کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف

اختصاصی از کوشا فایل خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف دانلود با لینک مستقیم و پرسرعت .

خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف


خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف

مقدمه ای کامل و جامع و بسیار مناسب برای نوشتن پایان نامه 37 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی و با مراجع معتبر ISI

اگر فایل خاصی مد نظر شماست بفرمائید تا در صورت امکان در سایت قرار گیرد.

payannameht@gmail.com

 

فایلهای مرتبط:

خواص و کاربردهای نانوکامپوزیت های آلی- معدنی

 

-1- خواص اپتیکی نانو کامپوزیت­های آلی معدنی

ویژگی­های مفید اپتیکی و کاربردهای نانوکامپوزیت­های آلی-معدنی (PINC ها)[1]، شامل جذب نور (نور مرئی و UV)، فوتولومینسانس، ضریب شکست اپتیکی زیاد و دورنگ نمایی[2]، قرن­هاست که آنها را تبدیل به طبقه مهمی از مواد کاربردی کرده است. خواص اپتیکی کامپوزیت­های PINC وابسته به اندازه و توزیع فضایی ذرات معدنی در ماتریس پلیمر است [1].

 

 

  • جذب کنندگی UV

 PINC هایی که شامل پلیمر و جذب کننده­های UV معدنی مانند TiO2 و ZnO هستند، با افزودن مستقیم نانوفیلرها به ماتریس­های پلیمر ترکیب شده­اند. برای مثال شکل (2-1) از طیف UV-VIS نانوکامپوزیت­های پلی متیل متا آکریلات/اکسید روی (PMMA/ZnO) سنتز شده توسط پلیمریزاسیون سل ژل در محل (شکل 2-2) نشان می­دهد که نانوکامپوزیت­های PMMA/ZnO حتی در غلظت­های پایین فیلرZnO  (wt% 017/0) به طور قطع دارای اثر سدکنندگی UV است، اما شفافیت بالایی را در ناحیه مرئی حتی در اندازه­های بزرگ (ضخامت cm1) حفظ می­کند. علاوه ­بر این، نانوکامپوزیت­های PMMA-ZnO بازدهی بسیار بالاتری در دفع UV  نسبت به لنزهای تجاری که تماسی و سدکننده UV هستند دارد، زیرا قدرت انتقال این لنزها در دامنه 290 تا nm 340 تقریباً صفر است [2،3].

 .

.

  • فوتولومینسانس [1] (نور گسیل)

نانوکامپوزیت با نانوذرات غیر رسانای اکسید/پلیمر به دلیل حضور گروه­های کربوکسیلات در فاصله بین سرامیک و PMMA از خود گسیل نور[2] نشان می­دهند، در حالیکه نانوذرات نیمرسانا همچون ZnO، دارای نور گسیل ذاتی هستند. نانوکامپوزیت­های فوتولومینسان دارای پتانسیل بالایی برای کاربرد در زمینه­های مختلف هستند. برای مثال، نانوکامپوزیت­های اپوکسی با پایه ZnO را می­توان برای نوردهی در قطعات حالت جامد استفاده کرد.

در همین راستا، دو [3] و همکارانش [4] نیز نانوذرات ZnO تعبیه شده در ماتریس پلیمر چربی دوست PMMA را به روش سل ژل غیر متعادل سنتز کرده و خواص فوتولومینسانس (تابندگی) آن را مطالعه کردند. آنها دریافتند که نانوذرات ZnO (nm 6-5) که در PMMA جایگذاری شده­اند، نشان دهنده عبور UV در طول موج  nm334، به دلیل اثرات کوانتومی در اندازه نانوذرات و همچنین نشان دهنده فوتولومینسانس در طول موج nm 346، به دلیل حضور اکساتیون­های مقید [4] در کمپلکس­های R-(Coo)- ZnO است (شکل 2-3). همچنین آنها عکس TEM از این نانوکامپوزیت را به صورت شکل (2-4) ارائه کردند.

.

.

-2- خواص الکتریکی نانوکامپوزیت­های آلی– معدنی:

نانوکامپوزیت­های پلیمری- معدنی رابطه تنگاتنگی با طراحی قطعات الکترونیکی و اپتیکی الکترونیکی دارد. مقیاس ابعادی قطعات الکترونیکی در حال حاضر وارد محدوده نانو شده است[1]. سو[1] و کورا ماتا[2] [6]، سنتز نانوکامپوزیت­های PANI/TiO2 را با پلیمریزاسیون در محل PANI در حضور نانوذرات TiO2 گزارش کردند. در این گزارش پوسته­های نانوکامپوزیت سنتز شده، رسانایی قابل توجهی (S/cm 10-1) نشان دادند که این رسانایی با گرمادهی به مدت یک ساعت در دمای ̊C80، افزایش یافته است. شکل(2-7) رسانایی و اثر دمای حرارتی در نانوکامپوزیت PANI-DBSA/TiO2-DBSA، با محتوای مختلف از TiO2 را نشان می­دهد. هدایت لایه نانوکامپوزیتی با افزایش مقدار TiO2 کمی افزایش می­یابد، و سپس با محتوای بیش از حد TiO2 کاهش می­یابد....

.

.

-3- خواص مغناطیسی نانوکامپوزیت­های آلی– معدنی:

 نانو ذرات مغناطیسی جزو یکی از دو گروه زیر هستند: گروهی شامل نانو ذرات فلزی و گروهی دیگر شامل نانوذرات Fe2O3، Fe3O4 یا هیدروکسید آهن[1] هستند. بیشتر نانوکامپوزیت­ های حاصل از نانوذرات فلزی یا هیدروکسید آهن، بدون پسماند مغناطیسی[2] هستند که این امر نشان دهنده یک ماده فرا پارامغناطیس[3] است.

ژان [4] و همکارانش، در پوسته ­های نانوکامپوزیت PI/γ-Fe2O3، رفتاری فرا پارامغناطیسی مشاهده کردند. آنها همچنین مشاهده کردند که با افزایش محتوای بار Fe3O4 از wt%2 به  wt%8، مغناطش اشباع [5] پوسته­ های نانوکامپوزیت PI/γ-Fe2O3 ، از  A 2-10× 354/1 به A 2-10× 220/4 افزایش یافت. بنابراین خواص مغناطیسی نانوکامپوزیت ها را میتوان با تغییر دادن محتوای بار Fe3O4، کنترل کرد. شکل (2-11) نشان­دهنده حلقه­های پسماند مغناطیسی نانوکامپوزیت­های پلی پیرول است که با بارگذاری 20 و 50 درصد وزنی از نانوذرات اکسید آهن ...

.

.

-4-1- مطالعه خواص ساختاری و اپتیکی نانوکامپوزیت PVA/TiO2:

ملک پور و براتی[8] نانوکامپوزیت­های پلیمری مشتق شده از پلی وینیل الکل (PVA) و نانوذرات دی اکسید تیتانیوم (TiO2) را سنتز نموده و خواص فیزیکی آن را بررسی نمودند. آنها در این تحقیق ابتدا نانوذرات TiO2 با سطح اصلاح شده را تهیه کرده و سپس نانوکامپوزیت PVA/TiO2 را تهیه کردند، بدین طریق که مقادیر مختلف نانوذرات اصلاح شده سطحیTiO2  (5، 10، 15 و 20 wt% از PVA) را با 1/0 گرم PVA مخلوط کردند. سپس مخلوط حاصل را در ml 15 اتانول خالص پخش کرده و به مدت 2 ساعت سونش[1] نمودند و ...

.
.
.

 


 

 

 

فهرست مطالب

 

فصل دوم : خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیت­های پلیمری نیمرسانای شفاف .1

2-1: خواص اپتیکی نانو کامپوزیت­های آلی معدنی.. 1

2-2: خواص الکتریکی نانوکامپوزیت­های آلی معدنی.. 6

2-3: خواص مغناطیسی نانوکامپوزیت­های آلی معدنی.. 9

2-4: مطالعه خواص فیزیکی نانوکامپوزیت­های انتخابی.. 10

2-4-1: مطالعه خواص ساختاری و اپتیکی نانوکامپوزیت PVA/TiO2 10

2-4-2: مطالعه و بررسی خواص نانوکامپوزیت پلی آنیلین دوپ شده با اکسید قلع (PANI/SnO2) 15

2-4-3: سنتز و مشخصه یابی نانوکامپوزیت TiO2-SiO2:PVA (TSP) 24

2-4-4: رشد لایه های نازک اکسید قلع با ناخالصی فلوئور بر بستر های پلیمری شفاف و انعطاف­پذیر. 29

مراجع. 33

 

  

فهرست شکل­ها

شکل 2-1: طیف UV-VIS نانوکامپوزیت­های PMMA/ZnO   2

شکل 2-2: عکس های دیجیتال از مواد هیبریدی PMMA/ZnO   2

شکل 2-3: طیف فوتولومینسانس از فیلم PMMA/ZnO در مدت زمان واکنش متفاوت.. 4

شکل 2-4 تغییرات اندازه میانگین دانه­ها با مقادیر مختلف ناخالصی از آهن.. 4

شکل 2-5: الگوی XRD از نانوذرات آمورف TiO2 5

شکل2-6:  تغییرات ضریب شکست و طیف عبوری از پوشش­های نانوکامپوزیت... 6

شکل 2-7: هدایت الکتریکی PANI-DBSA/TiO2-DBSA با محتوای مختلف از TiO2 7

شکل 2-8: الگوهای پراش XRD از نانوکامپوزیت­های PANI/TiO2 8

شکل 2-9: ثابت و اتلاف دی الکتریک نانوکامپوزیت­های PANI/TiO2 8

شکل 2-10: هدایت الکتریکی نانوکامپوزیت­های PANI/TiO2 در دمای C˚ 35. 9

شکل 2-11: حلقه پسماند مغناطیسی نانوکامپوزیت­ها در بارگذاری های مختلف... 10

شکل 2-12: الگوی پراش XRD نانوکامپوزیت PVA/TiO2 12

شکل 2-13: تصاویر SEM از: (a,b) PVA خالص؛ (c-f) نانوکامپوزیت PVA/TiO2، wt%10. 13

شکل 2-14: صاویر AFM از توپوگرافی سطح نانوکامپوزیت PVA/TiO2 13

شکل 2-15: طیف شفافیت UV-VIS غشاهای نانوکامپوزیتی PVA/TiO2.. 14

شکل 2-16: تصویر شماتیک از تشکیل نانوکامپوزیت PANI/SnO2. 17

شکل 2-17: تصویر SEM از نانوکامپوزیت PANI/SnO2. 17

شکل 2-18: طیف FTIR از نانوکامپوزیت PANI/SnO2. 19

شکل 2-19: طیف XRD از نانوکامپوزیت PANI/SnO2 20

شکل 2-20: پاسخ مقاومت نانوکامپوزیت­های  PANI/SnO2 20

شکل 2-21: تصاویر FESEM از موفولوژی سطح نانو کامپوزیت PANI/SnO2. 23

شکل 2-22: تصاویر TEM نانو کامپوزیت PANI/SnO2. 24

شکل 2-23: : تصاویر SEMو TEM، از نانوکامپوزیت­های TS و TSP. 27

شکل 2-24: طیف XRD از نانوکامپوزیت های TS و TSP. 27

شکل 2-25: طیف UV-vis از نانوکاکمپوزیت­های TS و TSP. 28

شکل 2-26: تصاویر AFM  ( μm2 × μm 2) ، (A) بستر خالصPES  و(B)  سطح فیلم  FTOلایه نشانی شده به روشPLD  برروی بستر PES در دمای C˚25TS = و PO2 =8 Pa. 31

شکل 2-27: الگوهای پراشXRD ، (a) فیلمFTO  بر روی PET، (b)  بسترPET  لخت با رزین،(c)
فیلم FTO بر شیشه ای،(d)  بستر شیشه­ای لخت با رزین..
32

شکل 2-28: میکروگرافSEM  از فیلمFTO  بر بسترPET   32

 


دانلود با لینک مستقیم

سازگارکننده ها برای آلیاژهای پلیمری

اختصاصی از کوشا فایل سازگارکننده ها برای آلیاژهای پلیمری دانلود با لینک مستقیم و پرسرعت .

سازگارکننده ها برای آلیاژهای پلیمری


سازگارکننده ها برای آلیاژهای پلیمری

سازگارکننده ها برای آلیاژهای پلیمری

کاربرد آلیاژهای پلیمری به دلیل ارائه موازنه ای مطلوب از خواص فیزیکی و شیمیایی همچنان به رشد سریع خود ادامه می دهد. سازگارکننده ها مکانیسمی جهت اختلاط این پلیمرهای غیر قابل امتزاج فراهم می آوردند. در این مقاله به روند اخیر استفاده از سازگارکننده ها برای آلیاژهای پلیمری نگاهی می اندازیم

استفاده از آلیاژهای پلیمری و به تبع آن سازگارکننده ها طبق پیش بینی کارشناسان، همچنان به رشد خود ادامه خواهد داد. بازار سازگارکننده ها، بدون در نظر گرفتن آن میزان که در بازیافت استفاده می شود، در حدود 6/13 میلیون کیلوگرم (30 میلیون پوند) در سال 2000 تخمین زده شده است و انتظار می رود تا با سرعت رشد سالانه % 4/5 در سال 2005 به 6/18 میلیون کیلوگرم (40 میلیون پوند) برسد. کمپانی ارتباطات تجاری (BCC) که یک کمپانی آمریکایی است این مطلب را در گزارش سال 2001 خود تحت عنوان "بهینه سازی پلیمر پس از پلیمریزاسیون" بیان کرده است. دو عامل خواص و قیمت، رشد آلیاژها را تضمین میکنند. آلیاژهای پلیمری جهت حصول موازنه مطلوب میان خواص فیزیکی و شیمیایی به طور وسیعی استفاده می شوند. گرایش به پلیمرهای با نقاط ذوب بالاتر و پایداری حرارتی بهتر منجر به کاربرد بیشتر آلیاژهای پلیمری شده است که برای بهبود این پلیمرها که نوعا شکننده تر هستند، به کار گرفته می شوند

تمایل دیگر، آلیاژ سازی سه ماده یا بیشتر با یکدیگر می باشد که عمدتاً در اجزای قالب گیری شده محصول مورد استفاده مصرف کننده به کار می روند، که از آن جمله می توان به لاستیک های با زیر دست نرم بر روی مسواک ها یا تیغ ها اشاره نمود. اجزای قالب گیری شده یک محصول از مخلوط پیچیده ای از پلیمرها تشکیل می شوند که خواص فیزیکی مطلوب به همراه چسبندگی به زمینه را دارا می باشند. سازگارکننده ها در به دست آوردن این آلیاژها نقش کلیدی دارند

صنعت پلاستیک به طور مداوم به دنبال کاهش در هزینه ها می باشد. در برخی موارد که یک پلیمر گران جهت کاربرد مشخصی مورد نظر می باشد، آلیاژ سازی با یک پلیمر ارزان تر با یک پرکننده، با استفاده از سازگارکننده یا عامل اتصال (Coupling Agent) مربوط، هزینه ها را کاهش خواهد داد. راه حل دیگر اصلاح یک پلیمر ارزان مانند pp با استفاده از مواد افزودنی یا آلیاژسازی می باشد به طوری که بتواند با مواد بهتر از لحاظ خواص رقابت کند.

چگونگی عملکرد سازگارکننده ها

سازگارکننده ها جهت تهیه آلیاژ از پلیمرهای غیر قابل امتزاج و خلق یک مخلوط همگون به کار می روند. مواد ناسازگار، مانند آب و روغن، هنگام اختلاط دو فازی می شوند. یک سازگارکننده مانند یک عامل سطح فعال عمل کرده و کشش بین سطحی دو پلیمر ناسازگار را کاهش داده و امکان تهیه آلیاژ از آن ها را فراهم می آورد

هر چند که آلیاژ کماکان دو فازی است اما سازگارکننده، اختلاط و پایداری دو فاز را تا حدی که آلیاژ به مثابه حالت امتزاج پذیر عمل کند، ممکن می سازد. سازگار کننده نوعاً شامل دو بخش است به طوری که هر بخش می تواند با یکی از اجزای آلیاژ بر همکنش داشته باشد، سازگارکننده های غیر واکنشی پیوندی تشکیل نمی دهند اما عموماً با یکی از اجزا آلیاژ امتزاج پذیر می باشند.

سازگارکننده ها نقش مهمی در خلق انواع مختلف آلیاژ داشته و به آمیزه سازان نیز تا حدودی آزادی عملکرد در جهت برآورد نیازهای مشخص می دهند. آلیاژهای پلیمری عموماً خواص ضربه یا خمشی، مقاومت شیمیایی، شکل پذیری حرارتی و قابلیت چاپ را تغییر می دهند، در برخی موارد بعضی از خواص آلیاژ سازگار شده از هر یک از اجزا به تنهایی پیشی می گیرد.

سازگارکننده های *** از شرکت Crompton را می توان جهت تهیه ترکیبات پلی پروپلین با کارکرد بهینه، همچنین آلیاژهای پلی پروپلین یا بسیاری از گرما نرم های مهندسی مختلف به کار گرفت. جریان پذیری بهتر، دانسیته پایین تر، قالب پذیری و مقاومت شیمیایی بهتر، مقاومت به پیر شدن بهتر، مقاومت به خراش بهتر، شفافیت بالا و ماندگاری رنگ بهتر به علاوه کاهش وزن برای کاربردهای ویژه از مزایای استفاده از این مواد می باشد.

سازگارکننده های مورد استفاده در بازیافت

کاربرد مهم دیگر سازگارکننده ها در بازیافت مواد پلیمری می باشد، استفاده از مواد بازیافتی در فرایند گرما نرم ها معمول است. اگر مواد ضایعاتی شامل پلیمرهای ناسازگار، مانند آنچه در ساختارهای چند لایه مشاهده می شود، باشد، جزء ناسازگار به سطح خارجی ماده اکسترود شده مهاجرت خواهد نمود. سازگارکننده ها می توانند از وقوع این پدیده جلوگیری یا میزان آن را کاهش دهند. همچنین سازگارکننده ها امکان بازیافت تکه های فیلم های چند لایه ای را که حاوی پلیمرهای با اندیس جریان کاملاً متفاوت می باشند، فراهم می آورند.

 

 

تعداد صفحات: 17


دانلود با لینک مستقیم