیه شبکه های قدرت که به منظور انتقال توان در فواصل زیاد به کار گرفته می شوند و توان را بین مصرف کننده ها توزیع می کنند ، ولتاژ را افزایش یا کاهش می دهند . به علاوه ترانسفورماتور های قدرت به خاطر ظرفیت و ولتاژ کاری بالایی که دارند مورد توجه قرار می گیرند .

       تامین شبکه های ۲۲۰ کیلو ولت و بالاتر موجب کاربرد وسیع اتو ترانسفورماتور ها شده است که دو سیم پیچ یا بیشتر از نظر هدایت الکتریکی متصلند ، به طوریکه مقداری از سیم پیچ در مدارات اولیه و ثانویه مشترک است .

       در پستهای فشارقوی به دو منظور اساسی اندازه گیری و حفاظت ، به اطلاع از وضعیت کمیت های الکتریکی ولتاژ و جریان احتیاج است . ولی از آنجا که مقادیر کمیت های مذبور در پستها و خطوط فشارقوی بسیار زیاد است و دسترسی مستقیم به آنها نه اقتصادی بوده و نه عملی است  ، لذا از ترانسفورماتور های جریان و ولتاژ استفاده می شود . ثانویه این ترانسفورماتور ها نمونه هایی با مقیاس کم از کمیت های مزبور که تا حد بسیار بالایی تمام ویژگیهای کمیت اصلی را داراست ، در اختیار می گذارد ، و کلیه دستگاههای اندازه گیری ، حفاظت و کنترل مانند ولتمتر ، آمپرمتر ، توان سنج ، رله ها دستگاههای ثبات خطاها و وقایع و غیره که برای ولتاژ و جریان های پایین ساخته می شوند از طریق آنها به کمیت های مورد نظر در پست دست می یابند . بنابراین ترانسفورماتور های جریان و ولتاژ از یک طرف یک وسیله فشار قوی بوده و بنابراین می بایستی هماهنگ با سایر تجهیزات فشار قوی انتخاب شوند  و از طرف دیگر به تجهیزات فشار ضعیف پست ارتباط دارند ، لذا لازم است مشخصات فنی آنها بطور هماهنگ با تجهیزات حفاظت ، کنترل و اندازه گیری انتخاب شوند .

        ترانسفورماتور جریان حفاظتی جهت بدست آوردن جریان عبوری از خط انتقال یا تجهیزات دیگر در شبکه قدرت در مقیاس پایین تر به کار می روند و سیم پیچی اولیه آن بطور سری در مدار قرار می گیرد . تفاوت آن با ترانسفورماتور اندازه گیری آن است که قابلیت آن را دارد که جریانهای خیلی زیاد را به جریان کم قابل استفاده در رله ها تبدیل کند. از آنجا که در اختیار گذاشتن جریان به طور مستقیم در ولتاژ های بالا میسر نیست ، و از طرفی چنانچه امکان بدست اوردن ان نیز باشد ، ساخت وسایل حفاظتی که در جریان زیاد کارکنند به لحاظ اقتصادی مقرون به صرفه نیست لذا این عمل عمدتاً توسط ترانسفورماتور های جریان انجام می شود . همچنین ترانسفورماتور جریان باید طوری انتخاب شود که هم در حالت عادی شبکه و هم در حالت اتصال کوتاه ئ ایجاد خطا بتواند جریان ثانویه لازم و مجاز برای دستگاههای حفاظتی تامین کند .

       ترانسفورماتور ولتاژ حفاظتی ترانسفورماتور هایی هستند که در آن ولتاژ ثانویه متناسب و هم فاز با اولیه بوده و به منظور افزایش درجه بندی اندازه گیری ولتمتر ها ، واتمترها و نیز به منظور ایزولاسیون این وسایل از ولتاژ فشار قوی بکار برده می شود . همچنین از ثانویه ترانسفورماتور ولتاژ برای رله های حفاظتی که هب ولتاژ نیاز دارند نظیر رلههای دیستانس ، واتمتری و… استفاده می شود . این ترانسفورماتور از نظر ساختمان به دو نوع تقسیم می شود که عبارتند از :

         الف- ترانسفورماتور ولتاژاندکتیوی

         ب- ترانسفورماتور ولتاژ خازنی

    همچنین این نوع ترانسفورماتور ها سد عایقی ایجاد می کنند به طوریکه رله هایی که برای حفاظت تجهیزات فشار قوی استفاده می شود ، فقط نیاز دارند برای یک ولتاژ نامی ۶۰۰ ولت عایق بندی شوند .

    ترانسفورماتور های اندازه گیری : در بیشتر مدارهای قدرت ، ولتاژ و جریانها بسیار زیادتر از آنستکه بشود با دستگاههای اندازه گیری معمولی اندازه گرفت . از این رو ترانسهای اندازه گیری بین این مدارها و وسایل اندازه گیری قرار می گیرند تا ایمنی ایجاد کنند . در ضمن مقدیر اندزه گیری شده در ثانویه ، معمولاً برای سیم پیچ های جریان A 1یا A 5 و برای سیم پیچ های ولتاژ ۱۲۰ ولت است . رفتار ترانسفورماتور های ولتاژ و جریان در طول مدت رخداد خطا و پس از آن در حفاظت الکتریکی ، حساس و مهم است زیرا اگر در اثر رفتار نا مناسب در سیگنال حفاظتی ، خطایی رخ دهد ، ممکن است باعث عملکرد نادرست رله هل شود . یک ترانسفورماتور حفاظتی نیاز است که در یک محدوده ای از جریان که چندین برابر جریان نامی است کار کند و اغلب در معرض شرایطی قرار دارد که بسیار سنگین تر از شرایطی است که ممکن است ترانسفورماتور جریان اندازه گیری با آن مواجهه شود . تحت چنین شرایطی چگالی شار تا وضعیت اشباع پیشرفت می کند که پاسخ، تحت این شرایط و دوره گذرای اندازه گیری اولیه جریان اتصال کوتاه مهم است ، در نتیجه به هنگام گزینش ترانسفورماتور های ولتاژ یا جریان مناسب ، مسائلی مانند دورة گذرا و اشباع نیز باید در نظر گرفته شود .

فهرست مطالب

عنوان                                                                                                                          صفحه
مقدمه…………………………………………………………………………………………………… ۶
۲-۱ مقدمه……………………………………………………………………………………………. ۱۰
۲-۲- معرفی ترانسفورماتورهای اندازه گیری…………………………………………………… ۱۱
۲-۳  ترانسفورماتورهای ولتاژ و انواع آن……………………………………………………….. ۱۲
۲-۳-۱  ترانسفور ماتور ولتاژ القایی……………………………………………………………… ۱۲
۲-۳-۲  ترانسفورماتور ولتاژ خازنی (CVT )…………………………………………………
2-4 مسایل جنبی ترانسفورماتورهای ولتاژ………………………………………………………. ۱۴
۲-۴-۱ ضریب ولتاژ………………………………………………………………………………… ۱۴
۲-۴-۲ آلودگی……………………………………………………………………………………… ۱۵
۲-۴-۳  ظرفیت پراکندگی………………………………………………………………………… ۱۵
۳-۱ مقدمه……………………………………………………………………………………………. ۱۷
۳-۲ ماهیت نور………………………………………………………………………………………. ۱۸
۳-۳ بررسی نور پلاریز ه شده…………………………………………………………………….. ۱۸
۳-۳-۱  نور پلاریزه شده خطی…………………………………………………………………… ۲۰
۳-۳-۲  نورپلاریزه شده دایره ای………………………………………………………………… ۲۰
۳-۳-۳  نورپلاریزه شده بیضوی…………………………………………………………………. ۲۱
۳-۴ پدیده دو شکستی……………………………………………………………………………… ۲۲
۳-۵  فعالیت نوری………………………………………………………………………………….. ۲۳
۳-۶ اثرهای نوری القائی…………………………………………………………………………… ۲۵
۳-۶-۱ اثر فارادی…………………………………………………………………………………… ۲۵
۳-۶-۲  اثر کر………………………………………………………………………………………. ۲۷
۳-۶-۳  اثر پاکلز……………………………………………………………………………………. ۲۸
۳-۷  معرفی المانهای مهم نوری………………………………………………………………….. ۳۰
۳-۷- ۱ منابع نور…………………………………………………………………………………….. ۳۱
۳-۷-۲ تار نوری…………………………………………………………………………………….. ۳۱
۳-۷-۳  قطبشگر ……………………………………………………………………………………. ۳۲
۳-۷-۴  تیغه ربع موج و نیمه موج………………………………………………………………… ۳۳
۳-۷-۵  آشکار سازی نور…………………………………………………………………………. ۳۳
بررسی ترانسهای ولتاژ نوری………………………………………………………………………. ۳۷
۴-۱ مقدمه……………………………………………………………………………………………. ۳۷
۴-۲  OPT براساس اثر کر………………………………………………………………………. ۳۷
۴-۳ OPT  بر اساس اثر پاکلز………………………………………………………………….. ۴۰
۴-۳- ۱  اصول کار OPT…………………………………………………………………………
4-3-2  سیستم مدولاسیون شدت نور در OPT……………………………………………….
4-3-3  مدار پردازش سیگنال در OPT…………………………………………………………
4-2-4  مواد سازنده سلول پاکلز………………………………………………………………….. ۴۴
۴-۴  مشخصات OPT 45………………………………………………………………………..
4-4-1  مشخصه خروجی OPT………………………………………………………………….
4-4-2 مشخصه حرارتی OPT……………………………………………………………………
4-5  مسئل عملی OPT……………………………………………………………………………
4-6  بررسی مدار پردازش سیگنال در OCT 51……………………………………………..
4-6- 1 مدار پردازش سیگنال بر اساس روش AC/DC…………………………………….
4-6-2  مدار پردازش سیگنال به روش +/-…………………………………………………….. ۵۲
۴-۶-۳  مدار پردازش سیگنال با استفاده از متوسط شدت نور………………………………. ۵۳
فصل پنجم……………………………………………………………………………………………. ۵۶
۵-۱ مقدمه……………………………………………………………………………………………. ۵۶
۵-۲- مزایا…………………………………………………………………………………………….. ۵۷
۵-۳- تحلیل نوع تجاری……………………………………………………………………………. ۶۰
۵-۳-۱ هزینه‌های سرمایه پست و هزینه‌های ساخت………………………………………….. ۶۰
۵-۳-۲  بازده کارآیی عملکرد…………………………………………………………………… ۶۲
۵-۳-۳  صرفه‌جویی‌های نگهداری و تعمیرات………………………………………………… ۶۷
نسبت دور قابل انتخاب خریدار منجر می‌شود به : …………………………………………….  ۶۸
۵-۳-۴  صرفه‌جویی‌های مصرف دوره نهایی…………………………………………………..   ۶۹
۵-۳-۵  مثال عملکرد IPP، MW600 در KV230………………………………………..
5-4  نتیجه‌گیری…………………………………………………………………………………….. ۷۰
فصل ششم…………………………………………………………………………………………….. ۷۱
۶-۱ مقدمه……………………………………………………………………………………………. ۷۱
۶-۲  مشکلات و معایب ترانسفورماتورهای اندازه گیری معمولی………………………….. ۷۲
۶-۲-۱  احتمال انفجار……………………………………………………………………………… ۷۲
۶-۲-۲  اشباع شدن هسته ترانسفورماتور………………………………………………………… ۷۲
۶-۲-۳ اثر فرورزونانس……………………………………………………………………………. ۷۴
۶-۲-۳-۱  ترانسفورماتورهای ولتاژ خازنی…………………………………………………….. ۷۴
۶-۲-۳-۲ ترانسفورماتورهای جریان و ولتاژ القایی……………………………………………. ۷۵
۶-۲-۴  شار پس ماند………………………………………………………………………………. ۷۵
۶-۲-۵  وزن و حجم زیاد…………………………………………………………………………. ۷۶
۶-۲-۶ محدود بودن دقت آنها……………………………………………………………………. ۷۷
۶-۳  مزایای ترانسفورماتورهای اندازه گیری نوری…………………………………………… ۷۷
۶-۳-۱ عدم احتمال انفجار………………………………………………………………………… ۷۸
۶-۳-۲  عدم ایجاد پدیده فرورزونانس در آنها………………………………………………… ۷۸
۶-۳-۳ بدون اثر شار پس ماند……………………………………………………………………. ۷۸
۶-۳-۴  وزن و حجم کم………………………………………………………………………….. ۷۸
۶-۳-۵ داشتن دقت بالا…………………………………………………………………………….. ۷۹
۶-۳-۶  داشتن سرعت پاسخ دهی بالا………………………………………………………….. ۸۰
۶-۴  کاربردهای عملی ترانسفورماتورهای اندازه گیری نوری……………………………… ۸۰
۶-۵ نتیجه گیری…………………………………………………………………………………….. ۸۱
۶-۶ پیشنهادات………………………………………………………………………………………. ۸۳
۷-۱ مبدل ولتاژ نوری KV 230 توسط سنسور نوری پخش میدان الکتریکی…………… ۸۶
۷-۱-۱ مقدمه………………………………………………………………………………………… ۸۶
۷-۱-۲ طرح OVT……………………………………………………………………………….. :
7-1-3  برپایی آزمایش: …………………………………………………………………………..  ۹۰
۷-۲ مبدل‌های ولتاژ نوری بدون   باند پهن ۱۳۸ کیلوولت و ۳۴۵ کیلوولت………………. ۹۵
۷-۲-۱ مقدمه: ……………………………………………………………………………………….  ۹۵
۷-۲-۲  اصول طرح و کارکرد…………………………………………………………………… ۹۶
۷-۲-۳  نتایج تست‌های آزمایشگاهی ولتاژ بالا: ………………………………………………  ۹۸
۷-۲-۳-۱ بازدهی در مورد دقت…………………………………………………………………. ۹۸
B- عایق‌کاری……………………………………………………………………………………….. ۱۰۳
۷-۳ ترانس اندازه‌گیری ولتاژ فشار قوی نوری توسط تداخل نسبی نور سفید…………….. ۱۰۵
۷-۳-۱ مقدمه ۱۰۵
۷-۳-۲  سنسور پاکلز فشار قوی و ترانسفورماتور ولتاژ نوری بر پایه سیستم WLI……..
الف- مدولاتورهای الکترونوری در تنظیمات طولی…………………………………………… ۱۰۶
ب- سنسورهای پاکلز ولتاژ بالا بر اساس مدولاسیون طولی…………………………………. : ۱۰۸
ج – تکنیک WLI اعمالی برای سنسورهای پاکلز ولتاژ بالا جهت ساخت یک ترانسفورماتور نوری ولتاژ بالا : ۱۱۰
د- ترانسفورماتور ولتاژ بالا نوری با استفاده از تنظیمات WLI……………………………..
7-4  نتایج تجربی…………………………………………………………………………………… ۱۱۵
۷-۵ نتیجه‌گری………………………………………………………………………………………. ۱۱۷
ضمیمه…………………………………………………………………………………………………. ۱:

تحلیل ماتریس پلاریزاسیون نور…………………………………………………………………… ۱۲۰
۱ـ بردار جونز………………………………………………………………………………………… ۱۲۰
۲ـ پارامترهای استوکس…………………………………………………………………………….. ۱۲۱
۳- ماتریسهای جونز…………………………………………………………………………………. ۱۲۳
۴- ماتریسهای مولر………………………………………………………………………………….. ۱۲۳
۵ـ معرفی ماتریسهای فارادی، کروپاکلز…………………………………………………………. ۱۲۵
ضمیمه ۲: جدول استاندارد ترانسفور ماتور ولتاژ……………………………………………….. ۱۲۶


دانلود با لینک مستقیم

سمینار ارشد رشته برق - تاثیر نیروگاهای بادی بر پایداری ولتاژ شبکه با فرمت ورد

اختصاصی از کوشا فایل سمینار ارشد رشته برق - تاثیر نیروگاهای بادی بر پایداری ولتاژ شبکه با فرمت ورد دانلود با لینک مستقیم و پرسرعت .

سمینار ارشد رشته برق - تاثیر نیروگاهای بادی بر پایداری ولتاژ شبکه با فرمت ورد


سمینار ارشد رشته برق - تاثیر نیروگاهای بادی بر پایداری ولتاژ شبکه با فرمت ورد

چکیده. ‌ح

فصل اول.. 2

فصل 2. 4

تعریف و معرفی تولید پراکنده. 4

1-2 تعریف تولید پراکنده. 5

1-1-2 هدف... 5

2-1-2 مکان.. 6

3-1-2 مقادیر نامی.. 7

4-1-2 ناحیه تحویل توان.. 8

5-1-2 فناوری.. 8

6-1-2عوامل محیطی.. 12

7-1-2 روش بهره برداری.. 13

2-2 فواید بالقوه تولید پراکنده. 14

3-2 عواملی که مانع گسترش تولید پراکنده می شوند.. 18

4-2 معرفی انواع تولید پراکنده. 21

1-4-2 توربینهای بادی.. 21

2-4-2 واحد های آبی کوچک..... 23

3-4-2 پیلهای سوختی.. 24

4-4-2 سیتم های بیوماس.... 25

5-4-2 فتوولتائیک..... 26

6-4-2 انرژی گرمایی خورشیدی.. 27

7-4-2 زمین گرمایی.. 28

8-4-2 دیزل ژنراتور. 29

9-4-2 میکرو توربین.. 29

10-4-2 چرخ لنگر. 30

11-4-2 توربینهای گازی.. 30

12-4-2 ذخیره کننده های انرژی.. 31

13-4-2 ذخیره کننده های ابر رسانای انرژی مغناطیسی (SMES). 31

14-4-2 باتریهای الکتریکی.. 32

5- 2تحقیقات در دست انجام بر روی تولید پراکنده. 33

6-2 نتیجه گیری.. 34

فصل سوم. 36

تأثیر DG بر پروفایل ولتاژ در امتداد فیدرهای توزیع مجهز به تغییر دهنده انشعاب بار (LTC). 36

1-3 پروفایل ولتاژ روی فیدرهای با توزیع بار یکنواخت... 38

1-1-3 دامنه عملیات DG.. 40

2-1-3 نصب چندین DG.. 41

2-3 پروفایل ولتاژ روی فیدر های با بارهای متمرکز. 42

3-3 نتیجه گیری.. 44

فصل 4. 45

تإثیر DG بر تنظیم ولتاژ در فیدرهای با خازن های سوئیچ شده. 45

1-4 شبکه توزیع دارای DG.. 46

2-4 کنترل خازن و نوع DG.. 47

1-2-4 انواع کنترل های خازنی.. 47

2-2-4 نوع تولید پراکنده. 48

3-4 پروفایل ولتاژ همراه با DG و کنترل خازن.. 49

1-4-4 وقتی DG و خازنهای سوئیچ شده قطع باشند.. 50

2-4-4 وقتی DG و خازنهای سوئیچ شده وصل باشند.. 50

3-4-4وقتی DG وصل باشد و خازن قطع باشد.. 51

4-3-4 وقتی خازن و DG هر دو وصل باشند.. 51

4-4 تاثیر DG و خازنهای سوئیچ شده بر تنظیم ولتاژ. 52

5-4 نتیجه گیری.. 53

فصل پنجم.. 54

شبیه سازی تأثیر DG بر تنظیم ولتاژ. 54

1-5: تاثیر DC بر پروفایل ولتاژ روی فیدر با ولتاژ ثابت پست فرعی.. 55

2-5 مورد 2: تاثیر DG برتنظیم ولتاژ با عملیات ولت گردان LTC.. 58

3-5 مورد 3: تاثیر DG بر تنظیم ولتاژ با خازنهای سوئیچ شده. 62

4-5 نتیجه گیری.. 64

فصل ششم.. 65

نتیجه گیری.. 65

فصل هفتم..68

مراجع   68

توجه :

لطفا از این پروژه در راستای تکمیل تحقیقات خود و در صورت کپی برداری با ذکر منبع استفاده نمایید.

 


دانلود با لینک مستقیم

دانلود مقاله ISI مقیاس نانو، ولتاژ محور برنامه از مواد فعال زیستی به داخل سلول های با توپوگرافی سازمان یافته

اختصاصی از کوشا فایل دانلود مقاله ISI مقیاس نانو، ولتاژ محور برنامه از مواد فعال زیستی به داخل سلول های با توپوگرافی سازمان یافته دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله ISI مقیاس نانو، ولتاژ محور برنامه از مواد فعال زیستی به داخل سلول های با توپوگرافی سازمان یافته


موضوع فارسی :مقیاس نانو، ولتاژ محور برنامه از مواد فعال زیستی به داخل سلول های
با توپوگرافی سازمان یافته

موضوع انگلیسی :

تعداد صفحه :

فرمت فایل :PDF

سال انتشار :

زبان مقاله : انگلیسی

 

با اسکن یون میکروسکوپ هدایت (SICM)، یک تکنیک پروب اسکن بدون تماس، این امکان وجود هر دو است به
به دست آوردن اطلاعات در مورد توپوگرافی سطح سلول های زنده و به درخواست مولکول بر روی ساختارهای نانومقیاس خاص.
تکنیک بنابراین به طور گسترده ای استفاده می شود به درخواست ترکیبات شیمیایی و به مطالعه خواص مولکول در سطح
انواع سلول های مختلف. سلول های عضله قلب، به عنوان مثال، قلب، دارای یک بسیار استادانه درست شده، توپوگرافی سطح منحصر به فرد
از جمله عرضی-توبول (T-توبول) دهانه منجر به یک سیستم داخلی همراه است که به طور انحصاری بنادر پروتئین های بسیاری لازم
برای عملکرد فیزیولوژیکی سلول است. در اینجا، ما ایزوپروتونول به این دهانه سطح با تغییر کاربردی اعمال
ولتاژ در nanopipette بیمار. برای تعیین درجه دقت برنامه ما ما استفاده می شود محدود عنصر شبیه سازی
به منظور بررسی نحوه نمایش نمایه غلظت بیش از سطح سلول متفاوت است. ما برای اولین بار اسکن توپوگرافی قلب به دست آمده
با استفاده از SICM و سپس تعیین تحرک الکتروفورتیک از ایزوپروتونول در یک محلول یونی بالا می شود؟ 7؟ 10. 9 M2 / V است.
این شبیه سازی ها نشان داد که تحویل به باز کردن T-توبول بسیار به زمینه ای Z-شیار محدود، و به خصوص به
اولین باز T-توبول، که در آن غلظت است ~ 6.5 برابر بیشتر نسبت به روی یک سطح صاف در زیر تحویل در همان
تنظیمات. تحویل به تاج، به جای باز کردن T-توبول، منجر به یک غلظت بسیار پایین تر، با تاکید بر اهمیت
توپوگرافی در تحویل آگونیست. در نتیجه، SICM، بر خلاف روش های دیگر، می تواند قابل اعتماد ارائه مقادیر دقیق
ترکیبات به T-لوله از قلب


دانلود با لینک مستقیم

تنظیم کننده های ولتاژ

اختصاصی از کوشا فایل تنظیم کننده های ولتاژ دانلود با لینک مستقیم و پرسرعت .

تنظیم کننده های ولتاژ


تنظیم کننده های ولتاژ

فرمت فایل : WORD ( قابل ویرایش ) تعداد صفحات:41   

 

مقدمه :

در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند .

منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود 10 تا 20 درصد باعث تغییر ولتاژ خروجی صافی
می شود.

از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا ICهای خاص را نام برد .

 

 

* عوامل موثر بر تنظیم ولتاژ :

عوامل مختلفی وجود دارند که در تنظیم ولتاژ در یک تنظیم کننده موثرند از جمله این عوامل را می توان ، تغییرات سطح ولتاژ برق ، ریپل خروجی صافیها، تغییرات دما و نیز تغییرات جریان بار را نام برد .

 

الف)* تغییرات ولتاژ ورودی :

در تمامی وسایل الکترونیکی و یا سیستم های الکترونیکی و مکانیکی و غیره و در تمامی شاخه های علمی طراحان برای اینکه یک وسیله یا سیستم را با سیستم های مشابه مقایسه کنند معیاری را در نظر می گیرند که این معیار در همه جا ثابت است .

در یک تنظیم کننده معیاری به نام تنظیم خط وجود دارد که میزان موفقیت یک تنظیم کننده ولتاژ در کاهش تغییرات ولتاژ ورودی را با این معیار می سنجند و به صورت زیر تعریف می کنیم :

فرمول (1ـ2)                                                          

که در آن  ، تغییرات ولتاژ ورودی ،  تغییرات ولتاژ خروجی ،  ولتاژ خروجی متوسط (DC) می باشد .


دانلود با لینک مستقیم