کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کوشا فایل

کوشا فایل بانک فایل ایران ، دانلود فایل و پروژه

کاربرد ژنراتورهای دو سو تغذیه در توربین های بادی در قالب ورد 60 صفحه

اختصاصی از کوشا فایل کاربرد ژنراتورهای دو سو تغذیه در توربین های بادی در قالب ورد 60 صفحه دانلود با لینک مستقیم و پرسرعت .

کاربرد ژنراتورهای دو سو تغذیه در توربین های بادی در قالب ورد 60 صفحه


کاربرد ژنراتورهای دو سو تغذیه در توربین های بادی در قالب ورد 60 صفحه

مقدمه

گسترش روز افزون تولید برق از انرژی بادی و افزایش مزارع بادی در چند دهه اخیر از یکسو و بالطبع اثر رفتار نرمال و گذرای این واحدهای تولید انرژی بر شبکه برق و بعضاً شبکه توزیع برق از سوی دیگر، لزوم شناخت اجزای داخلی این واحدها و آرایشهای مختلف آنها را، برای طراحی مناسب وبهینه چنین سیستمی در شرایط مختلف به وضوح نشان می دهد. توربین های بادی همان طور که میدانیم در دو نوع سرعت ثابت و سرعت متغیر به کار می روند . در نوع سرعت ثابت امکان تغییر1% سرعت روتور وجود دارد و بصورت مستقیم به شبکه متصل می شوند. در انواع سرعت ثابت اکثراً سرعت به نسبت فرکانس شبکه تثبیت می شود و ولتاژ متاثر از سرعت باد است یعنی نوسانات باد در عملکرد توربین و ولتاژ خروجی تاثیر گذار است . برای توربین های سرعت متغییر که ژنراتور توسط تجهیزات الکترونیک قدرت کنترل می شوند ، این امکان فراهم است که سرعت روتور کنترل شود .در این روش نوسانات توان که بوسیله تغییرات باد که ممکن است زیاد یا کم باشند بوسیله تغییر سرعت روتور مستهلک می شوند.


دانلود با لینک مستقیم

دانلود مقاله با موضوع توربین هاو مقدمه ای برخوردگی داغ

اختصاصی از کوشا فایل دانلود مقاله با موضوع توربین هاو مقدمه ای برخوردگی داغ دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله با موضوع توربین هاو مقدمه ای برخوردگی داغ


دانلود مقاله با موضوع توربین هاو مقدمه ای برخوردگی داغ

توربین گازی یکی از انواع مولد قدرت که بدلیل کاربرد وسیع آن در تولید انرژی در نیروگاههای زمینی و نیز عامل حرکت کشتیهای در حمل و نقل تجاری و نظامی در زندگی انسان اهمیت فراوان یافته است . توربین گاز در حقیقت نوعی از موتورهای احتراق داخلی محسوب می شود . در این دستگاه بعوض اینکه اعمال اصلی تراکم ،احتراق و انبساط در داخل عضو واحدی رخ می دهد بصورت متناوب و یکی بعد از دیگری در محفظه های خاصی صورت می گیرد . سه عضو اصلی هر نیروگاه عبارتند از : کمپرسور که جریان پیوسته ماده را فراهم میسازد ، اتاق احتراق که بر انرژی جنبشی گازهای در حال حرکت می افزاید و ماشین انبساط(توربین)که گاز در آن انبساط یافته و انرژی مکانیکی تولید می کند.

عناوین اصلی این مقاله 137 صفحه ای عبارتند از:

فصل اول – مقدمه ای بر توربین های
مقدمه
فصل دوم- مقدمه ای برخوردگی داغ
خوردگی داغ
واکنشهای مربوط به تشکیل مواد خورنده در فرایندهای احتراق
گوگرد
سدیم
وانادیوم
تشکیل رسوب
تأثیر ناخالصیها بر خوردگی داغ
اثر ترکیبات وانادیوم
اثر سولفات سدیم
اثر کلرید
اثر گوگرد
روشهای مطالعه خوردگی داغ
روش مشعلی(Burner Rig Test)
روش کوره ای (Furnace Test)
روش بوته ای(Crucible Test)
روشهای جدید در بررسی آلیاژهای مقاوم به خوردگی داغ
مکانیزم های خوردگی داغ
مرحلۀ شروع خوردگی داغ
مراحل پیشرفت خوردگی داغ
روشهای انحلال نمکی(Fluxing)
خوردگی ناشی از جزء رسوب
خوردگی نیکل تحت اثر یون سولفات
خوردگی نیکل ناشی از سولفات در اتمسفرهای اکسیژن حاویSO3
خوردگی نیکل ناشی از سولفات
خوردگی آلیاژهای پایه نیکل و کبالت ناشی از سولفات در حضور اکسیژن حاوی SO3
خوردگی آلیاژهای نیکل – کرم ناشی از یون سولفات در محیط اکسیژن حاویSO3
خوردگی آلیاژ "Co-Cr" در مقایسه با آلیاژ "Ni-Cr" در محیط یون سولفات در محیط اکسیژن حاوی SO3
خوردگی آلیاژهای(M=Ni,Cr,..)M-Al در محیط سولفات در حضور
فلاکسینگ Al2 O3 Cr2 O3
تأثیرات MoO3,WO3
تأثیرات مخلوط سولفات
خوردگی داغ ناشی از وانادات
مثالهای از مطالعات ترموگراویمتریک
روش مشعلی
خوردگی داغ ناشی از مخلوط سولفاتها و وانادتها
کنترل ناشی از سولفات و وانادات
خوردگی ناشی از نمکهای دیگر
تأثیر کلرید
پوششهای محافظ در برابر خوردگی داغ
تاریخچه بکارگیری پوشش های محافظ
پوشش های نفوذی
پوششهای آلومینیدی ساده
پوششهای آلومینیدی اصلاح شده
تخریب پوششهای نفوذی
تخریب پوششهای آلومینیدی ساده
تخریب پوششهای آلومینیدی اصلاح شده
مقدمه ای بر اکسیداسیون و سولفیداسیون
محیطهای حاوی واکنشگرهای مخلوط
تأثیر مراحل آغازین فرآیند اکسیداسیون بر روند کلی
تشکیل لایه اکسید روی آلیاژهای دوتایی
اکسیداسیون انتخابی یک عامل آلیاژی
تشکیل همزمان اکسیدهای عامل آلیاژی در پوسته بیرونی
محلولهای جامد اکسید
تشکیل متقابل اکسیدهای غیر محلول
رفتار اکسیداسیون آلیاژهای حاوی کرم، نیکل و کبالت
فرایند اکسیداسیون آلیاژهایCo-Cr
فرایند اکسیداسیون آلیاژهای Ni-Cr
فرایند اکسیداسیون آلیاژهای Fe-Cr
مکانیزم اکسیداسیون آلیاژهای چند جزئی
تأثیر بخار آب بر رفتار اکسیداسیون
واکنشهای سولفیداسیون
سولفید آلیاژهای دوتاییNi-Cr ,Co-Cr ,Fe-Cr
مکانیزم سولفیداسیون آلیاژهای Co –Cr
مکانیزم سولفیداسیون آلیاژهای Ni-Cr ,Fe-Cr
تأثیر عنصر اضافی آلومینیوم بصورت عنصر سوم آلیاژی
تأثیر سولفیداسیون مقدماتی روی رفتار اسیداسیون بعدی
روند سولفیداسیون دمای بالای فلزات در SO2+O2+SO2
دیاگرام های پایداری فاز اکسیژن – گوگرد
خوردگی نیکل در SO2
مکانیزم واکنش در دماهای 500 و 600 درجه سانتی گراد
مکانیزم واکنش در بالای دمای 600 درجه سانتیگراد
وابستگی واکنش سیستم Ni-SO2 به دما
خوردگی نیکل در SO3+SO2+O2
خوردگی کبالت در SO2+O2+SO2
خوردگی آهن در SO2+O2+SO2
خوردگی منگنز در SO2
خوردگی کرم در SO2
تأثیرات پوسته های اکسید های تشکیل شده اولیه بر رفتار بعدی قطعه در اتمسفر گازهای محتوی سولفور
-نفوذ سولفور از میان پوسته های آلومینا(Al2 O3) و کرمیا (Cr2O3)
مثالهایی از رفتار خوردگی درجه حرارت بالای آلیاژهای نیکل در محیط های حاویSO2+O2 , SO2
رفتار واکنش آلیاژ Cr % 20-Ni در SO2+O2+SO2

 



دانلود با لینک مستقیم

گزارش کارآموزی رشته تاسیسات مشخصات روتور توربین بخار

اختصاصی از کوشا فایل گزارش کارآموزی رشته تاسیسات مشخصات روتور توربین بخار دانلود با لینک مستقیم و پرسرعت .

گزارش کارآموزی رشته تاسیسات مشخصات روتور توربین بخار


گزارش کارآموزی رشته تاسیسات مشخصات روتور توربین بخار

دانلود گزارش کارآموزی رشته تاسیسات مشخصات روتور توربین بخار بافرمت ورد وقابل ویرایش تعدادصفحات 121

گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی


این پروژه کارآموزی بسیار دقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی میباشد

فصل اول :

مشخصات روتور توربین بخار E-Type 1-1 آشنایی : این روتور دارای شفتی به طول mm6239  می باشد که برروی این شفت 31 ردیف بلید از نوعهای مختلف می نشینند. بلیدهای روتور به 3 دسته تقسیم می شوند. 1-TX  blades 2-F  blades 3-ND  blades بلیدهای TX که 28 ردیف اول را شامل می شوند. بلیدهای F فقط ردیف 29 را شامل می شوند. Nd blades with fir-Tree Root هم ردیف 30 و 31 را شامل می شوند. ردیف 1-24 روتور را پوسته inner casing پوشش می دهد که آن(  High    pressure) گفته می شود. (طبق گفته EMD به آن IP می گویند). و ردیف 25 تا 29 را پوسته quide blade carrier شامل می شود که به آن IP       (Instermediate  pressure)می گویند. و ردیف 30-31 را پوسته Stationary blade ring شامل می شود که به LP (Low pressure) تقسیم بندی می شود.   2-1- قسمت های روتور: 1)کاورسر شفت    Turning gear               2) دندانه های محیطی سرشفت                          جهت سنور دور روتور   3) محل قرار گرفتن یاتاقان  4) محل قرار گرفتن سینگمنت      outer casing 5) محل قرار گرفتن سینگمنت      innner casing (استوانه بالانس) 6)24 ردیف پره های قسمت HP روتور (high pressure) 7)سوراخهای بالانسینگ  8) 5 ردیف پره های قسمت IP  روتور    (Inter mediate pressure)  9) دو ردیف پره های قسمت Lp روتور   (low pressure)  10) محل سوراخهای بالانسینگ  11)شفت سیل      shaft  casing      12) برینگ سیل  bering  Casing   13) انتهای شفت نشیمنگاه یاتاقان                                                 3-1- تفاوت بلید F و TX: بلید TX از سمت Pressure Surface صاف و از سمت Suction surface به صورت مخروطی است در نتیجه بلید TX دارای زاویه Conus (مخروطی) می باشد و شراد از رو به رو به شکل متوازی الاضلاع است.  بلید F: از دو جهت حرکت Root به شراد، دارای 2 زاویه Conuse می باشد. و شکل شراد آن به صورت Z است. و دو نوع بلید فوق در Root با هم تفاوتی ندارند.   تصویر 1:  بلیدهای Tx                    تصویر 2: بلید های F                 4-1 تفاوت بلیدهای R و L و روش شناسایی آن ها (blade): دو نوع blade ثابت در توربین بخار مورد استفاده قرار می گیرد که blade راست (R) و blade چپ (L) می باشد. اگر blade را طوری در مقابل خود برروی میز قرار دهیم قسمت ریشه blade (Root) مقابل ما و قسمت شراد یا caver plate دورتر از ما قرار گیرد و قسمت سطح فشار ،suction blade Surface در پایین و قسمت Pressure Surface در بالا بماند. اگر خمیدگی به سمت راست باشد یعنی بخار را به سمت راست هدایت کند blade از نوع R می باشد و اگر خمیدگی به سمت چپ باشد یعنی بخار را به سمت چپ هدایت کند blade از نوع L می باشد. در توربین بخار E-type همه bladeها از نوع R می باشند. 5-1 تعریف شراد یا cover plate: منظور از cover plate یا شراد در هر blade به قسمت انتهای blade گفته می شود که بعد از مونتاژ bladeها برروی شیار stage مخصوص خود این cover plateها با یکدیگر تشکیل یک Ring دایره ای شکل می دهند که بعد از تیریم سطح شراد و درآوردن شیار seal، سیل زنی آغاز می شود در Rotor سطح شراد بلندتر از سطح Root می باشد. (برعکس استاتور) سنگ زنی ما برروی suction surface می باشد.


دانلود با لینک مستقیم

مراحل طراحی موتور توربین گازی هواپیما

اختصاصی از کوشا فایل مراحل طراحی موتور توربین گازی هواپیما دانلود با لینک مستقیم و پرسرعت .

مراحل طراحی موتور توربین گازی هواپیما


...

دانلود با لینک مستقیم

مقاله منابع انرژی- باد- توربین

اختصاصی از کوشا فایل مقاله منابع انرژی- باد- توربین دانلود با لینک مستقیم و پرسرعت .

مقاله منابع انرژی- باد- توربین


مقاله منابع انرژی- باد- توربین

 

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:78

فهرست مطالب:

مقدمه    5
فصل اول کلیاتی درباره انرژی باد    6
1-1- انرژی باد:    6
1-2 تاریخچه استفاده از انرژی باد:    7
1-3 منشاء باد:    9
الف- جریان چرخشی هادلی (HADLY)    10
ب- جریان چرخشی راسبی (ROSSBY):    10
1-5 اندازه‌گیری پتانسیل انرژی باد:    10
1-6 قدرت باد:    11
روند تحولات تکنولوژی    12
1-7 مزایای بهره‌برداری از انرژی باد    13
آینده انرژی باد در ایران    13
1-8 پتانسیل‌سنجی سطحی انرژی باد:    14
پتانسیل‌سنجی چیست؟    14
1-9 بادسنج‌ها و انواع آنها    16
1-10- پتانسیل باد در ایران    17
1-11 نقشه‌ها و اطلس‌های موجود باد    19
فصل دوم استحصال انرژی از باد توسط توربین‌های بادی    20
انرژی بادی و توربین‌های بادی    20
2-1- تقسیم‌بندی مبدلهای بادی    20
2-2-  دسته‌بندی با معیار هندسی    21
2-3- دسته‌بندی با معیار نیرویی    22
2-4- دسته‌بندی با معیار توان خروجی    24
2-5- مبدلهای بادی محور قائم    25
2-5-1 مبدلهای محور قائم «پسایی»    25
2-5-2 مبدلهای محور قائم برآیی    26
2-5-3 مبدلهای محور قائم ترکیبی    28
2-6-  مبدلهای محور قائم غیرمستقیم    30
2-7- مبدلهای بادی محور افقی    33
2-7-1 مبدلهای محور افقی پسایی    33
2-7-2 مبدلهای محور افقی برآیی    33
2-8- طرحهای مورد بررسی کشورهای مختلف    37
2-9- مبدل بادی ملخی    38
2-9-1 برج    39
2-9-2 کلاهک    40
2-9-3 پره‌ها    41
2-10- مبدل بادی داریوس    42
2-10-1 بنای پایه    43
2-10-2 پره‌ها و دیرک‌    44
2-11-  مبدلهای چرخ آسیابی (جایرومیل)    45
2-11-1 برج    46
2-11-2 پره‌ها    46
2-12- به طور کلی اجزاء مختلف یک توربین به شرح زیر می‌باشد:    47
2-13- انواع کاربرد توربین‌های بادی:    49
الف: کاربردهای غیر نیروگاهی    49
الفه-1) پمپ‌های بادی آبکش    49
الف-2) کاربرد توربین‌های کوچک به عنوان تولیدکننده برق    50
الف-3) شارژ باتری    50
ب: کاربردهای نیروگاهی    51
توربین‌های بادی و ذخیره انرژی:    52
فصل چهارم:    53
طراحی یک VERTICAL AXIS WIND TURBINE:    53
مقدمه ای بر فصل چهار:    54
توربین بادی عمودی چگونه کار می کند؟    54
تعیین ابعاد کلی توربین:    57
طول BLADE LB=    57
اجزای اساسی توربین بادی عمودی:    58
BLADE(1    59
جنس BLADEها:    59
انتخاب تعداد BLADEها:    60
انتخاب ایرفویل:    61
2)پایه:    68
3)شفت:    68
4)پایه نصب مرکزی:    68
5)بازوهای جانبی:    69
5)اتصالات BLADEها:    69
این اجزا برای اتصال بازوهای شعاعی به BLADEها استفاده می شود.    69
6)یاتاقان ها:    69
7)مکانیسم ایجاد PITCH:    70
PITCHING فعال:    70
PITCHING غیرفعال:    70
فصل چهارم:    71
-1-4چشم‌انداز آینده و رویکرد جهانی درخصوص انرژی باد:    71
4-2- خط‌مشی کشورها در نصب مزارع بادی در دریا (آفشور)    72
4-3-  فعالیت‌ها و برنامه‌های کشور در زمینة انرژی باد    74
الف – فعالیت‌های اجرا شده:    74
ب – برنامه‌های آینده:    76
فهرست منابع:    78
 
مقدمه
 گستردگی نیاز انسان به منابع انرژی همواره از مسائل اساسی مهم در زندگی بشر بوده و تلاش برای دستیابی به یک منبع تمام نشدنی انرژی از آرزوهای دیرینه انسان بوده است، از نقوش حک شده بر دیوار غارها می‌توان دریافت که بشر اولیه توانسته بود نیروی ماهیچه‌ای را به عنوان یک منبع انرژی مکانیکی به خوبی شناخته و از آن استفاده کند. ولی از آنجایی که این نیرو بسیار محدود و ضعیف است انسان همواره در تصورات خود نیرویی تمام نشدنی را جستجو می‌کرد که همواره در هر زمان و مکان در دسترس باشد. این موضوع را می‌توان در داستانهای مختلف که ساخته تخیل و ذهن بشر نخستین بوده، به خوبی دریافت، کم‌کم با پیشرفت تمدن بشری، چوب و پس از آن ذغال سنگ، نفت و گاز وارد بازار انرژی گردیده‌اند. اما به دلیل افزایش روز افزون نیاز به انرژی و محدودیست منابع فسیلی از یک سو افزایش آلودگی محیط‌زیست ناشی از سوزاندن این منابع از سوی دیگر استفاده از انرژی‌های تجدیدپذیر را روز به روز با اهمیت‌تر و گسترده‌تر نموده است. انرژی باد یکی از انواع اصلی انرژی‌های تجدیدپذیر می‌باشد که از دیرباز ذهن بشر را به خود معطوف کرده بود. به طوری که وی همواره به فکر کاربرد این انرژی در صنعت بوده است. بشر از انرژی باد برای به حرکت در آوردن قایق‌ها و کشتی‌های بادبانی و آسیابهای بادی استفاده می‌کرده است. در شرایط کنونی نیز با توجه به موارد ذکر شده و توجیه‌پذیری اقتصادی انرژی باد در مقایسه با سایر منابع انرژی‌های نو، پرداختن به انرژی باد امری حیاتی و ضروری به نظر می‌رسد. در کشور ما ایران- قابلیت‌ها و پتانسیل‌های مناسبی جهت نصب و راه‌اندازی توربین‌های برق بادی وجود دارد، که با توجه به توجیه‌پذیری آن و تحقیقات، مطالعات و سرمایه‌گذاری که در این زمینه صورت گرفته، توسعه و کاربرد این تکنولوژی چشم‌انداز روشنی را فرا روی سیاست‌گذاران بخش انرژی کشور در این زمینه قرار داده است.
 
فصل اول کلیاتی درباره انرژی باد
1-1- انرژی باد:
انرژی باد نظیر سایر منابع انرژی تجدیدپذیر از نظر چغرافیایی گسترده و در عین حال به صورت پراکنده و غیر متمرکز و تقریباً همیشه در دسترس می‌باشد، انرژی باد طبیعتی نوسان و متناوب داشته و ورزش دائمی ندارد. هزاران سال است که انسان با استفاده از آسیاب‌های بادی، تنها جزء بسیار کوچکی از آن را استفاده می‌کند. این انرژی تا پیش از انقلاب صنعتی به عنوان یک منبع انرژی، به طور گسترده‌ای مورد بهره‌برداری قرار می‌گرفت، ولی در دوران انقلاب صنعتی، استفاده از سوخت‌های فسیلی به دلیل ارزانی و قابلیت اطمینان بالا، جایگزین انرژی باد شد. در این دوره، توربین‌های بادی قدیمی دیگر از نظر اقتصادی قابل رقابت با بازار انرژی‌های نفت و گاز نبودند. تا اینکه در سال‌های 1973 و 1978 دو شوک بزرگ نفتی، ضربه بزرگی به اقتصاد انرژی‌های حاصل از نفت و گاز وارد آورد. به این ترتیب هزینه انرژی تولید شده به وسیله توربین‌های بادی، در مقایسه با نرخ جهانی قیمت انرژی بهبود یافت. پس از آن مراکز و موسسات تحقیقاتی و آزمایشگاهی متعددی در سراسر دنیا به بررسی تکنولوژی‌های مختلف جهت استفاده از انرژی باد به عنوان یک منبع بزرگ انرژی پرداختند. به علاوه این بحران باعث ایجاد تمایلات جدیدی در زمینه کاربرد تکنولوژی انرژی باد جهت تولید برق متصل به شبکه، پمپاژ آب و تامین انرژی الکتریکی نواحی دور افتاده شد. همچنین در سال‌های اخیر، مشکلات زیست محیطی و مسائل مربوط به تغییر آب و هوای کره زمین به علت استفاده از منابع انرژی فسیلی بر شدت این تمایلات افزوده است. از سال 1975 پیشرفت‌های شگرفی در زمینه توربین‌های بادی در جهت تولید برق بعمل آمده است. در سال 1980 اولین توربین برق بادی متصل به شبکه سراسری نصب گردید. بعد از مدت کوتاهی اولین مزرعه برق بادی چند مگاواتی در امریکا نصب و به بهره‌برداری رسید.
در پایان سال 1990 ظرفیت توربین‌های برق بادی متصل به شبکه در جهان به MW200 رسید که توانایی تولید سالانه Gwh3200 برق را داشته که تقریباً تمام این تولید مربوط به ایالت کالیفرنیا آمریکا و کشور دانمارک بود. امروزه کشورهای دیگر نظیر هلند، آلمان، بریستانیا، ایتالیا هندوستان برنامه‌های ملی ویژه‌ای را در جهت توسعه و عرضه تجاری انرژی باد آغاز کرده‌اند. در طی دهه گذشته، هزینه تولید انرژی به کمک توربین‌های بادی به طور قابل ملاحظه‌ای کاهش یافته است.
در حال حاضر توربین‌های بادی از کارآیی و قابلیت اطمینان بیشتری در مقایسه با 15 سال پیش برخوردارند. با این همه استفاده وسیع از سیستم‌های مبدل انرژی باد (W E C S) هنوز آغاز نگردیده است. در مباحث مربوط به انرژی باد، بیشتر تاکیدات بر توربین‌های بادی مولد برق جهت اتصال به شبکه است زیرا این نوع از کاربرد انرژی باد می‌تواند سهم مهمی در تامین برق مصرفی جهان داشته باشد. براساس برنامه سیاست‌های جاری (cp)، تخمین زده می‌شود که سهم انرژی باد در تامین انرژی جهان در سال 2020 تقریباً برابر با twh375 در سال خواهد بود. این میزان انرژی با استفاده از توربین‌های بادی، به ظرفیت مجموع Gwh180 تولید خواهد گردید. اما در قالب برنامه ضرورت‌های زیست محیطی (ED) سهم این انرژی در سال 2020 بالغ بر twh970 در سال خواهد بود، که با استفاده از توربین‌های بادی به ظرفیت مجموع Gw470 تولید خواهد شد. به طور کلی با استفاده از انرژی باد، به عنوان یک منبع انرژی در دراز مدت می‌توان دو برابر مصرف انرژی الکتریکی فعلی جهان را تامین کرد.
1-2 تاریخچه استفاده از انرژی باد:
بشر از زمان‌های بسیار دور به نیروی لایزال باد پی برده و سالها بود که از این انرژی برای به حرکت در آوردن کشتی‌ها و آسیاب‌های بادی بهره می‌گرفت.
طی سالیان دراز ثابت شده است که می‌توان انرژی باد را به انرژی مکانیکی و یا انرژی الکتریکی تبدیل کرد و مورد استفاده قرار داد. منابع تاریخی نشان می‌دهند که ساخت آسیاب‌ها در ایران، عراق، مصر و چین قدمت باستانی داشته و در این تمدن‌ها، از آسیاب‌های بادی برای خردکردن دانه‌ها و پمپاژ آب استفاده می‌شده است. چنانچه از شواهد تاریخی برمی‌آید، در قرن 17 قبل از میلاد، هامورابی پادشاه بابل طرحی ارائه داده بود تا بتوان به کمک آن دشت حاصلخیز بین‌النهرین را توسط انرژی حاصل از باد آبیاری نمود. آسیاب‌هایی که در آن زمان ساخته می‌شدند از نوع ماشین‌های محور قائم و شبیه به آنهایی هستند که امروزه آثار آنها در نواحی خواف و تایباد ایران به چشم می‌خورد. ایرانیان اولین کسانی بودند که در حدود 200 سال قبل از میلاد مسیح برای آردکردن غلات از آسیاب‌های بادی با محور قائم استفاده کردند. مثلاً در کتاب‌های قدیمی نوشته‌اند: دیار سیستان دیار باد و ریگ است و همان شهری است که گویند باد آنجا آسیاب‌ها را گرداند و آب از چاه کشد و باغها را سیراب کند و در همه دنیا شهری نیست که بیشتر از آنجا از باد سود ببرند. و نیز نوشته‌اند که در سیستان بادهای سخت مدام می‌وزد و به همین دلیل در آنجا آسیابهای بادی برای آرد کردن گندم ساخته‌اند. از دیگر استان‌های دارای قدمت کاربرد انرژی باد می‌توان به کرمان، اصفهان و یزد اشاره نمود که در این مکانها در زمان‌های قدیم برای خنک‌کردن منازل از کانال‌های مخصوص جهت هدایت باد استفاده می‌کردند. بعد از ایران کشورهای عربی و اروپایی پی به قدرت باد در تبدیل انرژی بردند. در قرن سوم قبل از میلاد، یک محقق مصری که در زمینه نیروی هوای فشرده تحقیق می‌کرد، آسیاب بادی چهار پره‌ای را با محور افقی طراحی نمود که از هوای فشرده آن جهت نواختن یک ارگ استفاده می‌کرد. با توجه به شواهد موجود می‌توان ادعا کرد که زادگاه ماشین‌های بادی از نوع محور قائم، حوزه شرقی مدیترانه و چین بوده است.
در قرون وسطی، آسیاب‌های بادی در ایتالیا، فرانسه، اسپانیا و پرتقال متداول گردیده و کمی بعد در بریتانیا، هلند و آلمان به کار گرفته شد. برخی از مورخان اظهار داشته‌اند که ورود این آسیاب‌ها به اروپا باید مدیون شرکت‌کنندگان در جنگ‌های صلیبی دانست که از خاورمیانه باز گشتند. آسیاب‌های بادی که در اروپا ساخته می‌شدند از نوع آسیاب‌های محور افقی و چهارپره بودند که برای آرد کردن حبوبات و گندم به کار می‌رفتند. مردم هلند آسیاب‌های بادی را از سال 1350 میلادی به منظور خشک کردن زمین‌های پست ساحلی و همچنین گرفتن روغن از دانه‌ها و بریدن چوب و تهیه پودر رنگ برای رنگرزی به کار گرفتند. آنچه که هلند را در قرن هفدهم میلادی در زمره غنی‌ترین و صنعتی‌ترین مردم اروپا قرار داد، صنعت کشتی‌سازی و ساخت آسیاب‌های بادی در آن کشور بود. توربین‌های بادی بطنی که شامل پره‌های متعدد هستند، بعدها متداول شدند، در آغاز قرن بیستم اولین توربین‌های بادی سریع و مدرن ساخته شدند. امروزه فعال‌ترین کشورها در این زمینه آلمان، اسپانیا، دانمارک، هندوستان و امریکا می‌باشند.


دانلود با لینک مستقیم